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Resumo

Alguns dos algoritmos mais recentes para simulação de multidão equipam agentes com um sistema visual
sintético para auxiliá-los em sua locomoção. Eles oferecem perspectivas promissoras ao imitarem de forma
mais realista a forma como os humanos navegam de acordo com o que eles percebem do seu ambiente.
Nesta tese, é proposto um novo laço de percepção/ação para dirigir agentes ao longo de trajetórias livres de
colisões que melhoram significativamente a qualidade dos simuladores de multidão baseados em visão. Em
contraste com abordagens anteriores - que fazem agentes evitarem colisões de maneira puramente reativa - é
sugerida a exploração de toda gama de adaptações possíveis e a retenção da que for ótima localmente. Para
isto, é introduzida uma função de custo, baseada em variáveis de percepção, que estima a situação atual do
agente considerando tanto os riscos de futuras colisões como o destino desejado. São então computadas as
derivadas parciais dessa função com respeito a todas adaptações de movimento possíveis. O agente adapta seu
movimento de forma a seguir o gradiente descendente. Esta tese possui assim duas principais contribuições:
a definição de um esquema de controle de propósito geral para a orientação de agentes baseados em visão
sintética; e a proposição de funções de custo para avaliar o perigo da situação atual. As melhorias obtidas
com o modelo são demonstradas em diversos casos.

Palavras-chaves: Simulação de multidão. Visão sintética. Prevenção de colisão.





Abstract

Most recent crowd simulation algorithms equip agents with a synthetic vision component for steering. They
offer promising perspectives by more realistically imitating the way humans navigate according to what they
perceive of their environment. In this thesis, it is proposed a new perception/motion loop to steer agents
along collision free trajectories that significantly improves the quality of vision-based crowd simulators. In
contrast with previous solutions - which make agents avoid collisions in a purely reactive way - it is suggested
exploring the full range of possible adaptations and to retain the locally optimal one. To this end, it is
introduced a cost function, based on perceptual variables, which estimates an agent’s situation considering
both the risks of future collision and a desired destination. It is then computed the partial derivatives of that
function with respect to all possible motion adaptations. The agent adapts its motion to follow the steepest
gradient. This thesis has thus two main contributions: the definition of a general purpose control scheme for
steering synthetic vision-based agents; and the proposition of cost functions for evaluating the dangerousness
of the current situation. Improvements are demonstrated in several cases.

Keywords: Crowd simulation. Synthetic vision. Collision avoidance.
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1 Introduction

A crowd can be defined as: “a large number of people gathered together in a disorganized or unruly way”1.
The disorganization, in this case, is related to the lack of a previous organization. However, when people
start interacting with each other in a crowd the emergence of self-organized patterns can be observed. A
virtual crowd is composed of several moving entities, the so-called agents. Each of those agents needs to
reach a goal inside a virtual environment while avoiding collision with each other and with other static and
moving obstacles. The field of Crowd Simulation deals with the synthesis of such virtual crowds in order to
reproduce the self-organized behavior observed in real crowds. That field is rapidly extending over various
application fields, such as civil engineering, architectural design and the entertainment industry to populate
games and movie scenes (Figure 1). All those fields demand high-quality and realistic simulations, where
the notion of realism, however, can take different meanings. For movies, high-quality animation (visual and
behavioral) are demanded and performance is not important since the results are played off-line. Whereas
for games and other virtual reality applications, besides the animation’s quality, the performance has an
important role, since these kind of applications need to run in real-time. In civil engineering or architectural
design, the visual quality of the animation and the application’s performance are less important. In this
case, the interest lies in modeling the individuals’ behavior properly to mimic human behavior in emergence
situations, for example.

Despite all the recent advances on the field of crowd simulation, there is still a long way to pursue
regarding the understanding of the human’s perception/motion so as to reproduce more realistic behaviors.
It is know from the literature, for example, that the optic flow has an important role on locomotion (GIBSON,
1958; CUTTING et al., 1995). Reproducing human senses on a virtual environment is a challenging task.
Since on computer graphics everything is purely visual, focusing on the human vision is very important to
understand the role of this sense and how to reproduce it synthetically for going deeper on reproducing more
believable human behavior.

1.1 Contextualization

The Crowd Simulation field is a multidisciplinary one, involving several subfields which need to cooperate
with one another so that the virtual crowds may be able to reproduce the behaviors observed in real crowds.
One of the most important subfields, and consequently, one of those which receives more attention from the
research community is the one which deals with how the agents plan their paths towards their goals, a task
which is called path planning.

Path planning for crowd simulation is an area of extensive research, and the approaches used in this
area can be split into two categories: local and global (Figure 2). Methods for local path planning can also
be referred to as methods for collision avoidance, since they are intended to make the agents avoid collisions
locally, at short range. Global path planners divide the environment into waypoints which help the agents to
traverse complex environments. Usually, global and local path planners are used together, where waypoints
provided by global path planners are used as goals for local path planners.

1 http://www.oxforddictionaries.com/definition/english/crowd



22

Figure 1 – Examples of virtual crowds in a movie (top), in a game (bottom-left) and in an evacuation scenario
(bottom-right).

Source: Hercules (PARAMOUNT PICTURES, 2014) (top), Assassin’s Creed
Unity (bottom-left) (UBISOFT, 2014) and Pelechano et al. (2007) (bottom-
right).

Figure 2 – Examples of local (left) and global (right) path planning.

Source: Reynolds (1999) (left) and Pettré et al. (2005) (right).

Regarding local path planners, a recent class of agent-based algorithms, called velocity-based algorithms,
allowed crowd simulators to make significant progresses in the last few years towards new levels of realism
and robustness. These algorithms use the velocity of the agents and of the surrounding obstacles to predict
the risks of future collision, and allow the agents to react to this risk with anticipation, as real humans do. A
specific category of velocity-based algorithms pushed the notion of realism even further by equipping agents
with a synthetic vision component. A number of motion variables are perceived by agents through a virtual
retina. These, so-called perceptual variables, serve as input to a motion control loop that steers the agents
through dynamic environments.

The use of synthetic vision for crowd simulation, once viewed with suspicion by the community given
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its high computational cost, opens a new range of possibilities. The results obtained by the first approach
based on synthetic vision for simulating crowds, proposed by Ondřej et al. (2010), showed a good prospect
for this new branch of crowd simulators.

In (ONDŘEJ et al., 2010), the agents react to the visually perceived collision threats (danger) by
turning or by slowing down when collision becomes imminent. This simple perception action loop suffers
from important drawbacks because of the nature of its proof of concept. In particular, that algorithm focuses
on the most threatening obstacles only, decelerating and turning to avoid the most imminent collision threat,
and disregarding the other obstacles. Moreover, it does not inspect the effects of maneuvers. Therefore,
avoidance trajectories can actually lead to collision with some other nearby obstacles. For example, an agent
that walks along a wall on its right side may collide with it when trying to escape a collision danger coming
from its left.

