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Prof. Sérgio Lifschitz, DSc
Pontif́ıcia Universidade Católica - Rio de Janeiro
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Aos professores José Maria Monteiro e Sérgio Lifschitz por comporem a banca e pelas
valiosas sugestões no aprimoramento desta dissertação.

A Deus, por estar sempre ao meu lado, dando-me coragem para enfrentar todos os
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Success is getting what you want.

Happiness is wanting what you get.

—DALE CARNEGIE



RESUMO

Nos últimos anos, a computação em nuvem tem atráıdo a atenção tanto da indústria

quanto do meio acadêmico, tornando-se comum encontrar na literatura relatos de adoção

de computação em nuvem por parte de empresas e instituições acadêmicas. Uma vez que

a maioria das aplicações em nuvem são orientadas a dados, sistemas de gerenciamento

de bancos de dados são componentes cŕıticos das aplicações. Novos sistemas de bancos

de dados surgiram para atender a novos requisitos de aplicações altamente escaláveis em

nuvem. Esses sistemas possuem diferenças marcantes quando comparados com sistemas

relacionais tradicionais. Além disso, uma vez que elasticidade é um recurso chave da

computação em nuvem e um diferencial desse paradigma, esses novos sistemas de bancos

de dados também devem prover elasticidade. Juntamente com o surgimento desses novos

sistemas, surge também a necessidade de avaliá-los.

Ferramentas tradicionais de benchmark para bancos de dados não são suficientes

para analisar as especificidades desses sistemas em nuvem. Assim, novas ferramentas de

benchmark são necessárias para avaliar adequadamente esses sistemas em nuvem e como

medir o quão elásticos eles são. Antes de avaliar e calcular a elasticidade desses sistemas,

se faz necessária a definição de um modelo com métricas de elasticidade que façam sentido

tanto para consumidores quanto provedores.

Nesse trabalho apresentamos BenchXtend, uma ferramenta, que estende o Ya-

hoo! Cloud Serving Benchmark (YCSB), para benchmarking e medição de elasticidade

de bancos de dados em nuvem. Como parte desse trabalho, propomos um modelo com

métricas a partir das perspectivas dos consumidores e dos provedores para medir a elasti-

cidade. Por fim, avaliamos nossa solução através de experimentos e verificamos que nossa

ferramenta foi capaz de variar a carga de trabalho, como esperado, e que nossas métricas

conseguiram capturar a variação de elasticidade nos cenários analisados.

Palavras-chave: Benchmarking, Elasticidade, Bancos de dados, Computação em Nu-

vem
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ABSTRACT

In recent years, cloud computing has attracted attention from industry and academic

world, becoming increasingly common to find cases of cloud adoption by companies and

research institutions in the literature. Since the majority of cloud applications are data-

driven, database management systems powering these applications are critical compo-

nents in the application stack. Many novel database systems have emerged to fulfill new

requirements of high-scalable cloud applications. Those systems have remarkable differ-

ences when compared to traditional relational databases. Moreover, since elasticity is a

key feature in cloud computing and it is a differential of this computing paradigm, novel

database systems must also provide elasticity. Altogether with the emergence of these

new systems, the need of evaluating them comes up.

Traditional benchmark tools for database systems are not sufficient to analyze

some specificities of these systems in a cloud. Thus, new benchmark tools are required

to properly evaluate such cloud systems and also to measure how elastic they are. Before

actually benchmarking and measuring elasticity of cloud database systems, it becomes

necessary to define a model with elasticity metrics that makes sense both for consumers

and providers.

In this work we present BenchXtend, a tool, that extends Yahoo! Cloud Serving

Benchmark (YCSB), to benchmark cloud database systems and to measure elasticity of

such systems. As part of this work, we propose a model with metrics from consumer

and provider perspectives to measure elasticity. Finally, we evaluated our solution by

performing experiments and we verified that our tool could properly vary the load dur-

ing execution, as expected, and that our elasticity model could capture the elasticity

differences between the studied scenarios.

Keywords: Benchmarking, Elasticity, Databases, Cloud
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CHAPTER 1

INTRODUCTION

Scalability, pay-per-use or pay-as-you-go pricing model and elasticity are the major rea-

sons for the successful and widespread adoption of cloud infrastructures. Since the ma-

jority of cloud applications are data-driven, database management systems (DBMSs)

powering these applications are critical components in the cloud software stack [1]. Scal-

ability is not a new requirement of database systems for cloud environments. However,

the appearance of infinite computing resources available on demand in a cloud changes

the dimensions of the scalability requirement. Pay-per-use model of cloud computing

allows an organization to pay by the hour for computing resources, potentially leading

to cost savings even if the hourly rate to rent a machine from a provider is higher than

the rate to own one [2]. This model can be applied also for database services provided in

the cloud [3]. The elasticity concept encompasses the idea of scale in and out resources

on demand to keep the quality of a provided service. Cloud database systems should

be able to transparently manage and utilize the elastic computing resources to deal with

fluctuating workloads [4]. There is currently a lot of interest in elastic database systems

[5].

Scalability of a system only provides a guarantee that a system can be scaled

up from a few machines to a larger number of machines. In cloud computing platforms,

it is necessary to support an additional property so that scalability can be dynamically

provisioned without causing any interruption in the service. Elasticity emcompasses

scalability aspects and goes beyond by adding the requirement of scaling down when

level of demand is low. Time is also a central aspect in elasticity, which depends on the

speed of response to changed workload, while scalability allows the system to meet the

changed load as long as it needs. Therefore, elasticity receives remarkable importance on

cloud services.

Stateful systems, such as DBMSs, are hard to scale elastically due to the re-

quirement of maintaining consistency of the database that they manage [5]. Many novel

database systems have emerged to fulfill some needs of cloud applications. These new

1
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database systems present several differences when compared to traditional relational sys-

tems, regarding to their data models, consistency, availability, replication strategy and so

on. Since there are many differences and many available database systems, having a way

to compare them is very useful for developers and architects of cloud applications, for

instance. Benchmark tools are commonly used to evaluate the performance of a system

as well as to help on tuning it.

The most prominent examples to evaluate transactional database systems are the

various TPC benchmarks. However, TPC-family benchmarks do not consider essential

aspects of cloud database systems, like the variation of demand and resources during a

workload and the measurement of specific characteristics like elasticity. Defining a work-

load that changes the number of clients during workload process illustrates a more realistic

scenario for many applications, like Web applications, in which this number goes up and

down continuously. Particularly, reducing the number of clients is a more challenging

aspect, that is not addressed for most related works. Therefore, to properly evaluate a

cloud database system it becomes necessary to have a benchmark tool that properly ful-

fills cloud requirements. Before measuring elasticity of cloud database systems, a model

with metrics is required. Thus, there must be defined a quantitative model to compare

elasticity of different database systems. Services on cloud computing, including database

services but not limited to, are sold by providers and contracted by consumers. Due to

the large number of providers and to the wide range of possible consumer applications,

comparing options based on some criteria help on taking decisions. On one hand, con-

sumers want to compare cloud database services to choose one that fits better to their

needs. On the other hand, providers want to meet the Service-Level Agreement (SLA)

established with the consumer, regarding to the database systems, with the minimum

cost and amount of resources. Therefore, the elasticity metrics must make sense both for

consumer and provider perspectives in order to support them on their decisions.

In this dissertation we present a benchmark tool named BenchXtend [6] to eval-

uate cloud database systems and to calculate elasticity metrics of them. In order to

calculate elasticity we also present a model for measuring elasticity of cloud database

systems, from two perspectives: the consumer one and the provider one. This tool is

an extension of YCSB [7] benchmark and aims to (i) calculate metrics to measure the

elasticity of relational or non-relational database systems, based on expected quality of

service (QoS) agreed in an SLA, and to (ii) provide more realistic workloads allowing to

change the number of clients during a workload execution.

2



1.1. Motivation 3

1.1 MOTIVATION

For decades, relational database management systems (RDBMSs) have been considered

as the one-size-fits-all solution for providing data persistence and retrieval. However,

the ever increasing need for scalability and new application requirements have created

new challenges for traditional RDBMSs. NoSQL database systems have emerged as an

alternative to reach high scalability for applications that may relax some requirements,

like strong consistency. Dozens of NoSQL systems are currently available and several

differences can be pointed out among the existing alternatives. Some NoSQL systems

differ on their data models that could be, for instance, key-value stores, column stores

or document stores. Some systems are optimized to write operations while other ones

for read operations. Synchronous replication can be adopted for some of them, while

other systems adopt assynchronous replication. Thus, many characteristics, that are not

covered by traditional benchmark tools, should be considered by new solutions to evaluate

performance of such novel systems.

YCSB [7] is an outstanding solution to benchmark NoSQL systems. YCSB has

been referenced by many works and currently allows to benchmark more than ten different

database systems. However, YCSB presents some limitations regarding to on how to

properly emulate the behavior of applications in a cloud. For instance, YCSB does not

allow to vary the load during a workload execution. If the load is not changed during

an experiment, it is very hard to evaluate how a system would react to adapt itself

to maintain Quality of Service (QoS) when there are some fluctuations of demand. In a

cloud environment, maintenance of QoS is usually related to satisfying a contract, namely

Service-Level Agreement (SLA), that establishes what are the criteria and the thresholds

to state whether the quality of a service was violated or not. Therefore, adding features

on YCSB or in other benchmark tool to provide a way to vary load during a workload

may help one to evaluate NoSQL systems in a cloud.

Elasticity has been widely advertised by cloud providers but they do not provide

a measurement of how elastic they are. If there is no metric to say how elastic a service

is, one could state only that a service is elastic or inelastic. From the moment in which

many cloud providers are said to provide elastic services, there should have a way to

measure their actual elasticity in order to compare them. Since database systems can be

provided as a cloud service and databases are usually present in most of cloud applications,

measuring the elasticity of database systems becomes relevant. Therefore, a model that

3



1.2. Contributions 4

represents and measures the elasticity of cloud database systems can help on identifying

which services are more elastic. If a provider maintains its QoS by satisfying the SLA and

tries to minimize the resource usage in a scenario with remarkable load variation, we can

say the system acts in an elastic way. We argue that an elasticity model can be based on

how much the SLA is met. Besides having an elasticity model, it becomes necessary to

have also a benchmark tool that can run some workloads and then measure the elasticity

based on the proposed model.

1.2 CONTRIBUTIONS

The major contributions of this master dissertation are:

1. Development of a benchmark tool for cloud database system that calculates elas-

ticity metrics and varies upward and downward the number of active clients while

executing a workload.

2. Definition of a model with metrics to measure the elasticity of database systems in

cloud, from consumer and provider perspectives.

3. Evaluation of our model through some experiments, that can help on understanding

some characteristics of novel data systems in a cloud.

1.3 PUBLICATIONS

During the graduate course, we have published the following papers related to the theme

of this dissertation:

• [Almeida, 2012] Rodrigo Felix de Almeida. 2012. BenchXtend: a tool to bench-

mark and measure elasticity of cloud databases in 27th Simpósio Brasileiro

de Bancos de Dados - SBBD 2012 - Workshop de Teses e Dissertações. São Paulo,

SP, Brazil.

• [Almeida et al., 2013] Rodrigo Almeida, Flávio Sousa, Sérgio Lifschitz and Javam

Machado. 2013. On defining metrics for elasticity of cloud databases in

28th Simpósio Brasileiro de Bancos de Dados - SBBD 2013. Recife, PE, Brazil.
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1.4. Organization 5

1.4 ORGANIZATION

The remaining chapters are organized as follow:

• Chapter 2: presents basic concepts about cloud computing, relational and NoSQL

databases, as well as benchmark tools and finally presents related work.

• Chapter 3: describes the proposed model of metrics for elasticity of databases in

cloud, from consumer and provider perspectives.

• Chapter 4: presents the BenchXtend tool, explaining its architecture and extensions

developed.

• Chapter 5: presents the enviroment where experiments were performed and analyzes

the results gathered.

• Chapter 6: summarizes the conclusions and proposes future works.

5



CHAPTER 2

CLOUD COMPUTING AND DATABASES

2.1 CLOUD COMPUTING

In recent years, cloud computing has attracted attention from industry and academic

worlds, becoming increasingly common to find in the literature cases of cloud adoption

by companies and research institutions. One of the reasons is the possibility of acquiring

resources in a dynamic and elastic way. In fact, elasticity is a key feature in the cloud

computing context, and perhaps what distinguishes this computing paradigm from the

other ones [8]. Even though elasticity is often associated with scalability, they are different

concepts and should never be used interchangeably.

