

Título: Structural and complexity studies in inversions and colouring
heuristics of (oriented) graphs

Data: 25/05/2023

Horário: 13h00

Local: Sala de Seminários - Bloco 952

Resumo:

This thesis is divided in two parts, where the first one concerns the inversion number of oriented graphs. Let D be an oriented graph. The inversion of a set X of vertices in D consists in reversing the direction of all arcs with both extremities in X . The inversion number of D , denoted by $\operatorname{inv}(D)$, is the minimum number of inversions needed to make D acyclic. We studied the relation between the inversion number and other parameters related to problems of making a digraph acyclic such as CYCLE ARC TRANSVERSAL (or F EEDBACK ARC SET) and CYCLE TRANSVERSAL (or FEEDBACK VERTEX SET). The cycle transversal (resp. cycle arc-transversal) number of a digraph D, denoted by $\tau(D)$ (resp. $\tau^{\prime}(D)$), is the size of a minimum set of vertices (resp. arcs) whose removal makes D acyclic. The cycle packing number of D, denoted by $v(D)$, is the maximum size of a disjoint set of cycles of D. We show that $\operatorname{inv}(D) \leq$ $\tau^{\prime}(D), \operatorname{inv}(D) \leq 2 \tau(D)$ and there exists a function g such that inv(D) $\leq g(v(D))$, where $v(D)$. We conjecture that for any two oriented graphs L and $R, \operatorname{inv}(L \rightarrow R)=\operatorname{inv}(L)+\operatorname{inv}(R)$ where $L \rightarrow R$ is the dijoin of L and R. This would imply that the first two inequalities are tight. We prove this conjecture when $\operatorname{inv}(\mathrm{L}) \leq 1$ and $\operatorname{inv}(\mathrm{R}) \leq 2$ and when $\operatorname{inv}(\mathrm{L})=\operatorname{inv}(\mathrm{R})=2$ and L and R are strongly connected. We also show that the function g of the third inequality satisfies $g(1) \leq 4$. We then consider the complexity of deciding whether $\operatorname{inv}(\mathrm{D}) \leq \mathrm{k}$ for a given oriented graph D . We show that it is NP-complete for $k=1$, which together with the above conjecture would imply that it is NP-complete for every k. This contrasts with a result of Belkhechine et al. (BELKHECHINE et al., 2010) which states that deciding whether $\operatorname{inv}(T) \leq k$ for a given tournament T is polynomial-time solvable. The second part of this work is about b-greedy colourings and z-colourings. A b-greedy colouring is a colouring which is both a b-colouring and a greedy colouring. A z-colouring is a b-greedy colouring such that a b-vertex of the largest colour is adjacent to a b-vertex of every other colour. The b-Grundy number (resp. z-number) of a graph is the maximum number of colours in a b-greedy colouring (resp. z-colouring) of it. In this part, we study those two parameters. We show that they are not monotone and that they can be arbitrarily smaller than the minimum of the Grundy number and the b-chromatic number. We prove that it is NP-hard to compute each of those parameters. However, we describe a polynomial-time algorithm that decides whether a given k -regular graph has b -Grundy number (resp. z-number) equal to $k+1$. We also prove that, except for the Petersen graph, every cubic graph with no induced 4 -cycle has b-Grundy number and z-number exactly 4.

Banca examinadora:

- Prof. ${ }^{\text {a }}$ Dr. ${ }^{\text {a }}$ Ana Karolinna Maia de Oliveira (MDCC/UFC) - Orientadora
- Prof. ${ }^{\underline{a} \text { Dr. }{ }^{\text {a }} \text { Cláudia Linhares Sales (MDCC/UFC) - Coorientadora }}$
- Prof. Dr. Júlio César Silva Araújo (MDCC/UFC)
- Prof. Dr. Thiago Braga Marcilon (UFCA)
- Prof. ${ }^{\underline{a}}$ Dr. ${ }^{\text {a }}$ Celina Miraglia Herrera de Figueiredo (UFRJ)
- Prof. Dr. Frédéric Havet (Inria, CNRS/França)