1.2 Objectives

This work aims at further developing algorithms based on synthetic vision, motivated by several of their
interesting properties. They are able to steer agents using a visual apparatus similar to what real humans
do when they walk. They abstract moving and static obstacles with no distinction of nature. They consider
the real shape of obstacles. They implicitly solve the question of combining and filtering several interactions
when projecting them on the virtual retina. As a result, more natural trajectories are expected in comparison
with other approaches that rely on information of a different nature. They actually demonstrate their ability
to simulate the emergence of self-organized structures of agents under specific traffic conditions, typically
observed in the real world. Our developments can bridge crowd simulation to extended application fields, such
as Neuroscience, to decipher how humans behave in crowds. Given the wide attention received, developing
this new generation of algorithms is very important.

The key idea of this thesis is to revisit the motion control scheme for algorithms based on synthetic vision
and to propose a more developed technique with all the advances mentioned previously. The objectives of
this work are:

• To develop a new control loop that is more robust to the complex situations which are often met when
performing collision avoidance;

• To specify cost functions which use the visual input to evaluate the situation that the agent is in; and

• To propose and evaluate a new model for steering agents equipped with a synthetic vision mechanism,
based on the control loop and on the cost functions previously defined. Such a model should consider
all visible obstacles and explore all possible kinds of motion adaptations.

1.3 Proposal

In this work, it is proposed a motion control loop that is more robust to complex situations of collision
avoidance. A locally optimal steering approach is adopted. A cost function that is used to characterize
the current situation according to the visual information is defined. This cost function accounts for both
the dangerousness of all visible obstacles and the agent’s goal. At each time-step, the cost function and its
gradient are evaluated. Agents adapt their motion by resorting to a gradient in order to minimize the cost
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function. Since the cost function accounts for both the goal and all the visible obstacles, this is equivalent to
selecting a motion that corresponds to the best trade-off between reaching the agent’s goal and reducing the
dangerousness of the situation.

Compared to the previous algorithms based on synthetic vision, the proposed technique considers all
visible obstacles whereas only dangerous obstacles were previously considered in other approaches. It explores
all possible kinds of motion adaptations whereas agents previously reacted always the same way when escaping
the risk of collision. The proposed method significantly improves the quality of crowd simulation results, while
all the interesting properties of previous algorithms are preserved.

This work has two main contributions:

• A new motion control loop scheme for simulating crowds in a microscopic fashion; and

• The cost function to evaluate the situation of each agent with respect to its goal and risk of collision
with nearby obstacles.

The new control scheme opens new directions for techniques based on synthetic vision and, more gener-
ally, for velocity-based crowd simulation models. As the proposed control scheme is deployed in the frame of
algorithms based on synthetic vision, its principles can be reused in a different context. The cost function is
one key-component of the proposed approach, where agents are able to perform locally optimal maneuvers by
moving in accordance with the gradient of the proposed cost function. Such cost function can be integrated to
other simulation algorithms or to an evaluation framework to estimate the relevance of avoidance maneuvers.

1.4 Organization

The remainder of this thesis is organized as follows. In Chapter 2, the most relevant related works are
presented and discussed. Important approaches for crowd simulation are categorized and explained in details
in this chapter. The importance of social behavior and methods for evaluating and validating virtual crowd
behavior is also discussed. Finally, Ondřej’s work on simulating crowds based on synthetic vision is detailed
and discussed, for a better understanding of the improvements achieved with the model proposed in this
thesis.

The contributions of this work are detailed in Chapter 3 where the proposed model is described. First,
the new 3-phase control loop scheme is introduced as well as the mathematical formalism. In the following
sections, the three phases of the loop (perception, evaluation and action) are presented in details.

Chapter 4 gives insights on technical aspects such as the model implementation. Moreover, the char-
acterization of the agents’ vision, i.e., the camera resolution, the field of view, etc., are detailed. Still in
that chapter, the parameterization of the model is discussed. The model has four parameters which allow
the agents’ characterization with respect to speed adaptation, orientation adaptation, anticipation time and
distance to keep from obstacles. First, it is shown how those parameters can affect the agent’s behavior and,
then, it is detailed how the model could be tuned according to experimental data.

After parameterizing, the results are presented and discussed in Chapter 5. In this chapter, the scenarios
used for the model’s evaluation are defined. The model is then evaluated and compared with a previous
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approach based on synthetic vision and a representative of geometrical velocity-based models. The evaluation
is both qualitative and quantitative. Finally, the performance is also measured and discussed.

A summary of this work is made in Chapter 6. It is followed by a discussion about the current limitations
of the model as well as the future directions to be taken.





2 Related work

This chapter is divided in two parts. In the first part, a review of the most relevant approaches for simulating
crowd behavior found in the literature is performed. Those approaches are categorized and explained in
separated sections. Then, a brief review about social behavior is presented. Planning the motion of crowds
is not purely to set goals for the agents and to make them traverse the environment avoiding collisions. It
is necessary to make these trajectories look as visually pleasant as possible. In the end of this part, it is
discussed the problem of evaluating qualitatively crowd behavior and some existing solutions for this problem.
In the second part, the model for simulating crowds based on synthetic vision introduced by (ONDŘEJ et
al., 2010) is presented with more details. Then, the main drawbacks of this simple approach for simulating
crowds using synthetic vision are discussed. This last discussion is followed by the proposals of this work to
overcome the drawbacks found in (ONDŘEJ et al., 2010).

2.1 Crowd simulation approaches

The main objective of simulating crowds is to compute the motion of many characters which results from
collective behaviors. This objective has received a wide attention from various disciplines and many solutions
can be found in the literature as overviewed by recent books (PELECHANO et al., 2008; THALMANN;
MUSSE, 2013; ALI et al., 2013). A full animation of a virtual crowd involves not only dealing with motion
planning but also with several other aspects such as: avatars’ animation and characterization; techniques for
rendering crowds; and development of interfaces for manipulating crowds.

This work focuses on motion planning, or path planning. As briefly presented in the previous chapter,
there are local and global path planners. For simple environments, just locally reacting to potential collisions
can be enough for the agents to avoid collisions and to reach their goals, and this is what local path planners
do. However, when the environment becomes more complex, local path planners can lead the agents to
undesirable paths. A global path planner defines a set of waypoints between the initial position of the agent
and its final goal. To reach its final goal, the agents must thus pass through each of the waypoints. The
navigation between two waypoints is then managed by the local path planner.

In short, a global path planner is in charge of planning a route from the starting point until the goal
considering the peculiarities of the environment, and a local path planner is in charge of adapting the route
between waypoints so as the agents avoid collisions with local obstacles not tracked by the global path planner.
For a better understanding of path planning, this section starts by addressing some literature regarding global
path planning.