A system whose performance improves proportionally to the capacity added, is

said to be a scalable system. System can scale in two ways: vertical or horizontal. Vertical

scale or scale-up is related to keeping unchanged the number of machines but enhancing

their performances by adding CPUs, memory, disks or network bandwidth. Horizontal

scale or scale-out refers to adding more machines in the cluster to increase the processing

power. Vertical scale may be an unfeasible strategy due to the autonomic-management

requirement of cloud infrastructures. Thus, horizontal scale has been adopted for most

companies and academy works. Scalability is a static property of the system that specifies

its behavior on static configuration, while elasticity is a dynamic property that allows the

systems scale to be increased or released on-demand while the system remains operational.

Many authors and entities have presented definitions for elasticity. NIST [9], for

instance, states that “capabilities can be elastically provisioned and released, in some

cases automatically, to scale rapidly outward and inward commensurate with demand”.

Cooper [7] states that an elastic “system can add more capacity to a running system

by deploying new instances of each component, and shifting load to them.”. Sorrosal

[10] defines as “Capacity at runtime by adding and removing resources without service

interruption in order to handle the workload variation.”. Even though all definitions

mentioned are reasonable, we adopted the following definition proposed by [11]:

6
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Elasticity is the degree to which a system is able to adapt to workload changes

by provisioning and deprovisioning resources in an autonomic manner, such

that at each point in time the available resources match the current demand

as closely as possible.

This definition encompasses important characteristics. Firstly, it mentions “the

degree” which suggests it should be measured. Secondly, it mentions the need of adaption

when the load varies and then that resources can be allocated or deallocated. Besides,

the adaption must be performed in an autonomic way. Finally, it states that resources

match the demand being as closely as possible, i.e. allocating when needed, but trying

to save resources when possible.

In cloud systems, where resources are usually managed in an autonomous way,

the control and the actions related to resource management are taken in such a way

to satisfy the SLA. On one hand, if SLA is not met, the system may have provisioned

less resources than necessary and, consequently, the system component responsible for

adding resources is not acting according to the demand. If the SLA is not being satisfied,

the system mechanism responsible for monitoring and taking decisions is not well tuned

to act and add machines when necessary. Therefore, the system is not being elastic

and we can establish a correspondence between satisfying the SLA and system elasticity.

On the other hand, if that component is providing more resources than needed, SLA is

being satisfied, but the provider may be spending more resources and, consequently more

money, than necessary. In this scenario resources are not as closely as possible to the

demand, implying the system is not being elastic. If the provider defines a lower bound

of such a metric, like number of machines, CPU usage, query response time or any other,

it can help it on determining how much resource is being wasted. This bound may be

defined in the SLA, but it would not generate any penalty neither for the provider nor

for the consumer, if the measurements are below the lower bound.

Elasticity is also related to the speed of adding or removing resources when nec-

essary [12]. Thus, if a system takes a long time to add resources, we can say that its

elasticity is problematic or it should be improved. In this case, when the system is under-

provisioned and it takes a long time to react and to stabilize itself, the system will stay

more time under a state that is likely not satisfying the SLA. It also corroborates the

relation between elasticity and SLA satisfaction.

7
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2.2 DATABASES ON CLOUD

Since most cloud applications are data-driven, database management systems (DBMSs)

powering these applications are critical components in the cloud software stack [1]. Data-

intensive applications can be classified, in general, into two groups: Online Transaction

Processing (OLTP) and Online Analytical Processing (OLAP). OLTP systems are char-

acterized by a large number of short transactions that can update or retrieve data. Since

in OLTP systems, the database is usually accessed by concurrent users that can be both

updating or reading data, to maintain the data consistency of these kinds systems is a

critical factor to be treated. OLAP systems aim to work with data consolidation and data

analysis, typically relaxing normalization of the modeling, performing much more read

than update operations and they are usually accessed by a very few number of users. As

far as cloud is concerned, some works focus on OLTP databases [7] [4] in cloud platforms,

while other present analysis of OLAP databases [13] [14] in such platforms.

Stateful systems, such as DBMSs, are hard to scale elastically because of the

requirement of maintaining consistency of the database that they manage [5]. However,

cloud database systems must provide elasticity otherwise data-driven applications would

miss some benefits that cloud computing can provide to them. Even though the adopted

definition of elasticity is not focused on database-system elasticity, it can be applied if

we assume that “resources” are data nodes and “workload changes” are changes on the

number of queries sent to a database system.

2.2.1 Service-Level Agreements (SLAs)

Many companies expect cloud database providers to guarantee quality of service using

SLAs [15]. Cloud computing contracts agreed between customers and providers are usu-

ally adherent to an SLA. SLA defines the terms that must be satisfied by the provider and

it works as a guarantee for the consumer. SLAs are usually based on one or more metrics

that can be understood both for consumer and provider. In general, cloud providers base

their SLAs only on the availability of services. Amazon EC2, for instance, has an SLA

based on availability, in which it is guaranteed an uptime of at least 99.95%. If this SLA

is not satisfied, Amazon generates a service credit of 10% or 30%, depending on if the

uptime was between 99.95% and 99.00% or if it was less than 99.0%, respectively.

There are some models proposed for SLAs and quality of database service that

8
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deal with data management aspects, such as [16] and [17]. However, as far as we know,

there are no providers of public clouds that base their SLAs on response times or elasticity

metrics of databases, for instance.

2.2.2 Relational Databases and Distributed Databases

The reason for the proliferation of DBMSs in the cloud computing space is due to the

success DBMSs, particularly relational systems, have had in modeling a wide variety of

applications. The key ingredients to this success are the many features DBMSs offer:

overall functionality (modeling diverse types of application using the relational model

which is intuitive and relatively simple), consistency (dealing with concurrent workloads

without worrying about data becoming out-of-sync), performance (both high-throughput,

low-latency and more than 25 years of engineering), and reliability (ensuring safety and

persistence of data in the presence of different types of failures) [18]. However, in spite

of RDBMS success, such systems are not easy to scale due to the requirement of main-

taining consistency of the database that they manage [5]. Moreover, traditional database

management systems are designed, in general, for statically provisioned infrastructures.

This difficult of scaling RDBMS is probably the main reason that motivated the

development of other systems which do not provide everything that relational systems

provide, but that are easier to scale. Since scalability can be the most important require-

ment for many applications, such applications may give up some features of relational

systems in order to have a better performance. For instance, ensuring atomicity and

consistency of data entities may be a responsibility of applications to make data systems

more scalable. Even though there is a remarkable number of works guiding research on

cloud to alternatives for RDBMS, one can say that changing some strategies can make

RDBMS as elastic as NoSQL systems [19].

Database systems, regardless whether they are configured in a cloud or not, sup-

port one concept of a transaction, which guarantees that the execution’s result of multiple

concurrent programs leaves the database in the same state as some serial execution of

the same transactions. The term ACID denotes that a transaction is atomic in that

the system executes it completely or not at all; consistent in that the database remains

unchanged; isolated in that the effects of incomplete execution are not exposed; and

durable in that results from completed transactions survive failures [20]. In a distributed

database, if a transaction modifies objects stored at multiple servers, it must obtain and

9
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hold locks across those servers. While this is costly even if the servers are collocated, it

is more costly if the servers are in different datacenters. When data is replicated, every-

thing becomes even more complex because it is necessary to ensure that the surviving

nodes in a failure scenario can determine the actions of both completed and incomplete

transactions. In addition to the added costs incurred during normal execution, these

measures can force a block during failures that involve network partitions, compromising

availability, as the CAP theorem [21] describes.

The notions of consistency proposed in the distributed systems literature focus

on a single object and are client-centric definitions. Strong consistency means that once

a write request returns successfully to the client, all subsequent reads of the object, by

any client, see the effect of the write, regardless of replication, failures, partitions, and

so on. The term weak consistency describes any alternative that does not guarantee

strong consistency for changes to individual objects. An example of weak consistency is

eventual consistency. For eventual consistency, the guarantee offered is that every update

is eventually applied to all copies, but there is no guarantee regarding to in which order

the updates will be applied and when they will be applied.

2.2.3 NoSQL Databases

For decades, RDBMSs have been considered as the one-size-fits-all solution for providing

data persistence and retrieval. However, the ever increasing need for scalability and new

application requirements have created new challenges for traditional RDBMSs. Therefore,

recently, a new generation of low-cost, high-performance database software that challenges

the dominance of relational database management systems has emerged. These novel

systems are commonly called NoSQL, for Not only SQL, systems.

As opposed to ACID transactions of RDBMS, NoSQL DBMSs follow the CAP

theorem and thus their transactions conform to the BASE (Basically, Available, Soft

state, Eventually consistent) principle [22]. According to the CAP theorem, a distributed

database system can only choose at most two out of three properties: Consistency, Avail-

ability and tolerance to Partitions. Therefore, most of ACID transaction systems decide

to compromise the strict consistency requirement. In particular, they apply a relaxed

consistency policy called eventual consistency.

Two NoSQL systems, BigTable [23] powered by Google and Dynamo [3] powered
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by Amazon, have inspired the development of other novel systems, like MongoDB [24],

HBase [25] and Cassandra [26]. We present more details about Cassandra in this chapter,

since we used it in our experiments.

Although some novel database systems are said to be elastic they do not provide

mechanisms to automatically monitor the environment and take decisions on adding or

removing resources, based on one or more metrics monitored, like CPU usage, memory

usage, throughput, response time, and so on. Therefore, we have to add other components

apart from a database system to have a more complete system that we call cloud database

system, as illustrated on Figure 2.1. This system is composed of (i) an Instance Manager,

(ii) a Database Manager and (iii) a pool of instances (virtual machines) that are running

or available to be started. The Instance Manager, composed of a Monitor and a Decision

Taker, is responsible for monitoring the pool gathering statistics, as well as for taking

decision on starting or on stopping instances of the pool. The Database Manager is the

access point to where queries are sent. Depending on the DBMS under test, there is no

central node to receive queries and distribute. In such systems, queries are sent all over

the pool and the Database Manager is a regular instance. The pool of instances is only a

set of pre-configured instances that can be started or stopped by the Instance Manager.

From now on, every time we mention we are benchmarking a database system, we are

refering to this cloud database system just defined.

Figure 2.1: Cloud Database System

Cassandra

Apache Cassandra is an open-source, highly scalable, column-oriented, distributed

database system for managing large amounts of data. Unlike relational systems, Cassan-
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dra does not demand you to model all of the columns required by your application up

front, as each row is not required to have the same set of columns. A Cassandra instance

is a collection of independent nodes that are configured together into a cluster, where all

nodes are peers, meaning there is no master node or centralized management process.

A node joins a Cassandra cluster based on its configuration. This section explains key

aspects of the Cassandra cluster architecture.

Cassandra uses a protocol called gossip to discover location and state information

about the other nodes participating in a Cassandra cluster [27]. The gossip process runs

on every second and exchanges state messages with up to three other nodes in the cluster.

The nodes exchange information about themselves and about the other nodes that they

have gossiped about, so all nodes quickly learn about all other nodes in the cluster.

When a node first starts up, it looks at its configuration file to determine the name of

the Cassandra cluster it belongs to and which nodes, called seeds, to contact to obtain

information about the other nodes in the cluster. Each node owns a data range. To know

what range of data it is responsible for, a node must also know its own token, that is a

hash, and those of the other nodes in the cluster.

In Cassandra, the total amount of data managed by the cluster is represented as

a ring, with range from 0 to 2217 − 1, assuming the default partitioner, i.e. RandomPar-

titioner. A partitioner is a hash function for computing the token of a row key. Each

row of data is uniquely identified by a row key and distributed across the cluster by the

value of the token. In versions 1.1.x, the ring is divided into contiguous ranges equal to

the number of nodes, as illustrated on Figure 2.2 and on Table 2.1 for a 3-node cluster.

In this example, the first node, whose token is 0, has its range from 2
3
∗ 2217) + 1 to

0. The token value is always equal to the end hash value of the range. The start hash

value is always the value of the end hash value for the subsequent range added by 1. For

instance, the start hash value of node 2 is the end hash value of node 1 plus 1, i.e. 0

+ 1 = 1, as shown on Table 2.1 and graphically represented on Figure 2.2. For versions

1.2.x it is possible to use virtual nodes, or simply vnodes, feature that creates multiple

ranges (256, by default, but configurable via num tokens property on cassandra.yml) and

evenly divides data through the nodes. This feature avoids the need of move operations

to redefine tokens of existing nodes, which is required when a node joins or leaves the

cluster. In addition, vnodes minimizes the time to recover the cluster when a node dies

completely. Virtual nodes also present other advantages [28] [29].

A read or write request from a client can go to any node in the cluster. When

12
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Figure 2.2: Data range division for a 3-node cluster

Node Token Start hash value End hash value

1 0 (2
3
∗ 2217) + 1 0

2 1
3
∗ 2217 1 (1

3
∗ 2217)

3 2
3
∗ 2217 (1

3
∗ 2217) + 1 (2

3
∗ 2217)

Table 2.1: Tokens and range of hash values for a 3-node cluster

a client connects to a node and issues a read or write request, that node serves as the

coordinator for that particular client operation. The job of the coordinator is to act as a

proxy between the client application and the nodes that own the data being requested.