2.1.1 Global path planning

According to (KAPADIA; BADLER, 2013): “Navigation in arbitrarily large, complex environments requires
an agent to be equipped with a mental model that provides some semantically meaningful geometric represen-
tation of the world around it”. The agent needs a mental model, or map, of the environment that surrounds
it and needs to be able to understand it and to use it to reach its goal through the best possible path. This
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mental map is created through the processing of the environment, where the existing navigable paths are
established.

Most of the existing approaches for global path planning consist of computing the shortest path between
vertices in a graph. What differs the approaches from each other are the details related to: the graph
formation; the positioning of its vertices; the functions assigned to the vertices and edges; and the algorithm
used for computing the shortest path. The approaches discussed in the following subsections were classified
into five categories based on the literature (PELECHANO et al., 2008; THALMANN; MUSSE, 2013; ALI
et al., 2013): discrete motion planning, probabilistic roadmaps, cell and portal graphs, reactive methods and
environment modeling.

2.1.1.1 Discrete motion planning

As stated by (THALMANN; MUSSE, 2013): “Discrete methods are probably the most popular and simple
in practice. The basic idea is to use a discrete representation of the environment: a 2D grid lying on the floor
of an environment for navigation planning.”. In this grid, the state of a cell is assigned according to the area
which it represents within the environment. Thus, a cell can, basically, be marked as free or occupied by an
obstacle. The movement is allowed between adjacent free cells: the problem of reaching a goal is reduced to
a search for the shortest path from a given cell to this goal (THALMANN; MUSSE, 2013). An example of a
path computed by this method can be seen in Figure 3.

Figure 3 – Example of a discrete method. The path between A and B is demonstrated by the cells in light
gray in the grid, whereas the dark cells represent an obstacle.

Source: Bandi and Thalmann (1998).

The search for the shortest path can be made by the well-known Dijkstra algorithm (DIJKSTRA, 1959),
or by more efficient algorithms, such as the A* (HART et al., 1968), for example. Such algorithms are simple
to implement and have strict guarantees of optimality and completeness of solution. Because of this, discrete
methods are very popular and widely used for path planning, specially in games (KAPADIA; BADLER,
2013). However, according to (PELECHANO et al., 2008): “Although A* can find the shortest path to
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a goal and several improvements have been added to achieve fast solutions, it is still necessary to run the
algorithm again to find a new path for each new goal and for each agent in the group”.

The resolution of the discretization, i.e., the number of cells in the grid, affects both the performance and
the quality of the trajectories. Coarse resolutions produce low-quality paths, whereas fine resolutions have
a high computational cost, sometimes prohibitive for real-time applications (KAPADIA; BADLER, 2013).
A solution for this problem of resolution could be the use of a hierarchical discretization, where the grid is
refined according to the environment’s geometry (THALMANN; MUSSE, 2013).

2.1.1.2 Probabilistic roadmaps

The Probabilistic Roadmap Method (PRM) (KAVRAKI et al., 1996) is intended to represent the environment
in a very simplistic way, which consists of randomly distributing some points in free spaces within the
environment and then connecting them creating a graph. A vertex must be connected to a neighbor vertex
if and only if the straight line between them is collision free (Figure 4). With the generated graph, it is used
a shortest path algorithm (such as in discrete methods) for obtaining the best path between an origin vertex
and a destination vertex.

Figure 4 – Example of a roadmap.

Source: Bayazit et al. (2003).

PRMs are very popular and have been used to generate navigation paths for large groups of autonomous
agents (PELECHANO et al., 2008). Several works have proposed improvements to this method, such as:
heuristics or strategies for the roadmap creation (SIMÉON et al., 2000); pseudo-random sampling techniques
(KUFFNER, 2004); or by manipulating PRMs to deal with group behavior such as homing, shepherding and
exploring (Figure 5) (BAYAZIT et al., 2002; BAYAZIT et al., 2003; LIEN et al., 2005).
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Figure 5 – Ten flock members are searching for an unknown goal. (a) The flock faces a branch point. (b)
Since both edges have the same weight, the flock splits into two groups. (c) After dead ends are
encountered in the lower left and upper right, edge weights leading to them are decreased. (d) As
some members find the goal, edge weights leading to it are increased. (e) The remaining members
reach the goal.

Source: Bayazit et al. (2003).

2.1.1.3 Cell and portal graphs

A Cell and Portal Graph (CPG) (TELLER, 1992) represents a method of abstracting the geometry of virtual
environments. Generally, within indoor environments, the graph nodes (cells) indicate navigable regions such
as rooms, whereas the portals represent entrance/exit points such as doors. For outdoor environments, cells
can represent pedestrian pathways and portals are placed between pathways and crossings (LERNER et al.,
2006; PELECHANO et al., 2008). After setting up the environment, the problem of navigating in a CPG
is reduced to getting from a cell to another through a sequence of cells and portals (PETTRÉ et al., 2005;
PELECHANO; BADLER, 2006; PELECHANO et al., 2008). Some examples of CPG can be seen in figures
6 and 7.

Figure 6 – An example of CPG. The portals are in green and the cells are represented by the colored polygons.
A vertex is placed in each one of the cells and two cells are connected if they share a portal.

Source: Lerner et al. (2006).

2.1.1.4 Guidance fields

Guidance fields are used to steer agents through grids of vectors. These vectors help the agents to avoid
obstacles and to move toward the goals specified as cells in the grids. Potential fields methods (KHATIB,
1985; WARREN, 1989; WARREN, 1990; SHIMODA et al., 2005) are based on guidance fields. In such an
approach, a field of vectors composes a gradient which indicates the path to the goal. This field is generated
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Figure 7 – Floor plan of a building and its corresponding CPG.

Source: Pelechano et al. (2008).

taking into account the repulsion caused by the obstacles and the attraction caused by the goal. Generally,
in a potential field method, the environment is discretized in a regular grid, where each cell has a potential
value which corresponds to the attraction and repulsion forces acting on it. Once the gradient is computed
based on the potential values of each cell, it is possible to follow it to reach low potential values, usually
representing a goal. This method has the same problems regarding discretization as those found in discrete
methods. Figure 8 shows a representation of a potential field in an environment with a central obstacle.

Figure 8 – Potential field representing an environment with a central obstacle.

Source: Warren (1989).

In (CHENNEY, 2004), the author proposed a similar approach where tiles with precomputed vector fields
are used to compose the field of vectors representing large flows. In other words, through the production of
tiles with different configurations it is possible to create scalable scenarios with varied flows. Figure 9 shows
the tool used for composing scenarios with tiles.