The coordinator determines which nodes in the ring should get the request based on the

cluster configured partitioner and replica placement strategy.

In Cassandra, consistency refers to how up-to-date and synchronized a row of

data is on all of its replicas. Cassandra extends the concept of eventual consistency by

offering tunable consistency. For any given read or write operation, the client application

decides how consistent the requested data should be. For write requests, the consistency

level specifies on how many replicas the write must succeed before returning an acknowl-

edgement to the client application. For read request, the consistency level specifies how

many replicas must respond before a result is returned to the client application.

Cassandra is write-optimized. Its writes are first written to a commit log for

durability issues and then to an in-memory table structure called a memtable. A write is
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successful once data is written to the commit log and memory, so there is very minimal

disk I/O at the time of write. Writes are batched in memory and periodically written

to disk to a persistent table structure called an SSTable (sorted string table). SSTables

files are not changed after they are written. Thus, a row is typically stored across mul-

tiple SSTable files. This strategy has a drawback for read requests, since a row may be

combined from more than one SSTable, but an in-memory structure called Bloom filter

is aimed to optimized these types of requests. Periodically, Cassandra merges SSTables

into larger SSTables in a process called compaction. On one hand, compaction impacts

negatively on read requests since during this process there is a temporary spike on disk

space usage and disk I/O. On the other hand, after the process is finished, read requests

performance is improved since there are less SSTables to be checked before completing a

read request.

According to our adopted definition of elasticity, Cassandra cannot be consid-

ered an elastic database, since it it not able to adapt itself depending on the workload

fluctuation. However, if we add a mechanism to monitor Cassandra instances and to

take decisions to add or remove instances, Cassandra can work in an autonomic way to

distribute data among the nodes and to eventually maintain the consistency. Therefore,

Cassandra can be a good alternative for cloud applications that need scalability and high

availability without compromising performance. To the best of our knowledge, there is

no all-in-one database system that is able to manage its own instances, by monitoring

them and by taking decisions of changing the resources according to the load variation.

2.3 BENCHMARK TOOLS

Traditionally, the goal of benchmarking a software system is to evaluate its performance

under a particular workload for a fixed configuration and to help on tuning a system. The

most prominent examples for evaluating transactional database systems as well as other

components on top, such as a application-servers or web-servers, are the various TPC

benchmarks. All TPC-family benchmarks test environments with fixed configuration. In

addition, TPC-benchmarks focus on transactional database systems that provide ACID

properties.

Cloud systems have an important characteristic that is their capacity to adapt

themselves depending on the variation of demand. Besides, as aforementioned, most

novel data systems commonly used in a cloud do not provide ACID properties, have dif-
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ferent data models, sacrifice strong consistency for availability and offer only some weaker

forms of consistency. Thus, benchmark tools for cloud database systems should consider

specificities of cloud computing and of new database systems available. Particularly, pro-

viding a way to vary the load to stress the system and then force it to add resources must

receive attention. With such feature to vary load, benchmark tools can start thinking

on how to measure elasticity. Unlike measuring efficiency, response time or throughput,

to measure elasticity it is important to keep in mind that workloads must be carefully

selected so that the system can be stressed. Comparing two cloud data systems with the

same workload is fair only if two systems are equally or approximately stressed by the

selected workload [11].

SLA plays an important role on cloud computing, since it establishes the rules

between consumer and provider to guarantee quality of service. Although its importance

is accepted by most works, benchmark tools usually do not consider SLA to state whether

a cloud database system satisfies or not the SLA. As aforementioned, a relation can be

established between poor elasticity and to dissatisfy an SLA. Therefore, benchmark tools

should also match workload results with how much they are meeting the SLA.

Some tools have tried to address some specificities of benchmarking cloud database

systems. The most referenced is YCSB [7], but OLTP-bench [30] also presents interesting

features, although it is not properly a single benchmark.

2.3.1 YCSB

YCSB [7] framework consists of a workload generating client and a package of pre-

configured Core workloads that cover interesting parts of the performance space, such as

read-heavy workloads, write-heavy workloads and scan workloads. An important aspect

of YCSB framework is its extensibility: the workload generator makes it easy to define

new workload types, and it is also straightforward to adapt the client to benchmark new

data serving systems.

YCSB provides a set of Core Workloads, as shown on Table 2.2, that model

different application demands and that can be used by configuring few parameters. Each

Core Workload is composed of a set of parameters like number of operations, number of

threads and percentage of each operation type. Operation type percentages define the

portion of queries for each operation that are expected to be performed. The available
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operation types are: read, insert, update, delete, scan.

Core workload A, for instance, defines that the queries performed during work-

load must be evenly balanced between read and update operations, i.e. 50% for each.

Such workload characterizes an update-heavy application, since in most applications the

number of reads is higher than the number of writes. An example of heavy-update appli-

cation is a Web site that records what a user does during his session. In this application,

on one hand, the system updates frequently the recent actions of a user, but on the other

hand, these actions usually require reading records from a database.

Workload Operations Application example
A - Update heavy Read: 50%; Update: 50% Session store recording recent actions

in a user session
B - Read heavy Read: 95%; Update: 5% Photo tagging; add a tag is an update,

but most operations are to read tags
C - Read only Read: 100% User profile cache, where profiles are

constructed elsewhere (e.g., Hadoop)
D - Read latest Read: 95%; Insert: 5% User status updates; people want to

read the latest statuses
E - Short ranges Scan: 95%; Insert: 5% Threaded conversations, where each

scan is for the posts in a given thread
(assumed to be clustered by thread
id)

Table 2.2: Core workloads that come with YCSB by default

YCSB architecture is designed in such a way it provides an abstraction layer

for adapting to the API of a specific table store. To add support for new database

systems few methods must be implemented, creating what is called a DB Binding. At

the moment this work was written, there were fourteen DB Bindings, including bindings

for well-known systems like Cassandra, HBase [25] and MongoDB [24].

While executing a workload, YCSB gathers performance metrics in order to pro-

vide, by the end of the execution, statistics about the results. YCSB also allows to

choose between time series or histogram representation of the results, reporting also 95th

and 99th percentiles, average, maximum and minimum response times by operation type.

Individual query response times are not reported by the end of a workload.

16



2.4. Related Work 17

2.3.2 OLTP-bench

OLTP-Bench project is a “batteries-included” benchmarking infrastructure designed for

and tested on several relational DBMSs and cloud-based database-as-a-service (DBaaS)

offerings. OLTP-Bench is capable of controlling transaction rate, mixture, and work-

load skew dynamically during the execution of an experiment, thus allowing the user to

simulate a multitude of practical scenarios that are typically hard to test, for example,

time-evolving access skew. Moreover, the infrastructure provides an easy way to monitor

performance and resource consumption of the database system under test.

OLTP-Bench includes a set of known benchmarks, like TPC-C, Wikipedia, Re-

sourceStresser and YCSB, in a standardized way to provide a similar configuration input

file for each one and to gather comparable results.

2.4 RELATED WORK

Benchmarking databases systems is always related to performing experiments and gath-

ering metrics. Measuring performance is one of the main purposes of benchmarking

database systems. Usually, performance of such systems is measured by query response

time or throughput. Considering these metrics, systems that respond to query request

in less time perform better. Systems that execute more operations by second, i.e. have

a higher throughput, perform better. Besides, it can be measured also the scalability of

system in order to identify if the system scales linearly, for instance, as the number of

resources increases linearly. These metrics are important and will be kept useful while

database systems last. However, these metrics are not enough to measure the elastic char-

acteristic of cloud database systems. Therefore, it becomes necessary to define models to

represent elasticity of systems and metrics to measure it.

2.4.1 Elasticity Metrics

A number of authors has discussed about elasticity of database systems, but most of

their works miss simple metrics of elasticity. [31] discusses about elastic scalability but

does not present a metric for that and mention some metrics that do not consider SLA

rules. [31] does not make clear what is the definition of elastic scalability and whether it
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is different or not of elasticity. [32] provides metrics inspired on elasticity definition from

physics, but focus on network bandwidths instead of database-specific aspects and does

not use real data in their experiments.

Some authors [33] [34] discuss elasticity but do not propose metrics to com-

pare their results with other works. [34] presents improvements when compared to [35]

but the presented analysis only compare the results plotted in charts. No common in-

dicator is used to analytically measure the results and to compare elasticity of cloud

database systems. [12] proposes ways to quantify the elasticity concept in a cloud. They

define a measure that reflects the financial penalty to be paid to a consumer, due to

under-provisioning, by leading to unacceptable latency or throughput, or due to over-

provisioning, by paying more than necessary for the resources. Nevertheless, it does not

take into account DBMSs features such as query response time or throughput to cal-

culate the metrics. It uses only a resource-oriented approach to calculate the metrics.

[33] provides definitions of elasticity for database systems and a methodology to evalu-

ate the elasticity. However, these definitions deal only with under-provisioning scenarios

and do not address issues of SLA, penalties, and resources. In addition, the authors do

not explain clearly how they calculate the metrics presenting arguments to support their

decisions.

[36] presents a cloud-enabled framework for adaptive monitoring of NoSQL sys-

tems and it performs some experiments with YCSB for few NoSQL systems trying to

vary the load by manually adding new YCSB instances. However, they do not provide

metrics for elasticity, do not deal with situations of where there are more resources than

necessary and present a cumbersome way to vary the load during workload execution.

[7] presents the metrics named elastic speedup and scaleup. The first metric illustrates

the latency variation as new machines are instantiated. The second one is a traditional

metric and does not encompass elasticity aspects. Even though these metrics can be

useful, they do not illustrate the consumer perspective and do not consider the variation

of clients accessing an application.

2.4.2 Benchmarking Cloud Database Systems

Probably the most relevant work of benchmarking cloud database systems was proposed

by Cooper [7]. YCSB is an extensible benchmark tool and has been used to compare

performance of NoSQL systems in many works [37] [34] [36]. However, YCSB does not
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provide a way to vary number of clients during workload execution. Thus, we believe

that, without changing the workload, is not possible to measure how elastic a system is,

since workload is nearly constant from the beginning to the end of the YCSB benchmark

process.

[38] extends YCSB to support complex features such as including multi-tester co-

ordination for increased load and eventual consistency measurement, multi-phase work-

loads to quantify the consequences of work deferment and the benefits of anticipatory

configuration optimization such as B-tree pre-splitting or bulk loading. However, [38]

does not provide a workload variation to stress and relax a system to measure its elastic-

ity.

OLTP-Bench [30] presents an improvement on elasticity measurement since it

allows to vary the load by varying operations/second by client. However, OLTP-Bench

number of clients is fixed, what does not represent a more realistic scenario. In addition,

OLTP-Bench does not calculate any elasticity metric.

In [34] the variation of load is made by removing one of the workloads being

executed. However, this does not represent a regular behavior of a web application, for

instance, since it is not very common to have many clients leaving an application at the

same time. [39] proposes a framework that intercepts queries from application and then

forward them to database layer, gathering information about the query executions. This

kind of additional layer may include overheads that are hard to be measured, since no

query is directly sent to the database layer. In addition, experiments show only addition of

resources when a threshold is reached. Removing resources is not illustrated and analyzed.

[11] clearly presents the difference of measuring elasticity, scalability and efficiency. In

addition, [11] presents elasticity metrics for cloud computing and what a benchmarking

for elasticity should consider. However, the elasticity metrics are focused only on the

resources allocated and the expected resources, they are not aimed for database systems,

and, finally, the development of the benchmark tool itself is not part of the work and

details about the implementation are not presented.

Much work has been done to provide benchmark tools for cloud database systems

and to propose metrics to measure elasticity. However, as we can notice there are many

challenges and open issues that can be addressed by new research works. We aim to

address some of these open issues in the next couple of chapters.
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CHAPTER 3

ELASTICITY METRICS

According to the definition adopted in this work, elasticity is “the degree to which a

system is able to adapt to workload changes by provisioning and deprovisioning resources

in an autonomic manner, such that at each point in time the available resources match the

current demand as closely as possible”. Thus, it is essential to have a model to measure

the mentioned degree. Since we could not find a model with metrics for elasticity that

encompasses the guarantee of quality of service and that considers consumer and provider

perspectives, we propose a model with a set of metrics before actually measuring elasticity

of cloud data systems with BenchXtend.

Our approach to define metrics for elasticity uses a penalty model approach to

measure imperfections in elasticity for database systems. Similarly to [12], our elasticity

model is composed of two parts: penalty for over- and under-provisioning. Unlike [12],

we explore database system features, like query response times, and present both the con-

sumer and provider perspectives. [12] presents the importance of analyzing the consumer

point of view. [39] comments the dhicotomy of consumer and provider perspectives.