Dynamic potential fields (TREUILLE et al., 2006) have been used for integrating global navigation with
dynamic obstacles and agents, solving the problem of moving crowds in an efficient way without the need of
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Figure 9 – Tool used for composing scenarios with precomputed fields of vectors.

Source: Chenney (2004).

explicit collision avoidance. For this method, the grids’ discretization highly affects the performance because
the potential fields are dynamic and need to be computed for every simulation’s time-step. Figure 10 shows
an overview of the algorithm proposed in (TREUILLE et al., 2006).

Figure 10 – Overview of the algorithm proposed for creating dynamic potential fields.

Source: Treuille et al. (2006).

2.1.1.5 Environment modeling

In this approach, the better the topological representation of the environment for the method used for path
planning, the better the paths will be. Manual methods can be used to represent the environment where
an artist or level designer can distribute waypoints along the path within the scenario. However, a more
accurate alternative is to define navigation meshes, for example. Nevertheless, as stated by (GRÖSCHEL,
2011): "although the process of manually creating the world representation is versatile, it is considered to be
very labor intense since great care must be taken to ensure validity".
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For that reason, techniques for automatic creation of topological representations have been developed.
In (HAUMONT et al., 2003), the authors presented an algorithm for generating volumetric CPGs for indoor
scenarios based on an adaptation of the 3-D watershed transform algorithm, computed on a distance-to-
geometry sampled field. The environment is “flooded” from the local minima, and each minimum produces
a region (room). Portals are created between regions when they get in contact during the flooding process
(Figure 11). The algorithm classifies, automatically, each room as a cell and the openings (doors and windows)
as portals, thus, being able to generate the CPG of any indoor environment.

Figure 11 – Flooding process used to generate the environment’s CPG.

Source: Haumont et al. (2003).

In (PETTRÉ et al., 2005), the authors proposed an approach based on a spatial structuring technique
that automatically decomposes multilayered or uneven terrains into corridors giving rise to a navigation
graph to be used for path planning. In this method, the space is divided into free spaces and obstacles to be
avoided. At first, it computes a Voronoi diagram of the free-space and, then, it builds a set of collision-free
convex cells along the diagram. The navigation graph is obtained from the adjacency graph of the cells
(Figure 12). The novelty of this work was to extend a basic navigation graph for terrains with multiple layers
by classifying some areas with free spaces as obstacles based on the terrain’s slope.

Lerner et al. (2006) defined an effectiveness measure for a cells-and-portals partition. With this metric,
they introduced a two-pass algorithm for computing CPGs, in which the first pass creates an initial partition
and the second pass refines it. The algorithm uses a simple heuristic that strives to create small portals as a
means for generating an effective partition. The algorithm’s input is a set of half edges (in 2-D) which can
be extracted from a complex polygonal model. The method supports incremental changes of the model by
locally recomputing and updating the partition, and can be used for generating CPGs for indoor and outdoor
environments. In Figure 13, an example of partition produced by this method can be seen.
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Figure 12 – Navigation Graphs principles. Top: example of a Navigation Graph in a 2-D academic example.
Bottom: Vertices (left) and Edges (right) of a Navigation Graph computed for a natural scene.

Source: Thalmann and Musse (2013).

Figure 13 – Example of partitioned scenario, where the buildings are in white and partition cells are in blue.
On the left, a BSP (Binary Space Partitioning) partition and, on the right, a partition produced
by the algorithm proposed by (LERNER et al., 2006)

Source: Lerner et al. (2006).

Shao and Terzopoulos (2007) represented virtual environments using a hierarchical collection of maps
(Figure 14). Each map was created for a specific purpose and the combination of them helps to manage crowds
in an efficient way. The model comprises: a topological map, which represents the topological structure
of the virtual environment; a set of perception maps, associated to the topological map, which provides
relevant information for perceptual queries; and a set of path maps which enables online path planning for
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navigation. The topological map contains nodes which correspond to regions within the environment and
edges representing accessibility between regions. The path maps include a quadtree map which supports
global, long-range path planning and a grid map which supports short-range path planning.

Figure 14 – Hierarchical representation of a building.

Source: Shao and Terzopoulos (2007).

In (GERAERTS; OVERMARS, 2007), the authors presented the Corridor Map Method (CMM). That
method, in an offline construction phase, creates a system of collision-free corridors for the static obstacles
in an environment, and then, in the query phase, it plans paths inside the corridors for different types of
characters that avoid dynamic obstacles. The authors use a method based on medial axis to represent free-
space as a graph where the edges correspond to collision-free corridors. Each edge of the graph encodes a local
path together with a maximum clearance radius which can be used to find paths with arbitrary clearance.
Figure 15 shows a comparison of the CMM with two other methods.

Several methods aiming at reproducing free-space within environments by using meshes have been pro-
posed. In (LAMARCHE; DONIKIAN, 2004), the authors used the Delaunay triangulation to compute a
subdivision of convex cells of the free-space while maintaining the information about the local bottlenecks to
represent the topological connectivity of 3-D environments. Other approaches explore the Voronoi diagram,
as in (HOFF III et al., 1999) where a Voronoi representation of the static environment is precomputed for path
planning; and in (SUD et al., 2007a) where the authors presented the Multi-agent Navigation Graph (MaNG)
which is built dynamically using discrete Voronoi diagrams. The MaNG is used to compute simultaneously
the maximum clearance paths for a set of agents which move with independent goals. In (KALLMANN,
2010), the author proposes a method for finding optimal paths with arbitrary clearance directly from a tri-
angulation. The method proposed introduces a new local clearance property which facilitates the efficient
computation of the path clearance in a triangulated mesh.

Recently, adaptive elastic roadmaps (SUD et al., 2007b; GAYLE et al., 2009) have been used to compute
near-optimal paths within virtual environments, where these roadmaps adapt themselves according to the
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Figure 15 – Three methods for path finding. (a) The A* algorithm finds the shortest path in the displayed
grid, consisting of 1792 nodes and 3321 edges. (b) The PRM-graph is almost six times as small.
(c) The CMM-graph is the smallest one containing 44 nodes and 50 edges.

Source: Geraerts and Overmars (2007).

dynamic obstacles and the interaction forces among the agents.

2.1.2 Local path planning

Local path planning can be defined as:

The layer of intelligence that interfaces with navigation to move an agent along its planned
path by performing a series of successive local searches, taking into consideration locomo-
tion constraints such as turning capabilities and limits on movement velocity, as well as
dynamic objects in the environment such as other agents (KAPADIA; BADLER, 2013).