We consider in this work a scenario where a consumer accesses an available ser-

vice in a Database-as-a-Service (DBaas or DaaS) provider. DBaaS is a technology where

a third-party service provider hosts a database as a service [4]. Such services alleviate

the need for their users to purchase expensive hardware and software, deal with soft-

ware upgrades and hire professionals for administrative and maintenance tasks. From a

DBaaS-consumer perspective, the database service would seamlessly scale and it would

be maintained, upgraded, backed-up and handle server failure, all without impacting the

consumer in any way [40]. In order to provide a complete DBaaS solution across large

numbers of customers, the cloud providers need a high-degree of automation. Functions

that have a regular time-based interval, like backups, can be scheduled and batched.

Many other functions, such as elastic scale-out can be automated based on certain busi-

ness rules. For example, providing a certain quality of service (QoS) according to the

SLA might require limiting databases to a certain number of connections or a peak level
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of CPU utilization, or some other criteria. When a criterion is exceeded, the DBaaS

might automatically add a new database instance to share the load. DBaaS may be seen

as a specific kind of service delivered by a Platform-as-a-Service (PaaS) provider [41].

[42] suggests a solution for a DBaaS. Many players like Amazon, Oracle and Microsoft

already provide solutions for DBaaS. SLA receives relevant importance in this case, since

it must be defined in such a way the consumer has a suitable and understandable metric

to evaluate the service quality, like query response time or throughput. [39] presents some

challenges on defining SLAs properly.

We do not consider a Software-as-a-service (SaaS) scenario, because, in general,

a SaaS consumer has no access or control to the database system when contracts a SaaS

provider. Infrastructure-as-a-service (IaaS) scenario is not considered either because the

SLA is usually based only on infrastructure resources, removing from the provider the

responsibility of guaranteeing quality of any software service. Amazon EC2 is an example

of IaaS provider and its SLA guarantees only availability.

3.1 CONSUMER PERSPECTIVE

Due to the large number of DBaaS providers and to the so-claimed buzzword elasticity,

it is important for consumers to have a model to evaluate and compare elasticity of

database systems. From a DBaaS-consumer perspective, a database system is elastic if,

regardless the number of queries submitted to the system, the system makes adaptions

on its resources, based on the demand, in order to satisfy the SLA. Even though most

providers do not give guarantees of performance on database systems yet, defining an

SLA based on response time for queries can attract new consumers, since an agreement

based on that allows the consumers to assure the quality of a service for the end users of

their applications.

Our proposal assumes an SLA based on an agreement of response times of queries.

Upper and lower bounds for response times are defined by operation type in the SLA.

In our case, following the YCSB operations, we have the following five operation types:

read, insert, update, delete, scan. For each operation type, consumers and providers

can define different values, depending on what is feasible for the provider to ensure

or on what the database system is optimized or not to. It is important to notice that

according to this approach there should not be defined penalties related to the underlying

infrastructure, like number of replicas or dedicated memory. Techniques adopted by
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DBMSs, like replication or cache strategy are considered to be transparent for a DBaaS

consumer. Thus, we propose metrics that abstract techniques like those. Even though

we present the following metrics by operation type, the concept presented here can be

applied to response times of transactions, specific queries or group of queries.

[7] presents a metric named elastic speedup to measure the impact on performance

as new servers are manually added, while the workload is running. They stated that a

system that offers good elasticity should show a performance improvement when new

servers are added, with a short or non-existent period of disruption while the system is

reconfiguring itself to use the new server. Even though this metric can be useful from the

provider perspective, from the consumer perspective it would be more important to have a

metric that considers the increase and decrease of numbers of clients, instead of number

of machines. As aforementioned, for a DBaaS consumer, it is transparent how many

machines are needed to meet a response time defined in the SLA. Thus, considering

a variation in the number of clients, a developer could benchmark his applications to

check if non-functional requirements of scalability, for instance, are met. Furthermore,

the addition of machines was made manually, while our adopted definition of elasticity

considers an autonomic management. [7] also presents the scaleup metric. This is not an

elastic metric, since does not consider the variation of resources while running a workload.

According to this metric, a system has good scaleup properties if the performance remains

constant as the number of servers, amount of data and throughput scale proportionally.

3.1.1 Under-provisioning Penalty (underprov)

The first metric we propose is named underprov. The strategy for underprov is compliant

to the concept of penalties for database services in the cloud. In this case, the resources

allocated to the consumer are under-provisioned, i.e. insufficient to keep up the quality,

generating a response time increase and consequently causing a penalty. This penalty

is for violating the SLA. Penalties due to under-provisioning are directly related to bad

elasticity, since, if the system had a good one, it would have identified the workload

variation and would also have taken action to scale up to address the increase of demand.

In addition, the time to add and remove machines is related with elasticity and this

can be indirectly captured by measuring on how the SLA is satisfied. For instance, if a

machine is quickly added when the system is overloaded, the system takes shorter time

under heavy load and, consequently, the impacts over response times are reduced causing
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less violated queries, i.e. more queries satisfy the SLA.

We define this metric in equation (.) as the average of the ratio execution time

by expected time of those n queries whose response times are greater than the upper

bound defined in the SLA and that are not discrepant values. We consider the fraction

execution time by expected time in order to measure how far from the expected time,

the execution time is. We argue that from an end-user point of view there are different

perceptions of quality between violating the expected time by a very little amount of

time and by a remarkable amout of time. In order to remove discrepant values, caused by

timeout or instability peaks, for instance, we consider a percentile for under-provisioning.

Values higher than the defined percentile are not considered by this metric calculation.

By default, we consider 99th percentile for underprov metric, to have a more precise

metric.

Expected response time (expected) or SLA upper bound is defined by operation

type in the SLA. This time represents the maximum time a query should take without

disrespecting the SLA. The violated execution time (violatedet(i)) represents time spent

by a query i that did not meet the SLA and that is lower than the defined underprov

percentile.

underprov =

n∑
i=1

violatedet(i)

expected

n
(.)

The higher underprov is, the less elastic the database system is, because the

system could not identify the need of adding more resources, could not quickly act to

maintain acceptable response times and then more queries violated the SLA.
violatedet(i)
expected

is always greater than 1, since it is applied only for violated queries, and measures the

difference between defined and executed time.

In order to better understand on how to calculate underprov, consider the follow-

ing hypothetical response times, in µs: [400; 150; 180; 250; 120; 300; 130]. For a matter

of simplicity, consider also that discrepant values were already removed, making use of

percentiles. If we assume expected = 200µs, the response times that violate the SLA,

i.e. that are greater than the expected response time (SLA upper bound), are [400; 250;

300]. For these three violated queries, the values of fractions
violatedet(i)
expected

are [2; 1,25; 1,5].

Finally, the underprov value is calculated as follows:
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underprov =
2 + 1, 25 + 1, 5

3
= 1, 5833

Apart from percentiles, we verified also other mathematical devices to identify

discrepant values. One of them was interquartile analysis with outliers. Interquartile

analysis identifies outliers in the data distribution by calculating the interquartile range

(IQR) and defining upper and lower fences. Values are considered outliers if they are out

of those fences. For instance, values are said to be extreme outliers if they are out of the

range [Q1 − 3 ∗ IQR,Q3 + 3 ∗ IQR], where Q1 is the 1st quartile, Q3 is the 3rd quartile

and IQR is the difference Q3−Q1 [43]. Even though interquartile analysis seems to be a

good solution to identify divergent values and that avoids the definition of magic numbers,

like 99th percentile, this analysis may lead to unexpected behaviors. To illustrate these

behaviors, in some experiments, interquartile analysis classified more than 12% of data

as outliers, which is a remarkable amount of data and that could lead us to remove data

that are not discrepant and that could represent a peak of clients in the experiments. In

addition, if the upper fence value is lower than the SLA upper bound, all response times

greater than the upper fence would be removed, our metric would result 0 (zero) and it

would be given a false impression of perfect elasticity, although there were queries that

may not have satisfied the SLA.

3.2 PROVIDER PERSPECTIVE

From a customer perspective, we just presented underprov metric. For a DBaaS provider,

besides measuring that, it is also essential to evaluate how efficient the database system is

to allocate only the minimum amount (or as closely as possible of the minimum amount)

of resources to meet the SLA. Thus, from a provider perspective, our approach proposes

underprov and a new metric named overprov, based on the charged level of resources.

Finally, we combine underprov and overprov to get a single dimensionless value for

elasticity of cloud database systems.
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3.2.1 Over-provisioning Penalty (overprov)

When there is over-provisioning, the provider offers more resources than necessary to meet

a demand. Thus, the provider is subject to an operating cost higher than the necessary

to meet the SLA. In this situation, the database system has a number of resources that

are running a given workload, but this amount may be higher than necessary. Unlike

the penalty for under-provisioning, this metric does not make sense from a consumer

perspective, since for a DBaaS consumer there is no problem to have more available

resources if that does not imply in a cost increase.

overprov considers the execution time of queries performed when the database

system is over-provisioned. We define this metric in equation (.) as the average of the

ratio lower bound time by execution time for those m queries that are considered over-

provisioned. In this work, a query is said to be over-provisioned if its response time is less

than the lower bound and it is greater than such a percentile. We call this percentile of

overprov percentile and the 1st percentile is the default one. Unlike underprov, overprov

moves the expected to the numerator since in an over-provisioning scenario the execution

time is supposed to be lower than the expected one.

The query execution time (queryet) is the time spent by a query i that is consid-

ered in the overprov calculation.

overprov =

m∑
i=1

expected

queryet(i)

m
(.)

The higher overprov is, the less elastic the database system is, because the system

kept more resources than necessary to satisfy SLA. expected
queryet(i)

is always greater than 1,

since query execution times are always lower than expected time in an overprovisioning

scenario.

As exemplified for underprov metric, to better understand overprov metric, con-

sider the following hypothetical response times, in µs: [400; 150; 180; 250; 120; 300; 130].

For a matter of simplicity, consider also that discrepant values were already removed,

making use of percentiles. If we assume expected = 140µs, the response times that vi-

olate the SLA, i.e. that are lower than the expected response time (SLA lower bound),

are [120; 130]. For these two violated queries, the values of fractions expected
queryet(i)

are [1,1667;

1,0769]. Finally, the overprov value is calculated as follows:
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overprov =
1, 1667 + 1, 0769

2
= 1, 1218

Figure 3.1 illustrates the five possible ranges in which queries can be placed

depending on their response times. Acceptance range is the interval in which queries are

included neither on underprov nor on overprov. In the example presented for underprov

and overprov metrics, the values 150 and 180 are within the acceptable range, because

they are between SLA upper and lower bounds. Underprovisioning range contains queries

whose response times are lower than the defined percentile (by default, 99th) and greater

than the SLA upper bound for response times, defined on the SLA for such an operation

type. Overprovisioning range contains queries whose response times are lower than the

SLA lower bound and that are greater than the overprov percentile (1st, by default).

Queries that are placed in percentile areas are discarded both from underprovisioning

and overprovisioning metrics.

Figure 3.1: Time ranges where each response time can be placed within

3.2.2 Elasticity for Database System (elasticitydb)

The provider is impacted both on under- and over-provisioning scenario. Thus, from

provider perspective, elasticity can be given by a value somehow composed of underprov
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and overprov values. We claim that different weights should be applied to underprov and

overprov when combined in a single metric and a higher weight should be set to underprov

when compared to overprov weight for one reason. The penalty due to over-provisioning

affects only one of the parties, i.e. the provider. Penalties due to under-provisioning imply

in a cost for the provider, who will have to pay to or to offset the consumer. Besides, for

DBaaS consumers, the quality of service for their clients will be compromised when the

service response takes longer than expected.

Lets assume for a moment that a is the underprov weight and b is the respective

overprov one. In our context, it is not necessary to define exactly which values each

weight assume. We need to know only how greater than b the a value is, i.e. what is

the value of a/b. Thus, for a matter of simplicity, we can set overprov weight to 1 and

rename the fraction a/b to x.

Figure 3.2: Metric values when adopted weighted arithmetic mean

Figure 3.3: Metric values when adopted weighted geometric mean

In order to provide a dimensionless metric, named elasticitydb, that combines

underprov and overprov metrics and that takes into account different weights for these

metrics, we analyzed three weight functions: weighted arithmetic, geometric and har-

monic means. To illustrate the fashion of each function, we fixed underprov to 2, overprov

to 15 and varied x from 1 to 30. Figure 3.2, Figure 3.3 and Figure 3.4 plot charts of
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Figure 3.4: Metric values when adopted weighted harmonic mean

weighted arithmetic mean, weighted geometric mean and weighted harmonic mean, re-

spectively. For the three kinds of weighted mean, the greater x is, the closer to underprov

the elasticitydb value is. We can notice that elasticitydb values in geometric and harmonic

charts vary between a short range, when compared to arithmetic chart. Thus, for a mat-

ter of simplicity on the calculation and to have a wider range of values to differentiate

better elasticity of cloud database systems, we define elasticitydb as a weighted arithmetic

mean of underprov and overprov, as shown on formula .. Numerical domain of x is

[1,∞).

elasticitydb =
x ∗ underprov + overprov

x + 1
(.)