This is one of the most explored subareas in Crowd Simulation given the importance of the agents’
motion visual quality. The need for agents behaving as similarly as possible to real crowds motivates the
large number of research works on this field. The more realistic the agents’ animated trajectories look, the
more believable, or immersive, the virtual world will be.
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The various existing solutions for this problem can be classified in several ways according to their common
features. Some authors choose to classify them according to the way the agents are managed. In this case the
approaches can be classified as: macroscopic or microscopic. Macroscopic approaches are concerned with the
global crowd flow, regardless of the local interactions between agents, whereas microscopic approaches model
local interactions between agents which influence each other’s motion. In the case of microscopic approaches,
collective behaviors and global patterns emerge as a consequence of the agent’s local interactions. Other
authors prefer to classify approaches according to their abilities of collision prediction. In this case, the
different approaches are classified as predictive or reactive, depending on whether they allow anticipated
reactions based on motion prediction or purely reactive motion. In (ZHENG et al., 2009), the authors
present some features to classify approaches for crowd evacuation simulation. In this section, the algorithms
were classified in the following categories based on the techniques used for collision avoidance: rule-based,
particle-based, cellular automata, guidance fields, velocity-based, data-driven, based on synthetic vision and
hybrid.

2.1.2.1 Rule-based models

In 1987, Reynolds presented a rule-based model, where the concept of boids (“bird-oid” contraction) was
introduced. The author made these agents called boids behave as a flock through the combination of three
simple individual rules, where the boids should: avoid collisions (separation), keep the same velocity (align-
ment) and stay close to each other (cohesion). Rule-based models allow characterizing the agents individually
with unique behaviors not only focusing on collision avoidance, making it possible to model heterogeneous
agents with complex behaviors formed by the combination of simple behaviors. In 1999, Reynolds expanded
his previous work by defining steering behaviors for autonomous agents (e.g., seek, flee, pursuit, evasion)
(Figure 16).

Figure 16 – Examples of rules. Seek and flee (left). Pursuit and evasion (right).

Source: Reynolds (1999).

Rule-based models have the advantage of allowing the modeling of heterogeneous agents. However, in
some cases, it can be difficult to combine rules, leading to the emergence of unpleasant artifacts in the agent
behavior (contradictory rules, for example). Moreover, it can be computationally expensive to handle crowds
with several behaviors. For achieving better performance results, allowing real-time simulations with several
agents, some techniques have been proposed, such as: spatial partitioning (REYNOLDS, 2000; REYNOLDS,
2006), hierarchical grouping (MUSSE, 2000; MUSSE; THALMANN, 2001) or the use of hierarchical structures
(LAMARCHE; DONIKIAN, 2004; SHAO; TERZOPOULOS, 2007).
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2.1.2.2 Particle-based models

The interest in particle-based models arose given their ability to simulate crowd evacuation from buildings
considering physical aspects. In (HELBING; MOLNÁR, 1995), the authors proposed a model where the
agents move according to repulsive forces (exerted by other agents, objects, walls, etc.) and attractive forces
(exerted by friends, objectives, etc.) trying to reach the position of their goals within the environment as
comfortably as possible. This model naturally simulates agents’ self-organization in collective phenomena.
Combining socio-psychological and physical forces, Helbing et al. (2000) proposed a particle-based model
capable of simulating crowds in panic situations. The algorithm managed to reproduce many observed
phenomena including: clogging effects at bottlenecks (Figure 17) and the corresponding increase of pressure,
jamming at widenings, the “faster-is-slower” effect, inefficient use of alternative exits and initiation of panics
by couterflows and impatience.

Figure 17 – Clogging effect at a bottleneck reproduced with Helbing’s model.

Source: Helbing et al. (2000).

This type of model can be adapted to many situations just by adding new attractive and repulsive
forces, according to the behavior expected for the crowd. In (COURTY; MUSSE, 2005), a repulsion force
was added to Helbing’s model (HELBING et al., 2000) so as to make the crowd avoid places with smoke while
trying to evacuate a building (Figure 18). In (BRAUN et al., 2003), the authors extended Helbing’s model
to include individualism. Particle-based models have also been used for studying group behavior and their
effects on crowd dynamics (MOUSSAÏD et al., 2010; XU; DUH, 2010). Despite being particularly suitable
for simulating emergency situations, this type of model can also be adapted for simulating common situations
as can be seen in (PELECHANO et al., 2007).

A different approach was proposed by (HEIGEAS et al., 2003). In this case, the agents’ interactions
were modeled as a mass-spring-damper system, where stiffness and viscosity terms change with respect to
the relative distance between the agents. Particle-based models are inherently reactive, i.e., agents do not
anticipate their motion with respect to other agents in collision course, resulting in visually unpleasant
artifacts in sparse environments. However, it is possible to minimize this drawback by adding an evasion
force so as to make the agents react to future collisions in advance, as presented in (KARAMOUZAS et al.,
2009).

2.1.2.3 Cellular automata models

Cellular automata are discrete dynamic systems which consist of a regular two-dimensional grid of cells. A
cell can be occupied (by an obstacle), free or it can have another state depending on the behavior to be
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Figure 18 – Crowd being repulsed by places with smoke while evacuating a building.

Source: Courty and Musse (2005).

simulated.

A cellular automaton evolves in discrete time steps, with the value of the variable at one
cell being affected by the values of variables at the neighboring cells. The variables at each
cell are updated simultaneously based on the values of the variables in their neighborhood
at the previous time-step and according to a set of local rules (PELECHANO et al., 2008;
WOLFRAM, 1983).

When used for simulating crowds, those rules are defined to control the agents’ behaviors during the simula-
tion.

Although fast and simple to implement, cellular automata models (DIJKSTRA et al., 2001; SCHAD-
SCHNEIDER, 2001; TECCHIA et al., 2001; BURSTEDDE et al., 2001; KIRCHNER; SCHADSCHNEIDER,
2002; KIRCHNER et al., 2003) do not allow physical contact between agents, because each cell can be occu-
pied by only one agent each time. This restriction causes this type of model to reproduce unrealistic results in
high density situations (Figure 19), making them impracticable for some applications such as entertainment.
Aiming at creating more realistic behavior in high density situations, in (LOSCOS et al., 2003), the authors
adapted their model for collision avoidance to deal with several situations, enabling the cooperation between
agents for decision-making, allowing the emergence of pedestrian flow in the crowd.

Figure 19 – Room evacuation simulation using a cellular automata model. It is possible to notice the orga-
nization of the agents in a regular grid.

Source: Burstedde et al. (2001).
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2.1.2.4 Guidance field models

Models based on guidance fields can be used for both global (Section 2.1.1.4) and local path planning.
As presented before, guidance fields can be manually defined by setting flow tiles to compose the field
(CHENNEY, 2004). In (PATIL et al., 2011), the field is generated procedurally, but it can be influenced by
user interaction (Figure 20 left) or by motion flow fields extracted from crowd video footage. Kapadia et al.
(2009b) use egocentric fields to determine the optimal path that an agent can take at short-term (Figure 20
right). The main drawback of using local guidance fields is that they can easily lead agents to local minima.