For instance, x weight could be defined based on costs. In this case, x could be

defined by the cost of paying for underprovisioning penalties and overprov weight (set to

1) by the cost that could be saved if some resources had been released when environment

was overprovisioned. Lower values of elasticitydb indicate more elastic cloud database

systems, since they make better use of resources while meeting the SLA. Our metric

meets tests of reasonableness, such as (i) elasticity is non-negative and (ii) elasticity

captures both over- and under-provisioning.

By defining underprov, overprov and elasticitydb metrics, we have just proposed

a model that can represent elasticity of cloud database systems. Therefore, we can now

quantify elasticity of such systems. After fulfilling the requirement of defining a model for

elasticity, we can now propose a benchmark tool to properly measure this characteristic

of cloud database systems.
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CHAPTER 4

BENCHXTEND

We propose a benchmark tool called BenchXtend [6] which extends YCSB. YCSB was

chosen among other possible benchmark tools mainly because it already has connectors

for many NoSQL database systems as well as a JDBC driver can be user for relational

systems, it is open source and it is designed in such a way that allows to extend it.

This tool provides a way to change the number of clients while running a workload, as

well as to calculate the metrics proposed in this work. Varying the load of a system

is essential to properly evaluate its elasticity by stressing the system in such a way it

can react to maitain quality of service. The load variation for database systems can

be performed basically in two ways: (i) keeping the number of clients but changing the

throughput by client, or (ii) changing the number of clients but keeping the throughput

by client. YCSB does not implement any variation on the load, that means the expected

throughtput by client and number of clients remain the same throughout the experiment.

BenchXtend implements the change on number of clients both increasing and decreasing

during workload execution, since this approach illustrates a more realistic scenario where

users access and leave applications all the time.

Figure 4.1 presents the architecture of our solution. The Client Manager com-

ponent controls the variation of clients. Metrics component is responsible for calculating

underprov, overprov and elasticitydb metrics after a workload execution. These metrics

are computed by operation type and according to some parameters passed as input. After

executing all queries and calculating elasticity metrics, Exporter component outputs the

query response times and metrics values.

The number of clients is changed automatically according to the timeline file. In

our context, a timeline is simply a list of pairs < time, number of clients > explicitly

defined that describes the expected number of clients in such a moment. Depending on

how timeline is defined, there can be a considerable gap between two timeline entries.

Thus, we interpolate the number of clients between two timeline entries by implementing

two functions: Linear and Poisson. Linear function calculates intermediate values for each
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Figure 4.1: BenchXtend architecture

second, as its name suggests, in a linear fashion from the initial to the subsequent entry.

When selected Poisson function, the lambda (λ) parameter, that is equals to the variance

of Poisson distribution, adopted is always the second value. For instance, if interpolating

from 5 to 11, λ chosen is 11. Even though we provide Linear and Poisson implementations,

the architecture is designed to allow a user to implement his own distribution. Figure 4.2

shows the original timeline and figures 4.3 and 4.4 present examples of Linear and Poisson

interpolations for the original timeline, respectively. In our experiments, we prefered to

use linear interpolation to avoid abrupt increase or decrease on the number of clients.

Figure 4.2: Timeline without any interpolation
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Figure 4.3: Timeline with Linear interpolation

Figure 4.4: Timeline with Poisson interpolation

4.1 MONITORING AND SCALING IN AND OUT

Our BenchXtend tool sends queries to a cloud database system (see Figure 2.1). Since our

focus is not on how well or badly designed the cloud database system itself is, but on the

benchmark tool, for a matter of simplicity, we implemented our own Instance Manager [44]

in Ruby making use of Amazon EC2 API. Other authors [34] [35] propose some solutions

to manage instances. [34] presents a systems that not only adds and removes nodes,

but also reconfigures them in a heterogeneous manner according to the workload’s access

patterns. [35] provides an implementation of a decision-making module as a Markov

Decision Process, enabling optimal decision-making relative both to the desired policies

as well as to changes in the environment the cluster operates under. Even though [34]

and [35] seem to be good solutions for this purpose, they are not available to be deployed

in Amazon EC2 environment and they would require additional research that is out of

scope for this work. Figure 4.5 illustrates how BenchXtend and our Instance Manager act

and how they interact with the cloud platform. Figure 4.5 represents the environment

instantiated to evaluate our tool and our metrics. If we compare Figure 2.1 and Figure

4.5 we can notice there is no Database Manager in the later figure. This is due to

the decentralized characteristic of the adopted database system, Cassandra. Instead of

dedicating a node to a Database Manager, we use that node as a regular data node.

Our Instance Manager is composed of a Monitor and a Decision Taker. Monitor
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Figure 4.5: Cloud database system instantiated for our experiments and BenchXtend

collects CPU usage from each running instance, via a SSH command, on every 5 seconds

and saves it into a file. Decision Taker executes on every 60 seconds, that is time enough

to have at least 10 new entries generated by the monitor, and then reads the last 10 entries

of all files (one for each running machine). For each file, if 7 out of 10 entries exceed

the maximum CPU usage threshold, that was set to 60%, we increment an add machine

counter. After analyzing all files, if add machine ≥ machines running
2

, we add a machine.

Similarly, if 7 out of 10 entries are lower than the minimum CPU usage threshold, that

was set to 20%, we increment the remove machine counter. If remove machine ≥
machines running

2
, we remove a machine. In both cases, machines running is the number of

data instances running at that moment. The fraction machines running
2

is used to define that

only if at least half of the running machines are overloaded (or underloaded) the Instance

Manager acts to adapt the nodes. This avoids that a sudden variations on only one or few

(less than half) machines fire the action to add or remove an instance. For the number

of running machines, we have lower (2 machines) and upper bounds (4 machines). If the

Instance Manager decides to remove a machine and there are only 2 machines running,

the removal process is then canceled and running machines remain the same. Similarly,

if it is decided to add a new node but there are 4 machines running, the addition process

is canceled. Upper and lower bounds of machines are necessary to deal with constraints

of the experimental environment and they can be configured before starting the Instance

Manager.

The values for CPU thresholds were defined based on the values adopted by [12].

[12] adopts in one of its experiments 70% of average CPU usage as the limit to add
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a machine and 20% to remove one. Initially, we set our threshold to 70%. However,

we realized that to reach this CPU usage we needed to increase the number of clients

and Cassandra started throwing more exceptions and refuse more connections. Thus,

we relaxed a little bit our threshold from 70% to 60%. [12] monitors CPU with one

minute of interval. We reduced this time to 5 seconds in order to collects more usage

entries and to have a quicker response for demand fluctuation. Even though have adopted

these values for thresholds and intervals, they can be easily configured before starting the

Instance Manager. [39] proposes a Transaction/Workload Monitor that altogether with

an Action Manager and an SLA checker act conceptually as our Instance Manager. [12]

also proposes a component, called autoscaling engine, that monitors and takes decision

on adding or remove machines.

Apart from our Instance Manager, on [44] we provide a set of Ruby and Shell

auxiliary scripts that allow to:

• calculate elasticity metrics using the output of a BenchXtend execution

• calculate histogram of response times based on BenchXtend output

• treat BenchXtend output to filter response times by operation type

Firstly, with these scripts it is possible to recalculate elasticity metrics without

requiring to re-execute a workload. This is very useful and save lots of time to figure

out suitable values for parameters like SLA upper bounds and underprov weight (x).

Secondly, given the output of a workload generated by BenchXtend, we created a script

to generate the histogram of response times to better analyze the data distribution shape.

Properly understanding the data distribution shape can help providers on analyzing the

workload results. Finally, we provided a script to filter response times making easier

to retrieve desired data from a file that have more than 1GB and more than 30 million

lines, depending on the workload duration. All these scripts aim to minimize the effort

of evaluating workload results and dealing with a large amount of output data.

4.2 YCSB EXTENSIONS

Some changes were implemented in YCSB code to implement the features of BenchXtend.

These extensions were made in such a way to maintain the core of YCSB avoiding as
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much as possible to include overhead processes in BenchXtend. The following changes

were made:

• Developed the reading of an XML input file with SLA rules

• Developed the reading of an XML input file with the timeline entries and a set of

parameters to calculate elasticity metrics

• Extended a class to perform measurements during workload and export the gathered

results

• Implemented a manager to control the addition and deletion of clients that send

queries to databases

• Adapted Cassandra connector

• Adapted the moment when workload configuration files are read

Firstly, two new files are expected to be provided when executing a BenchXtend

workload. The first file (sla.xml) defines the SLA with the expected response times

for each operation type. Upper and lower bounds are defined in microseconds (µs). The

upper bound defines the maximum time a query should take to not to be elegible to be an

under-provisioned query. Similarly, the lower bound defines the threshold whose queries

with lower response times could be considered over-provisioned. There are no hard and

fast rules to specify expected response times for SLA, since they tightly depend on the

environment where the workload is executed. The second file (timeline.xml) defines the

timeline, that describes the variation of clients by time. In addition, this file defines the

interpolation function to be used among timeline entries and the values of the parameters

explained on Table 4.1. These parameters are used when calculating elasticity metrics.

We also implemented a new class called IndividualMeasurement that extends the

Measurement base class. This new class is responsible for measuring query response

times as well as for calculating elasticity metrics and maximum, mininum and average

response times. Besides, this class prints response times of each executed query. Since

the amount of queries can be huge (about hundreds of thousands), in order to provide

a better way to plot the results, we also calculate average response time by second, i.e.

sum up all queries started in such a second and divide by the total number of queries

summed up. In addition, this class also calculates some statistics metrics to characterize
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Parameter Value Description
underprov weight (x) float, x ≥ 1 defines a weight for underprov

metric to calculate elasticitydb
metric

underprov percentile float, 0 < percentile < 1 defines a percentile value used to
trim the highest and discrepant re-
sponse times

overprov Percentile float, 0 < percentile < 1 defines a percentile value used to
trim the lowest and discrepant re-
sponse times

Table 4.1: Parameters included in the timeline.xml file to be used for elasticity metrics

the data distribution of response times. Mean, median, quartiles, interquartile range,

minimum, maximum, 1st percentile and 99th percentiles are calculated and printed when

finished the workload execution. With these measures, one could create a box plot to

have a graphical representation of the distribution.

The most remarkable change was related to how to manage client threads to

execute operations. On the original YCSB, the number of operations is defined by the

operationcount property and the number of threads by the threadcount one. Basically,

operations are evenly distributed among all threads, i.e. all threads are started in the

beginning of the workload and each thread executes (operationcount / threadcount) op-

erations. Thus, there is no variation on the number of clients (threads) sending queries

to the database system. Each thread holds a database connection with a database node

randomly chosen from the available ones in the cluster. Unlike regular YCSB, in our

approach the number of threads varies according to the input timeline. We developed a

Client Manager that is responsible for managing clients, by creating or stopping them.

Since our approach is based on a time series instead of a number of operations to be

performed, on BenchXtend, threads keep executing queries consecutively while a stop

requests are not sent to them by the Client Manager. When the Client Manager sends

a stop request a to a thread, if the client is executing a query in that moment, the tool

waits for that query to return a result and then stops the client not to send queries any-

more. As a throttling approach, we set a sleep time of 500ms between the execution of

two operations of the same thread. As commented in YCSB code, this is more accurate

than other throttling approaches YCSB developers have tried because it smooths timing

inaccuracies over many operations. If changing this sleep time, the number of operations

performed by BenchXtend is inversely affected, i.e. decreasing this time implies in more
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queries sent to the database system.

Cassandra does not have a central node, or a set of nodes, responsible for making

the interface with client applications and for redirecting operations to the appropriate

data nodes. This central node is usually responsible for balancing the load and for

managing nodes that join or leave the cluster. MongoDB, for instance, has Query Routers

nodes that play this role, sending operations to shards (data nodes, considering the cluster

is sharded). Since Cassandra does not have this central node, Cassandra DB Binding

should act as load balancer and manage when new nodes join or leave the the cluster.

However, it does not act like this because it was not originally designed to deal with

a variation of resources (VMs) of a cloud database system during workload execution.

Therefore, we had to adapt the original Cassandra DB Binding to balance the load.