Figure 20 – Example of guidance fields. Field updated by user interaction (left) and egocentric field (right).

Source: Patil et al. (2011) (left) and Kapadia et al. (2009b) (right).

As it was briefly presented in Section 2.1.1.4, guidance fields can also be generated by using potential
fields. In this case, each cell in the grid has a potential positive value which decreases according to the
proximity of the goal. Goal cells must have a zero value so as to attract the agents, whereas obstacle cells
must have high values to repulse them. This way, a gradient is formed indicating the path from each cell
to the goal. Hughes (2002, 2003) presented a model where partial differential equations were defined to
describe crowd dynamics. In this model, the agents are converted to a density field which is used to generate
the potential field. Treuille et al. (2006) improved Hughes’s model to reach more realistic crowd behavior.
Their model separates agents in groups with common goals, where these groups represent the environment
as a grid of cells. Then, for each group, a potential field is computed. In (JIANG et al., 2010), the authors
adapted Treuille’s model to deal with more complex environments. Models based on dynamic potential fields
have as main advantage the possibility of simulating realistically the behavior of several agents in real-time.
Nevertheless the process of generating potential fields is computationally expensive and, consequently, only
a small number of groups (goals) is supported. Recently, Dutra et al. (2013) proposed a multipotential field
method for allowing scalable behaviors in Treuille’s model (Figure 21).

2.1.2.5 Velocity-based models

Recently, velocity-based approaches have received increased attention. Such models anticipate the danger by
extrapolating the agents’ trajectories to detect potential collisions in a near future. Extrapolating trajectories
for collision prediction is not new. In 1999, Reynolds presented the unaligned collision avoidance behavior
for this purpose and, in the following years, other works in this direction have been presented. In (PARIS et
al., 2007), the authors presented a model which represented a great advance to the early work of Reynolds,
specially by solving major existing drawbacks such as oscillations and jams due to the lack of anticipation.
Moreover, the model was calibrated and validated from real data.
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Figure 21 – Example of multipotential fields. Eight potential fields are used to change momentarily the
agents’ main goals.

Source: Dutra et al. (2013).

In the field of robotics, there is the concept of Velocity Obstacle (VO), introduced by Fiorini and
Shiller (1998), where a robot is capable of avoiding collisions with obstacles based on their velocities. The
method consists of selecting a velocity in the velocity-space which allows the robot to avoid collisions with
the static and moving obstacles based on their positions and velocities. This concept has been widely used
by velocity-based models for simulating crowd behavior. In 2008, van den Berg et al. (2008a, 2008b)
presented the concept of Reciprocal Velocity Obstacle (RVO) which extends the VO concept to guarantee
safe and oscillation-free navigation among agents by considering the reactive behavior of the other agents,
assuming that the agents avoid each other in the same way. Since then many contributions have been
made to this approach. In (GUY et al., 2009), the authors presented a parallel algorithm which uses a
discrete optimization method. The most recent evolution of velocity-based obstacles is represented by the
Optimal Reciprocal Collision Avoidance (ORCA) approach (BERG et al., 2011), which efficiently computes
the optimal solution (maximum collision free velocity closer to the comfort velocity) in the velocity-space,
hence reciprocally avoiding collisions between agents in a near future (Figure 22).

This type of model can treat collisions among several agents and obstacles efficiently (thanks to its
parallelizable nature) allowing to simulate crowds with visually pleasant trajectories in real-time; however
this realism decreases when the crowd density increases. They can also expose artifacts when dealing with
symmetric situations.

2.1.2.6 Data-driven models

Data-driven models are those that use some kind of data to determine the virtual crowd behavior. This
data can be real crowd footage, trajectories extracted from experiments, the resulting output of some other
model, or even generated by the user. In (METOYER; HODGINS, 2004), the user can adjust the agents’
motion in a simulation in real-time and, according to these interactions, the simulator learns how to treat
the adjusted situations. Lee et al. (2007) presented a model where the behavior’s patterns of each agent are
learned from real crowd footage (Figure 23). Lerner et al., in 2007, described a model where, given a set of
trajectories extracted from a real crowd footage, a database of examples is built and the agents’ trajectories
are incrementally synthesized considering spatio-temporal relationships with nearby agents and obstacles,
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Figure 22 – (a) A configuration with eight agents. Their current velocities are shown using arrows. (b) The
half-planes of permitted velocities for agent A induced by each of the other agents. The dashed
region contains the velocities for A that are permitted with respect to all other agents. The
arrow indicates the current velocity of A.

Source: Van den Berg et al. (2011).

and according to similar scenarios found in the database.

Pettré et al. (2009) presented a model able to simulate and reproduce experimental trajectories obtained
from observations of real interactions between walkers. In (LERNER et al., 2009), the authors developed a
method which, given a database of behaviors extracted from real crowd footage, is able to select from the
database the behavior which is the most representative of the agent’s current situation. Paravisi et al. (2008)
adapted Treuille’s model (TREUILLE et al., 2006) to reproduce crowd and group behavior extracted from
video footage. The authors, in (JU et al., 2010), presented a method which combines different data from
several existing crowds to generate a new crowd animation. This data can be obtained from real crowds or
virtual ones simulated by other models (Figure 24).

As stated initially, the input data need not necessarily be obtained through computer vision techniques
as in (GUY et al., 2011), where the authors use perceptual studies to affect the agents’ personalities, thus
generating heterogeneous crowds. Recently, in (CHARALAMBOUS; CHRYSANTHOU, 2014), the authors
introduced a structure called perception-action graph (PAG) for accelerating and improving the quality of
data-driven crowds. The PAG handles the input examples as a graph, which is used at run-time to efficiently
synthesize believable virtual crowds.

This type of model has some drawbacks, such as: the need of maintaining a database of the recorded
behaviors, which can occupy plenty of space according to the number of behaviors to reproduce and increase
the searching time for a specific behavior; or, the need of input data according to the situation to reproduce,
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Figure 23 – Real data (left) and reproduced behavior (right).

Source: Lee et al. (2007).

Figure 24 – Real data (top) and reproduced behavior (bottom).

Source: Ju et al. (2010).

i.e., a behavior recorded in a specific situation may not work in a different context.

2.1.2.7 Models based on synthetic vision

A specific category of approaches is based on a Synthetic Vision (SV) system which equips each agent.
Synthetic vision models mimic how humans visually perceive risk of future collision and how they react
accordingly. These algorithms are inspired by literature which acknowledges the role of the human vision
system in the locomotion perception-action loop (CUTTING et al., 1995; WARREN; FAJEN, 2004; RIO
et al., 2014). Early attempts modeled the agents’ field of view as a geometrical area (REYNOLDS, 1987;
TU; TERZOPOULOS, 1994) (Figure 25) or as a volumetric representation of the scene (SILVA et al., 2010).
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Agents would only interact if falling in such field of view.

Figure 25 – Vision as a geometrical area. A vision of a fish (left) and a vision of a boid (right).

Source: Tu and Terzopoulos (1994) (left) and Silva et al. (2010) (right).

The first explicit simulation of locomotion using the agents’ vision was introduced in (RENAULT et al.,
1990). In (NOSER et al., 1995), the authors used the agents’ vision to identify objects within an environment.
Kuffner and Latombe (1999) used synthetic vision to allow agents to explore and to navigate within unknown
environments. The authors in (PETERS; O’SULLIVAN, 2003) used synthetic vision to find interesting areas
in the agent’s vision which could attract its attention and thus improve the feeling of presence within the
virtual environment.

Ondřej et al. (2010) proposed a novel synthetic-vision approach for crowd simulation. Their model
transforms the visual input of each agent into images containing information which allows detecting risk of
collisions with any obstacle or agent in the scene (Figure 26). Agents react to the stimuli by turning to avoid
a future collision when detected with anticipation and slowing down to avoid an imminent collision. Despite
the good results reported, Ondřej’s model suffers from important drawbacks. This model and the model
proposed by this thesis are strongly related, for this reason Section 2.2 is dedicated to present and to discuss
the Ondřej’s model with more details.

Figure 26 – Representation of the agent’s visual perception.

Source: Ondřej et al. (2010).

In 2011, Moussaïd et al. presented a vision-based approach for simulating pedestrian behavior based
on two rules. This model is purely reactive as well as Ondřej’s. The first rule is used to adapt the agent’s
orientation in order to allow a small deviation to the goal according to the obstacles’ positions whereas
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the second rule is used to adapt speed according to the agent’s reaction time and the first obstacle in
the walking direction. Body collisions are avoided by using a particle-based algorithm. Despite resorting
to the agent’s vision, it is not clear in the article whether this vision is a synthetic one or a geometrical
representation. Recently, Rio et al. (2014) investigated the optical information used to control walking speed
in pedestrian following. From the results of this investigation, the authors could derive a visual control law
for one-dimensional following. This law is based on the optical expansion of the follower, where the follower
accelerates if the leader’s visual angle is decreasing, decelerates if it is increasing, and maintains the current
speed if visual angle is constant.

Models based on synthetic vision are very promising, allowing reproducing behaviors more closely to
reality than those produced by traditional models, provided that the data obtained through the vision is
interpreted properly. Those results come with a high computational cost, although, the rapid evolution of
graphic cards suggests this approach will soon become more popular for real-time applications such as games.

2.1.2.8 Hybrid models

Each type of model has advantages and disadvantages. Thus, the idea of combining the best features of the
existing models gave rise to the hybrid models. In (PELECHANO et al., 2007), the authors captured the
best aspects of rule-based and particle-based models, and created a new model which used psychological,
physiological and geometrical rules combined with physical forces to reproduce heterogeneous agents and to
guide them within an environment. Yersin et al. (2008) proposed an architecture for simulating crowds which
divides the environment in three regions of interest (ROI) according to the distance to the camera (the closer,
the more important). Each ROI is ruled by a different technique of path planning. In regions of no interest,
the planning is ruled by a navigation graph and collisions are not avoided; in regions of low interest, the
planning is also ruled by a navigation graph and collisions are avoided resorting to the Reynolds’s concepts
(1999); and finally, in high interest regions, both path planning and collision avoidance are ruled by potential
fields, similar to (TREUILLE et al., 2006).

In (XIONG et al., 2010), the authors proposed an architecture where two models (a macroscopic and a
microscopic) coexist in a simulation and work in a collaborative way, resorting to the benefits of each when
necessary. The environment is divided in partitions and each of them is ruled by one of the models at a given
instant. Narain et al. (2009) presented a model based on potential fields, but which solves local collisions
using a geometrical model. First, the path of the agents is planned globally and their comfort velocities
are set; then, locally, their velocities are adapted according to the density of the cell where the agents lie;
after defining the velocities, the minimum distance among the agents is assured. In (SINGH et al., 2011),
the authors described a framework that integrates multiple models which are used according to the agent’s
current situation. Finally, the authors, in (GOLAS et al., 2014), proposed an approach which blends results
from continuum and discrete algorithms, based on local density and velocity variance. Their hybrid method
has seamless transitions between the continuum and discrete representations.

Hybrid models are able to deal with more varied situations given the flexibility acquired by integrating
models which solve different problems related to crowd path planning. However, when working with different
models, it is necessary to take into account the complexity of integrating them so that they can work together
properly.
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2.1.3 Path planning remarks

As it was stated at the beginning of this chapter, path planning is a research field widely explored, motivated
by several problems found in the robotics field, entertaining industry and civil engineering, just to name a
few. The works presented here are just some of the most relevant works that can be found in the literature.
Most of the works can fit into more the one classification, for example, models based on synthetic vision
can also be considered velocity-based approaches, since the agents take into account the movement of the
obstacles to anticipate their motion. On the other hand, some models need specific classification given their
very specific properties. Bicho et al. (2012), for example, proposed an algorithm for simulating crowds
based on the modeling of leaf venation patterns and the branching architecture of trees. This model uses the
concept of space colonization to model crowd behavior.

In some cases, animating crowds in huge and complex environments for long periods can be very chal-
lenging and difficult with the traditional crowd simulators. This need of handling dense populations in
large-scale environments gave rise the models based on crowd patches. A crowd patch is a block containing
precomputed local crowd simulation. Several patches can be designed with different animations. Then, for
animating a crowd, it is necessary just to connect patches in space and time (Figure 27). Crowd patches
provide endless animation in real-time, nevertheless interactivity is not allowed since the agents cannot adapt
their precomputed paths (LEE et al., 2006; YERSIN et al., 2009; JORDAO et al., 2014).

Figure 27 – Crowd patches used for crowd simulation.

Source: Yersin et al. (2009).

Finally, in addition to those techniques presented here, there are also several commercial solutions, such
as: Massive (2015), Legion (2015), Golaem (2015), just to cite a few. Popular tools used for 3D modeling
and animation, such as Autodesk 3ds Max (2015a), Autodesk Maya (2015b) and Blender (2015), have either
plugins for simulating crowds or inherent support. Generally, these solutions present limited crowd behavior,
but exhibit visually pleasant animations.
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2.1.4 Social behavior

Several techniques have been proposed over the years focusing on navigation and collision avoidance in crowds
represented as conglomerations of agents with global goals. However, in real crowds there are several social
interactions, since people interact with the environment and with each other. While most of the crowd
behavior studies consider only interactions among isolated individuals, a recent study demonstrated that up
to 70% of the pedestrians observed in crowds walk in groups (MOUSSAÏD et al., 2010). In this case, groups
in the sociological sense, i.e., not only referring to the proximity of individuals, but the individuals with social
relationships intentionally walking together, such as friends or members of the same family.