In YCSB, the hosts are fixed and defined before starting the workload. However,

for Cassandra, it is crucial to let the benchmark tool know when any machine is added or

removed. Thus, BenchXtend addresses the problem of sending or avoid sending queries

to machines just added or just removed by reimplementing Cassandra DB Binding of

YCSB. Our strategy is to make Instance Manager updates the hosts property of then

workload input file when the cluster changes. Periodically, our DB Binding reloads the

list of hosts to see if new hosts were added or if existing ones were removed. On every ten

queries sent by a client, Cassandra DB binding establishes a new database connection

with other randomly-chosen host from the cluster. Thus, when a new node joins the

cluster in few seconds (about 15 seconds, depending on how long it takes to execute up

to ten queries) the benchmark tool starts trying to connect to it. When a node leaves the

cluster, queries that are being performed on the leaving node may fail or time out. In this

case and in any other case when an exception is thrown, a new connection is established

with other available host.

Ideally, it would be better to have a separate component of the benchmark tool

to interact with Instance Manager to remove an instance only when there is no query

being performed. In this way, Instance Manager would warn this component that a

node is about to be removed. This component would work to avoid sending queries to

the machine that is going to be removed, moving the queries to other machines. When

there were no thread sending queries to that node, this component could response to the

Instance Manager saying that the node could be safely removed. Thus, the number of

failed or time out queries due to node removal would be zero or almost zero. Although it

presents remarkable advantages, it would require architectural changes that could impact
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on all DB Bindings, not only on the Cassandra one. Due to a time restriction, this feature

is presented as a suggestion for future work.

BenchXtend relies on YCSB to define on how queries are built and selected.

YCSB must make many random choices when generating a load, like which operation

(read, insert, update, delete or scan) to perform , which record to read or write, how

many records to scan, and so on. These decisions are governed by random distributions.

YCSB has several built-in distributions like uniform, zipfian, latest and multinomial.

BenchXtend does not extend any of those distributions. Distributions can be configured

via workload configuration file by changing the requestdistribution property.

Even though we propose some changes to calculate elasticity metrics, one can take

advantage only of our feature to vary of number of clients and keep gathering regular

results of YCSB. YCSB allows to output the workload results as a time series or a

histogram. Therefore, BenchXtend can also be used to perform workloads and gather

common performance metrics, while the number clients varies during workload execution.

4.3 COMPARING BENCHXTEND AND RELATED WORK

In order to compare our tool with other related tools and summarize their differences,

we propose the Table 4.2. Trying to make a fair comparison, we also added in the

comparison features that are present in some related tools and that BenchXtend does not

have. We have chosen for this comparison TPC-C [45], from TPC family, OLTP-Bench

and YCSB. TPC-C was chosen because it is a well-known and very used benchmark for

OLTP database systems. Cells filled with an ’x’ letter mean the tool of the corresponding

column has that feature of the row. Since OLTP-Bench embeds YCSB as one of its

benchmarks, all features present on YCSB are also present in OLTP-Bench. Similarly,

since BenchXtend is an extension of YCSB and we did not remove any feature of this

later, all features of YCSB are also present in BenchXtend. BenchXtend presents the

capacity of calculating elasticity metrics as a differential when compared to all other listed

tools. Since BenchXtend is an extension of YCSB and relies on the latter to define which

operations are selected to be performed, BenchXtend does not support the execution

of complex queries or transactions with multiple queries, but this is an explicit design

choice of YCSB. YCSB does not attempt to exactly model a particular application or

set of applications, as is done in benchmarks like TPC-C. Such benchmarks give realistic

performance results for a narrow set of use cases. In contrast, YCSB goal is to examine
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a wide range of workload characteristics, in order to understand in which portions of the

space of workloads systems performed well or poorly [7]. Benchmark tools can also be

classified in synthetic or empirical, according to how the used data is generated. Synthetic

benchmarks emulate typical applications in a pre-determined problem domain and create

a corresponding synthetic workload. Empirical benchmarks utilize real data and tests

and re-invent the actual database applications [46]. None of the analyzed tools use real

data. OLTP-Bench makes use of real schemas, but the data is synthetic.

Even though OLTP-Bench presents more features than YCSB, we decided not

to extend OLTP-Bench because its architecture was designed to be extensible by adding

new benchmarks, but changing the way clients are managed would require an effort that

would turn unfeasible the planned extension. In addition, the YCSB source code is much

better documented and comprehensible than OLTP-Bench code.

Feature TPC-C OLTP-Bench YCSB BenchXtend

Benchmark relational systems x x x x
Benchmark NoSQL systems x x x
Variation of load during execution x x
Calculation of elasticity metrics x
Execution of complex queries x x
Synthetic workloads x x x x
Empirical workloads

Table 4.2: Comparison of some benchmark tools for database systems

Our BenchXtend tool presents useful extensions that can improve the way cloud

database systems are evaluated. Altogether with the elasticity model discussed on last

chapter, the load variation provided by BenchXtend allow us to measure elasticity by

performing some experiments and analyze their results.
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CHAPTER 5

EVALUATION

The main goals of the experiments of this dissertation are (i) to validate our BenchXtend

tool showing that it works as explained and (ii) to validate our elasticity model of cloud

data systems. Thus, at least is this work, we do not aim to compare elasticity among

database systems to stating which system is more elastic.

A differential of our work is to consider a dynamic pool of resources, where ma-

chines are added or removed during workload execution. Thus, in our experiments we

compare results in two scenarios: (i) with elasticity, where the Decision Taker scales

in and out and (ii) without elasticity, where no machine is added or removed during

execution.

5.1 ENVIRONMENTS

In order to achieve the goals of our experiments, we consider that BenchXtend tool sends

queries to a cloud database system with our own Instance Manager, one NoSQL database

system and a pool of data nodes running on Amazon EC2 instances, as shown on Figure

4.5. Cassandra (version 1.1.12) was chosen as the database system, due its wide adoption

both by academy and industry [7] [47] [48] .

The following machines were used in our experiments: 1 EC2 instance (m1.medium

- 1 vCPU, 2 ECU1, 3.75 GiB2 of RAM) to run BenchXtend tool; 1 EC2 instance (m1.small

- 1 vCPU, 1 ECU1, 1.7 GiB2 of RAM) to run Instance Manager that gathers monitoring

data from other nodes and takes decisions on adding or removing nodes. Moreover, we

set up 4 instances (m1.large - 2 vCPU, 4 ECU1, 7.5 GiB2 of RAM) for Cassandra. Two

Cassandra instances were set as seeds and the other two as regular data nodes. Seeds are

1One EC2 Compute Unit (ECU) provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron
or 2007 Xeon processor

2The gibibyte (GiB) is a unit of digital information storage. It is a binary multiple of the byte
obtained using the prefix gibi (Gi). 1 gibibyte = 230 bytes = 1073741824bytes = 1024 mebibytes.
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started before executing the workload while regular data nodes keep turned off until the

Decision Taker starts one of them. All machines were placed in the same Amazon EC2

zone (us-east-1c) and none of them were EBS-optimized.

Some Cassandra properties were changed on cassandra.yml configuration file to

perform our experiments. thrift framed transport size in mb was changed from 15 to 240

and thrift max message length in mb from 16 to 256, to avoid problems when perfoming

batch inserts on load phase and large scan queries. rpc timeout in ms was increased from

10000 to 30000 in order to avoid or minimize inter-node communication timeouts when

the system is under heavy load. Apart from Cassandra configurations, we had also to

increase ulimit3 on Linux, since the number of threads (one by client) created during

workload goes beyond the Ubuntu default value (1024) for open files descriptors. We

followed DataStax Troubleshooting Guide [49] to properly set ulimit3 values.

5.2 EXPERIMENTS

YCSB provides by default 5 Core Workloads described on Table 2.2. In our experiments,

we performed Workload A (Update heavy - 50% read, 50% update) and Workload E

(Short ranges - 95% scan, 5% insert). Thus, with these two workloads, we cover 4 out

of 5 available operation types. Database was populated with 4 millions 1-KB 10-field

records, generating a database of about 4GB of size. Workload was executed for 4 hours,

the number of clients was changed according to a timeline and a Linear function was

chosen to interpolate timeline entries. Iniatially, each workload was executed during 1

hour. However, due to the long time to add Cassandra nodes, we increased the duration to

4 hours. Taking more than 4 hours by workload was unfeasible due to budget constraints,

since the experiments were performed on Amazon EC2 environment. For workload A we

use the timeline illustrated on Figure 5.1. For workload E we use a different timeline

shown on Figure 5.13, because the number of clients of workload-A timeline was too high

to perform scan queries of workload E.

Regardless of the workload, initially, we start Cassandra seeds and then perform

the BenchXtend load phase to populate the database. After that, we restart seeds ma-

chines and then start Monitor and Decision Taker. Before starting the run phase of the

benchmark, we check if no compaction of Cassandra SSTables is being performed. During

3ulimit is a Linux command that limits the use of system-wide resources, like the maximum number
of open file descriptors.
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Operation Upper bound (in µs) Lower bound (in µs)
Read 200000 50000
Update 100000 30000
Insert 100000 30000
Scan 700000 200000

Table 5.1: Expected response times for each operation defined in the SLA

compaction [50] there is a temporary spike in disk space usage and disk I/O that may

affect our results. Instances are added by the Instance Manager during workload, based

on the variation of the monitored CPU usage, as described in the Chapter 4.

Each added instance has Cassandra already configured, but with an empty database.

Our experiments relied on Cassandra to manage consistency in each replica, as well as to

stream data when nodes are added or removed. Replication factor was kept the default,

i.e. 1, that means there is only one copy of each row on the cluster. Consistency level

considered was also the default, i.e. ONE, that means an operation must succeed in at

least one replica before returning an acknowledgement to the client application. As soon

as a node is added or removed, Instance Manager updates, in the VM where BenchXtend

is running, the hosts property of the BenchXtend workload file to let it know about the

cluster change. Updating this property is mandatory for Cassandra because it does not

have a central node to where all workload queries are sent. Consequently, the benchmark

tool has to know when the cluster has changed in order to deal with balancing the queries

among the available hosts.

In the SLA file, we set expected response times by operation type: read, update,

insert and scan. Table 5.1 shows the values for each operation. x weight was set to 5,

but it can be configured before running a workload. These values were defined after some

experiments in our environment and, so far, there is no rule of thumb to define them,

althought it is reasonable to have x few times greater than 1.

5.3 RESULTS

Firstly, we present the results for each workload. After that, we select one workload and

show what are the impacts on elasticity metrics when we vary some parameters. Fi-

nally, we present an overall analysis about all results, problems faced during experiments

and define what conditions must be satisfied when comparing elasticity of two different
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database systems.

5.3.1 Workload A

Figure 5.1: Scenario with elasticity

Figure 5.2: Scenario without elasticity

The chart of Figure 5.1 plots when machines are actually added or removed and

compare them with fluctuation of number of clients defined in the timeline file that is

read by BenchXtend before actually sending queries to the database system. The time to

add (bootstrap) a Cassandra node may be considerably high and may vary a lot. To add

the 1st machine 3min were taken, while 12min to the 2nd one, 4min to the 3rd one and

4min to the last one. The average time to add a machine in this experiment was about

5-6min. In other experiments we could face more than 30 minutes to add a machine. A

reason for that is the cost of data streaming to move data among nodes. When we add a

new Cassandra node, this node assumes a token and consequently it owns a data range

that was responsibility of one or two existing nodes. Thus, the nodes that “lose” part of

their range stream data to the new node. This task may take several minutes, depending
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on the amount of data to be transfered, on the number of SSTables and on the resources

usage, like CPU and memory, in that moment.

Cassandra versions prior to 1.2.x require to evenly set initial token for all nodes

in the ring to have a perfect data distribution. It is also possible to let Cassandra decide

how to split the data range, setting auto bootstrap to true. The last option may incur

in the risk of having hot spots, i.e. nodes receiving more queries than other ones, since

there is no guarantee that the range will be evenly partitioned. In our experiments, we

adopted the first option because it evenly divides the data range. initial token was set

for each node. For new nodes, the token is set to be in the middle of two tokens to

avoid move operations that are known to be resource expensive. We do not execute

cleanup operations during workload to remove keys no longer belonging to nodes that

streamed data to the new one. Cleanup may be safely postponed for low-usage hours

[51]. From versions 1.2.x, Cassandra provides vnodes feature that does not required to

set initial token anymore and that may reduce the recover and bootstrap time. After

preliminary tests with version 1.2.6, we faced recurrent hang problems that led us to keep

using version 1.1.12 in our experiments.

Another reason for the variation of bootstrap time is that Amazon EC2 presents

performance issues depending on the moment the experiments are executed and on the

CPU model of the physical machine where the VM is placed. Amazon EC2 instances

may present noisy neighbor problem. In a noisy neighbor scenario one or more virtual

machines on the physical host are consuming very large amounts of disk I/O resulting in

very poor performance for the remaining virtual machines. EBS-optimized instances may

minimize this problem by guaranteeing a higher number of IOPS. Other authors [52] [53]

present further analysis about performance variations on Amazon EC2 instances. During

our experiments we could identify a wide range of CPU models, like Intel Xeon E5-2650

and Intel Xeon E5507. If we compare these two CPU models [54], for instance, we can

see that E5-2650 presents twice the number of cores and has better performance by core,

what may reduce the noisy neighbor problem when compared to E5507, under the same

load.

To remove (decommission) Cassandra nodes from the cluster, the operation time

variation was lower, varying from 2min30s to 3min30s. We can notice a remarkable

difference between the bootstrap time and the decommission time in our experiments.

According to our analysis, when a node is bootstraped, the system is under a heavy load,

since our Decision Taker adds a machine only when CPU usage is high. Under heavy
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load, data streaming process takes longer since this is an I/O-intensive operation and the

number of queries being sent at that moment is high due to the high number of clients.

When a node is being decommissioned, the situation is opposite. The system is not under

heavy load and, consequently, the impact on I/O requests due to client queries is low. To

validate our analysis, we manually added and removed nodes, similarly to what Decision

Taker did on Workload A as illustrated in Figure 5.1, but in a scenario when no query was

being sent by BenchXtend. In such scenario, all bootstrap and decommission operations

took from 2min to 3min30s. In conclusion, under heavy load, bootstrap takes longer and

this fact should be considered when designing a strategy for Decision Taker, as well as

when deciding if Cassandra is suitable for short-term variations.

Figure 5.3: Scenario with elasticity

Figure 5.4: Scenario without elasticity

Since the number of queries executed by BenchXtend was very high (about 16

million queries by operation), we plotted the average response times instead of the indi-

vidual response times. Figures 5.3 and 5.4 show the average response time by second, i.e.

the average of response times for all read queries that started in a specific second, in the

elastic and inelastic scenarios, respectively. Similarly, Figures 5.5 and 5.6 show average

response times, but for update operations.
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Figure 5.5: Scenario with elasticity

Figure 5.6: Scenario without elasticity

Figure 5.7: Scenario with elasticity

On workload A, as well as on E, the Instance Manager monitors CPU to take

decisions on adding or removing machines. On Figures 5.7 and 5.8 we plotted CPU usage

of Cassandra seeds #1 in the elastic and inelastic scenarios. Similarly, Figures 5.9 and

5.10 show CPU usage of seed #2. For both seeds, it is fairly reasonable to assert, based

on the comparison with Figures 5.1 and 5.2, that CPU usage follows timeline trend with

some variations when machines are added or removed, which is an expected behavior.
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Figure 5.8: Scenario without elasticity

Figure 5.9: Scenario with elasticity

Figure 5.10: Scenario without elasticity

Thus, varying the number of clients during workload affects directly the indicator we are

using to take decision on adding or removing instances.

Even though we can see that CPU usage follows the trend of variation on number

of clients, it is more important to us to check if response times follow the same trend,

because our elasticity model is based on how far from SLA response times the measured

response times are. On Figures 5.3 and 5.4 we can see an increase on response times
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Read operation
with elasticity without elasticity

Minimum (in µs) 362 362
Maximum (in µs) 31390923 63450637
Average (in µs) 133744.08 223995.20
Median (in µs) 9563 32235
1st percentile (in µs) 856 881
99th percentile (in µs) 1076529 1578348
1st quartile - Q1 (in µs) 2943 4249
3rd quartile - Q3 (in µs) 66421 189605
# of underprov queries 2165155 3637293
# of overprov queries 11851768 8470567
Total of queries 16839414 15625044

Underprov metric 2.621841 3.150996
Overprov metric 14.158379 13.677754
Elasticitydb metric 4.544598 4.905456

Table 5.2: Metrics calculated for Read operations

when the number of clients increases. On Figures 5.5 and 5.6 there is also an increase

but it is not as noticeable as on the Read charts, because Cassandra is write-optimized

and the amount of data into an update response is smaller than in a read one. Therefore,

the response times for write operations are expected to be lower than the ones for read

operations.

Figure 5.11: Box plot chart showing elastic and inelastic scenario of Read operation -
Workload A

47



5.3. Results 48

Metrics results calculated by BenchXtend for read operations of Workload A are

shown on Table 5.2. In addition, Table 5.2 shows some values to characterize the data

distribution, like minimum, maximum and quartiles. To have a graphical representation

of the distribution, we provide also a box plot chart on Figure 5.11. The chart on Figure

5.11 uses logarithmic scale with base 10 for y axis to have a better view, since the

maximum value is much higher than the 3rd quartile. Whiskers values in the box plot are

maximum and minimum response times. In addition, 1st and 99th percentiles are plotted.

Analyzing both the table and the chart, we can see that the distribution is long-tail, since

most data are closer to minimum than maximum value.

For underprov of read operations our model could capture an improvement when

adding machines while system was overloaded. In this case, the number of violated queries

on elastic scenario represents 59% of violated ones in the inelastic scenario. underprov

had a lower value (2.621841) with elasticity, as expected. The lower this value is, the more

elastic the system is. Unlike what was expected, overprov of read operations showed a

higher value for the elastic experiment. This may suggest that the strategy adopted by

Decision Taker to drop instances should be improved to release earlier machines when

system is overprovisioned or to release quicker. It may also suggest that adding a machine

may be more than enough to supply the demand. Although the overprov is higher in the

elastic scenario, since we have different weights for each metrics, elasticitydb for elastic

scenario was lower, as expected. With elasticity, this metric value was 4.544598 while

4.905456 without elasticity, showing a difference of 8%.

With these metrics values, it is possible to establish a correspondence between

cost and improvement of elasticity to analyze if it is worth to add or remove machines or

if it is better to pay penalties. In order to do that, it must be calculated the total spent

or saved when adding or removing machines and then compare that total with the cost

of paying penalties when no change is made in the cluster. It follows as a suggestion,

since cost issues are out of scope of this work.

Metrics results for update operations of Workload A are shown on Table 5.3 and

distribution is represented on box plot chart of Figure 5.12. If we compare Figure 5.11

and Figure 5.12, we can see that in the latter 1st percentile is closer to the minimum

response time and 3rd quartiles are lower for update operations. This is expected because

Cassandra is write-optimized and then the response times of write operations are expected

to be lower than the ones for read operations. For underprov of update operations

our model could also capture an improvement when adding machines while system was
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Update operation
with elasticity without elasticity

Minimum (in µs) 336 351
Maximum (in µs) 31533987 63252175
Average (in µs) 44922.35 53007.87
Median (in µs) 4316 7078
1st percentile (in µs) 426 431
99th percentile (in µs) 223650 253697
1st quartile - Q1 (in µs) 1272 1356
3rd quartile - Q3 (in µs) 23568 42667
# of underprov queries 868136 1496481
# of overprov queries 12980632 10737834
Total of queries 16849140 15630459

Underprov metric 1.393522 1.459517
Overprov metric 19.162614 20.195725
Elasticitydb metric 4.355037 4.582218

Table 5.3: Metrics calculated for Update operations

Figure 5.12: Box plot chart showing elastic and inelastic scenario of Update operation -
Workload A

overloaded. underprov value for elastic scenario was 1.393522 and 1.459517 for inelastic

one. Unlike what happened on read operations metrics, overprov of update operations

is lower in the elastic experiment. Regarding to elasticitydb, there were an improvement

of 9% in the elastic scenario.
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5.3.2 Workload E

In workload E, two kinds of operations are performed: scan and insert. However, unlike

workload A, number of queries is not evenly split between the two operation types. In

this workload, 95% of the queries are scan while 5% are insert. Thus, this workload is

read-intensive, while workload A is write-intensive.

Figure 5.13 shows the moments where machines are added or removed. Similarly

to workload-A experiments, the time to boostrap Cassandra nodes varied a lot. To add

the 1st machine 5min were taken, while 21min to the 2nd and 4min to the last 3rd one.

Decommissioning nodes in this workload took from 2min to 4min and the reason is the

same explained in Subsection 5.3.1.

Figure 5.13: Scenario with elasticity

Figure 5.14: Scenario without elasticity

Figures 5.15 and 5.16 show the average response time by second for scan oper-

ations. The number of queries performed in workload E is lower than the number of

queries on workload A, although the execution time is the same. This happens because

scan queries of Workload E take longer than update and read operations of Workload A.
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Figure 5.15: Scenario with elasticity

Figure 5.16: Scenario without elasticity

Once the workload duration is preconfigured to 4 hours and workload clients (threads)

send queries indefinitely until receiving a stop request, performing quicker queries also

means to perform more queries in a fixed timeframe. Figures 5.17 and 5.18 show average

response times for insert operations.

Figure 5.17: Scenario with elasticity

Metrics results for scan operations of Workload A are shown on Table 5.4. In
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Figure 5.18: Scenario without elasticity

Figure 5.19: Scenario with elasticity

Figure 5.20: Scenario without elasticity

addition, Table 5.4 and Figure 5.23 describes the shape of data distribution. As well as

on workload A, the distribution is long-tail.

For underprov of scan operations our model could capture an improvement when

adding machines while system was overloaded. In this case, the number of violated

queries on elastic scenario is 54% of violated ones in the inelastic scenario. underprov
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Figure 5.21: Scenario with elasticity

Figure 5.22: Scenario without elasticity

Scan operation
with elasticity without elasticity

Minimum (in µs) 1545 2340
Maximum (in µs) 72338541 19849025
Average (in µs) 315486.29 601532.67
Median (in µs) 40309 182083
1st percentile (in µs) 3783 4129
99th percentile (in µs) 3675290 3666512
1st quartile - Q1 (in µs) 15582 22806
3rd quartile - Q3 (in µs) 274319 823538
# of underprov queries 528670 962077
# of overprov queries 3064403 1806235
Total of queries 4360855 3590017

Underprov metric 1.988760 2.356267
Overprov metric 11.584427 11.078602
Elasticitydb metric 3.588207 3.809989

Table 5.4: Metrics calculated for Scan operations
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Figure 5.23: Box plot chart showing elastic and inelastic scenario of Scan operation -
Workload E

is 1.988760 in elastic scenario, i.e. 84% of this metric in the inelastic scenario. Likewise

overprov results for read operations, overprov of scan operations showed a higher value

for the elastic experiment. Some possible reasons for this behavior are the same already

explained in the read-operation analysis. elasticitydb for the elastic scenario showed an

improvement of 9% when compared with the inelastic scenario.

Insert operation
with elasticity without elasticity

Minimum (in µs) 569 572
Maximum (in µs) 20662772 18503272
Average (in µs) 63304.47 231992.62
Median (in µs) 6908 21294
1st percentile (in µs) 724 691
99th percentile (in µs) 1112349 2396839
1st quartile - Q1 (in µs) 1751 1864
3rd quartile - Q3 (in µs) 37202 181441
# of underprov queries 26070 60345
# of overprov queries 163013 98838
Total of queries 228806 188133

Underprov metric 2.578634 5.792767
Overprov metric 13.459565 16.552327
Elasticitydb metric 4.392123 7.586027

Table 5.5: Metrics calculated for Insert operations
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Figure 5.24: Box plot chart showing elastic and inelastic scenario of Insert operation -
Workload E

The results gathered for insert operations, shown on Table 5.5 and on Figure

5.24, are similar to values of Update operations of Workload A, regarding to having

better values in the elastic scenario. The reason is the way the Cassandra DB Binding

of YCSB is implemented and the way Cassandra performs update and insert operations.

Calls to update operations of Cassandra DB Binding are merely converted to insert calls.

Therefore, in this DB Binding insert and update operations are pretty much the same.

Now, suppose that Cassandra DB binding performs different calls for update and for

insert operations. Even in this case, these two operation types would be treated pretty

much in the same way. For Cassandra, the semantics of Insert and Update are identical.

In either case a record is created if none existed before, and updated when it does exist

[55].

5.3.3 Varying Parameters of Elasticity Metrics

Our model requires few parameters to calculate elasticity of cloud database systems. In

order to better illustrate our model, we show how elasticity metrics vary as one of these

parameters changes. To do so, we chose an operation type of an specific workload: Scan

operation in elastic scenario of Workload E. After that, we fixed all parameters but one

and then recalculated the metrics. Our goal is to help both on understanding the metrics

and on figuring suitable parameters values out. Any other operation type or workload

could be chosen to illustrate the following metrics results.
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Since BenchXtend outputs the response times for individual queries, there is no

need to re-execute the workload every time a parameter is changed. We only need to

get the output of our tool and input it in a Ruby script [44] that calculates the metrics

as our tool does. We varied the following parameters: underprov percentile, overprov

percentile, SLA upper and lower bounds for scan operations and x weight.

As we change only one parameter at each time, we assume the values shown on

Table 5.6, except when the parameter is the one being changed. The values on table 5.6

are not meant to be the best values.

Parameter Value
underprov percentile 99th

overprov percentile 1st

SLA upper bound for Scan (in µs) 700000
SLA lower bound for Scan (in µs) 200000
underprov weight (x) 5

Table 5.6: Parameter values for elasticity metrics

Varying underprov percentile

Figure 5.25: Metrics variations when underprov percentile varies

We varied underprov percentile from 95th to 99th. Changing the percentile,

underprov and consequently elasticitydb are affected. The lower the underprov per-

centile is, the bigger the number of discarded queries is. That means that queries whose

response times are greater than the percentile value are not considered in this metric

calculation. Thus, queries that would be potentially very impactful on the underprov are

not included in the calculation, what reduces the metric value. When percentile increases
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from 95th to 99th, underprov increases from 1,425088 to 1,988760 (a variation of 39,55%).

elasticitydb varies less (15,06%), with the same percentile variation, since overprov is

kept constant. It is worthwhile noting that having low values of underprov percentile

can generate weird behaviors, like when SLA upper bound is higher than this percentile.

In such case, all queries whose response times are higher than SLA upper bound would

be discarded from the underprov metric calculation and then underprov would be equal

to zero.

Varying overprov percentile

Figure 5.26: Metrics variations when overprov percentile varies

As overprov percentile changes, overprov and consequently elasticitydb varies.

The higher this percentile is, the greater the number of queries not included in the

overprov calculation is. overprov varies from 11.585442, with 1st percentile, to 9.909766,

with 5th percentile, i.e. 16.90% of variation, as shown on Figure 5.26. elasticitydb is

directly proportional to overprov percentile and varies 8.44% from 1st to 5th percentile.

Varying SLA upper bound

When we increase SLA upper bound keeping SLA lower bound unchanged, we

are increasing the acceptance range of queries (see Figure 3.1). Consequently, less queries

will be considered under-provisioned and the underprov metric is likely to reduce as SLA

upper bound increases. Figure 5.27 shows a reduction of underprov values as expected.

Varying SLA upper bound from 550000µs to 750000µs, underprov reduced 15,85% and

elasticitydb reduced 7,20%.

Varying SLA lower bound
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Figure 5.27: Metrics variations when SLA upper bound varies

Figure 5.28: Metrics variations when SLA lower bound varies

Unlike what happens when we increase SLA upper bound, when we increase SLA

lower bound keeping SLA upper bound unchanged, we are reducing the acceptance range

of queries. Thus, more queries will be considered over-provisioned and the overprov

metric is likely to increase as SLA lower bound increases. Figure 5.28 shows an increase

of overprov values as expected. Varying SLA lower bound from 100000µs to 300000µs,

overprov increased considerably from 6.434826 to 16,341697 and elasticitydb increased

60,48%.

Varying underprov weight

underprov weight is used in the elasticitydb metric that is a weight arithmetic

mean. As we increase the x weight, the mean trends to converge to underprov metric

value. This behavior is illustrated on Figure 5.29. elasticitydb metric changed from
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Figure 5.29: Metrics variations when underprov weight varies

6.787101 to 3.588207 as x varied from 1 to 5.

5.3.4 Overall Analysis

In this overall analysis we discuss the results without limiting our considerations to the

workloads separately. After that, we present some difficulties faced when configuring the

environments and executing the experiments. Finally, we define some rules that must be

followed when comparing elasticity of two different database systems.

Metrics Analysis

Analyzing the results, we can see that on Workloads A and E and for all operation

types, underprov values are lower in the elastic scenario, when compared with the inelastic

one. This is the expected behavior and is captured by the our model. However, for

overprov values, we can see unexpected results for read and scan operations, of workload

A and E, respectively. In these cases, inelastic scenarios showed lower values. We have

some suspicions to justifiy this behavior. The first possible cause is an inappropriate

tuning of Instance Manager to identify the better moment to remove machines. This

may be impacting the results but we do not think this is the main reason because we

did not face such problems in the results of update and insert operations. Our Instance

Manager was used instead of other solutions for a matter of simplicity and since other

few solutions we analyzed were not available for Amazon EC2. The second possible

cause that comes up to our minds is an overhead of Cassandra operations to bootstrap or

decommission nodes due to their time to be performed. The need for such an expensive
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operation limits the elasticity of a Cassandra cluster for short-term load variations. We

could notice that such Cassandra operations affect negatively the queries being performed

while these kinds of operations are being executed. Since we faced such problem only

on write operations (update and insert), the different ways Cassandra deals with read

and write operations may also have an effect on this behavior. Our last suspicions and

the one we think is the most likely to be the root cause of this behavior is the way our

overprov metric is built.

On overprov metric we divide the expected time, which is the SLA lower bound

value, by the execution time. Thus, we have an idea on how far from the expected time

the over-provisioned query response times are. For scan operations on elastic scenario,

for instance, the fraction
expectedrt(i)
queryet(i)

reached the maximum of 58.34. This means that

there are some queries that are about 58 times lower than the expected time. This

idea of having a measure of how far from the expected time the response times actually

are is important, but maybe there must have a treatment to deal with some cases or

minimize the weight of very quick queries. Besides thinking about the way that fraction

is calculated, we should also reconsider whether using an arithmetic mean on overprov

calculations is suitable or not. Arithmetic mean is sensitive to influence of few extreme

observations or outliers. This behavior of mean is likely to be affecting some results.

Problems during Experiments

Initially, we planned to adopt the same variation of clients both for workload A

and workload E. We defined a timeline for workload A varying the number of clients

from 500 to 2000, as shown on Figure 5.1. Executing the workload A with such timeline

was not a problem. However, when executing it with workload E, Cassandra DB binding

of BenchXtend started throwing many TimedOutException, few minutes after starting

the workload. These exceptions stop being thrown only when we killed the benchmark

process. After discussing with Cassandra users and specialists, we figured out these ex-

ceptions were caused since the Cassandra could not handle the high number of connection

requests and queries sent to the database. Checking the metrics gathered by the Mon-

itor component, we could see that CPU and Memory usages were over 95% just before

exceptions were thrown and kept at these rates until killing the benchmark process.

Cassandra versions from 1.2.0 present a promissing feature called vnodes [28].

We configured a separate set of Amazon-EC2 instances with Cassandra 1.2.5 in order

to test this feature. However, when performing any BenchXtend workload, Cassandra
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system used to suddenly stop responsing all the requests. Although we have spent few

more days trying to fix this by changing Cassandra parameters, we could not successfully

perform workloads on that version. Due to this, we kept using version 1.1.12. Since new

versions were released after 1.2.5 was, we believe that the newer versions have fixed the

mentioned problem.

Another problem that we faced during our experiments was the performance

variations of Amazon EC2 instances. These fluctuations make hard to analyze some

results of our tool and our metrics. Even though there are some works that discuss this

performance issue of Amazon EC2, to the best of our knowledge, there is no way to isolate

or to measure the impact of it.

How to Compare Elasticity of two Different Database Systems

Even though we do not aim to compare the elasticity of different database systems

in this work, during our research, we identified two points that are mandatory to be

considered when comparing elasticity of database systems:

• Set the same BenchXtend parameters for all systems under test

• Define timelines that equally stress each system under test

In order to measure elasticity of a system with BenchXtend it is necessary to define

the parameters used by our elasticity model, listed in Table 4.1, as well as SLA upper

and lower bounds, like the ones defined in the Table 5.1. Since these parameters directly

affect the measure of elasticity based on our model, it is mandatory to use exactly the

same values for all systems under test. All those parameters are independent of database

system.

Apart from defining the same BenchXtend parameters, defining the appropri-

ate timeline for each database systems is crucial to actually measuring their elasticities.

Usually, traditional benchmarking is performed by defining a workload and by applying

the same workload to all systems under test. Although this is suitable to evaluate some

database metrics and to provide a basis for fair comparisons, in order to measure elas-

ticity the goal must be to evenly stress the systems. If to stress a system is necessary to

have a different workload, then, another workload must be defined, even if it differs from

the other workloads.
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Suppose that, to perform some experiments, we apply the same workload for

database systems A and B. After executing the benchmark and gathering the results,

we realize that system A showed lower values for underprov, overprov and elasticitydb,

when compared to B. One could say that, consequently, A is more elastic than B. If A is

more efficient than B with the same amount of resources, A can seem to be more elastic

than B. However, if A was not as stressed as B was, we cannot actually evaluate how the

system reacts as the load varies. Maybe the system B quickly acted to satisfy a demand

as expected to an elastic system, while system A was not stressed enough to check on

how it reacts to the demand fluctuation. Thus, a more efficient system is not necessarily

a more elastic one and it must be paid attention not to confuse efficiency and elasticity.

Our considerations corroborates with [11].

Figure 5.30: Example of timeline with higher peaks

Figure 5.31: Example of timeline with lower peaks

In order to exemplify, we executed workload E on Cassandra and on a MongoDB

cluster. We tried to configure MongoDB as much similar as possible to Cassandra cluster,

although MongoDB presents some architectural differences, like Config Server, Routers

and Shards [56]. From the cloud database system shown on Figure 4.5, we changed only

the database system in the pool of resources. BenchXtend and Instance Managers were

let the same for both systems. The results of Cassandra for workload E were already
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discussed. When executing on MongoDB, the workload E could not stress the system

to require the addition of new machines. CPU usage was kept under low rates (most

of time between 20% and 40%) during the workload execution, and then, the Decision

Taker component of the Instance Manager did not act to increase the cluster.

In conclusion, the timeline must be carefully chosen for each system under test in

order to properly stress it. It is worthwhile noting that the shape of the timelines should

be similar, to fairly compare how each system deals with, for instance, a spike on demand

or two spikes separated by few hours of low demand. Figures 5.30 and 5.31 illustrates

two hypothetical examples of similar timelines that could be used to benchmark different

database systems.
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

In this work, we presented BenchXtend, a benchmark tool to measure elasticity of cloud

database systems. This tools extends YCSB tool by adding features to vary the number

of clients during workload execution and to calculate elasticity metrics. This variation

allows to properly stress database systems under test, which is mandatory to evaluate

the elasticity of a system. Due to the lack of a model that describes elasticity of database

systems based on quality of service, we also proposed a model with a set of metrics to

measure elasticity of cloud database systems. Our model presented three metrics based on

SLA and from consumers and providers perspectives. These metrics consider both under-

provisioning and over-provisioning scenarios and their values are dimensionless scalars,

what allows us to easily compare the results of different database systems.

According to the analysis of our experiments, our tool could properly vary the

load during execution in order to stress Cassandra database system. By stressing the

system we could validate our metrics and underprov correctly captured the variation

of elasticity for all evaluated operations in elastic and inelastic scenarios. For overprov

of read operations our results showed controversial behavior, because inelastic scenario

presented better results than experiments on elastic scenario. We presented few possible

causes to explain the unexpected results of overprov, but an additional analysis must be

performed to confirm the root cause of the gathered results. These metrics can now be

used to compare elasticity of cloud database systems and to help providers on improving

or tuning strategies to add or to remove resources depending on the demand. Even

though we have not included in the scope of this work a comparison of elasticity of

different cloud database systems, we presented the requirements that must be considered

when comparing different systems.

Our experiments were performed over a Cassandra cluster. The time to bootstrap

a Cassandra node varied a lot and sometimes took several minutes to finish, although

the size of the database was only about 4GB. The need for such bootstrap operations

limits the elasticity of a Cassandra cluster for short-term load variations. Our conclusion
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is that Cassandra is more suitable for systems that do not require very rapid reactions

to attend spikes of demand.

As future work, we identified that improvements could be made in the benchmark

tool, in the elasticity model and in the experiments. Regarding to the benchmark tool,

we intend to implement a better load balancer for Cassandra, maybe implementing a

new Cassandra DB binding with a newer API of Cassandra, instead of the legacy Thrift

API used by YCSB. In addition, we intend to alter also BenchXtend to better integrate

it with Instance Manager to switch database connection of clients that are connected to

machines being removed.

For the elasticity model, we intend to reduce the number of parameters by per-

forming statistical analyses or by empirically defining values that can be used as standard

ones. If we reduce the number of parameters, consequently, we reduce the time spent to

figure out the suitable values for parameters like SLA bounds and overprov weight. We

also intend to evaluate other mathematical devices that could be used to replace the use

of arithmetic mean in our model. In addition, we want to investigate the influence on

the results of the fractions adopted both on underprov and overprov calculations.

Regarding to the experiments, we intend to execute experiments to evaluate elas-

ticity of multiple database systems like Cassandra, MongoDB and HBase. In order to do

so, we firstly intend to define suitable timelines that can stress each database system. For

Cassandra, we want to use a newer version with vnodes feature to check if such feature

presents improvements on the time to bootstrap or decommission nodes. Moreover, we

intend to perform a new suite of experiments in a private cloud to avoid or, at least,

minimize the noisy neighbor problem faced on Amazon EC2. In these new experiments,

we want to consider a higher number of machines, varying from 2 to 16 machines.
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