Reynolds (1987) in his pioneering work simulated a flock of boids, which is a group formation, using a
set of rules (alignment, cohesion and separation). Musse and Thalmann (1997) used sociological concepts
to describe a rule-based model for simulating the relationship of groups in a crowd. An agent interacts
with a group according to its emotional status, the level of relationship with the group, and its level of
dominance. With these characteristics and the rules established by the model, the authors could simulate
some sociological effects in crowds, such as grouping, polarization and adding. In 1999, Reynolds introduced
more rules for steering agents and, through the combination of some of them, he described the leader following
behavior (Figure 28). In (QIU; HU, 2010), the authors simulated intra-group and inter-group relationships
in a model based on (REYNOLDS, 1999). In this model, two-dimensional matrices were used to establish the
relationships among the agents in the same group and the relationships among groups. Recently, Lemercier
and Auberlet (2015) presented behavioral rules based on perception in which agents analyze the situation to
adopt different behaviors accordingly (following and group collision avoidance behavior).

Figure 28 – Leader following behavior.

Source: Reynolds (1987).

In (BRAUN et al., 2003), the authors added an altruism force to the particle-based model proposed by
Helbing et al. (2000). This force is used to keep the agents belonging to the same family together. The
experiments performed with this model showed that the addition of the altruism force made altruist agents
tend to rescue dependent agents (Figure 29). Xu et al. (2010) developed a particle-based model to simulate
groups of two agents. Then, they studied the impact of these bonding effects on crowd behavior.

In (MOUSSAÏD et al., 2010), the authors, based on observations, drew some conclusions related to the
group formation in real crowds. First, they observed that up to 70% of the people in crowds walk in groups.
Moreover, groups with two to four people are more frequent, whereas groups with five or more people are
rare. Another observed aspect was the relation between the agents’ speed and the group size, where the
first decreases when the second increases. Finally, it was observed that, in low density, the group members



48

Figure 29 – Altruism force being used to keep groups together.

Source: Braun et al. (2003).

tend to walk side by side, forming a line perpendicular to the motion direction; whereas, in high density, the
members tend to form a V-like pattern (Figure 30). The authors demonstrated, by adding a group force to
a particle-based model, that the V-like pattern facilitates social interactions within the group, but reduces
the flow because of its “non-aerodynamic” shape. The authors conclude that: “crowd dynamics is not only
determined by physical constraints induced by other pedestrians and the environment, but also significantly
by communicative, social interactions among individuals”.

Figure 30 – Average patterns of organization of groups with two to four individuals.

Source: Moussaïd et al. (2010).



49

Social behavior can also be extracted from real crowd footage, through computer vision techniques, and
then be used as input for data-driven models. In (LEE et al., 2007), the authors presented a model able
to simulate group behavior, among others, from behavior patterns learned from video footage (Figure 31).
Lerner et al. (2007) also simulated group behavior using a data-driven model. In this case, the trajectories of
the agents are synthesized incrementally by considering its spatio-temporal relationships with other nearby
agents and obstacles, and searching for similar scenarios in the database.

Figure 31 – Social behavior simulated by a data-driven model.

Source: Lee et al. (2007).

In 2010, Schuerman et al. proposed a new approach which reduces the complexity of standard agents
by externalizing the specialized steering logic required for some situations to a new class of agents called
“situation agents”. According to the authors: “These agents exist solely to influence the agents within their
vicinity by modifying their preferred velocities and boldness parameters”. They demonstrated that this type
of agent can be used for the maintenance of regular groups and groups in formation (Figure 32).

Karamouzas and Overmars (2010, 2012) proposed a model to simulate the local behavior of small groups
based on Moussaïd’s observations (MOUSSAÏD et al., 2010). In this model, the agents’ current position
in a group is interpolated according to the most adequate formation at the moment (among the possible
formations) (Figure 33). After the group maintenance, the final motion of each agent is computed by an
agent-based model.

Ricks and Egbert (2012) proposed a model which uses transactional analysis to simulate social interac-
tions between agents in a crowd. The model focuses on the evolving social needs of agents and allows the
agents to join and to leave different groups (of two) as desired. The model allows simulating two types of
social interactions: agents that stop to talk and agents that walk together for some time.

In (LEMERCIER et al., 2012), the authors made an experimental study about following behavior in
crowds (Figure 34 left) and, with the obtained results, developed a numerical model to simulate the observed
interactions. In the developed model, the acceleration of an agent is controlled as a function of relative speed
and distance to the target. The model is able to simulate following behavior regardless the crowd density
and to reproduce the experimentally observed stop-and-go waves when calibrated correctly. Bruneau et al.
(2014b, 2014a) went further on simulating following behaviors by taking into account physical, social and
psychological aspects to adjust the following distance. In their model, the follower evaluates the leader’s
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Figure 32 – Top left: two groups of six agents (marked in brown and white, respectively) are placed in front
of each other. The groups have opposing trajectories and must thus cross each other. The top
sequence shows the agents’ behavior simulated by a velocity-based model. The bottom sequence
shows the interaction between the same groups of agents, with the difference that this time each
of the groups has been assigned a situation agent (large and marked in blue).

Source: Schuerman et al. (2010).

Figure 33 – Simulation of small groups. Example of interpolation between a current and a river-like formation
(left) and the group formations (from left to right): line-abreast, V-like, river-like (right).

Source: Karamouzas and Overmars (2010).

motion, predicts the leader’s next move, and then, based on this prediction, the agent adjusts its speed to
keep a safe distance from the leader (Figure 34 right).

Rio et al. (2014) presented and discussed several models for human following behavior simulation.
They also discussed the importance of the visual information on following behavior and introduced several
hypothesis about the information used for visual control. Finally, in (WU et al., 2013), the authors combined
Ondřej’s model based on synthetic vision (ONDŘEJ et al., 2010) with the formation characteristics and
deformation mode of small groups presented in (KARAMOUZAS; OVERMARS, 2012) to reproduce local
group behavior.

2.1.5 Evaluation and validation

An important aspect for crowd simulation is the realism of the results, but is it possible to evaluate and to
validate virtual crowd behavior? This is a pertinent question in this area, since the term realism is subjective.
What looks realistic for a person may not seem so realistic for another. Some researchers have devoted
attention to this question given the need of comparing the results obtained through simulators with reality.
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Figure 34 – Experimental study on following behavior (left) and simulated following behavior on 1-D and
2-D scenarios (right).

Source: Lemercier et al. (2012) (left) and Bruneau et al. (2014b) (right).

Crowd behavior can be evaluated quantitatively or qualitatively. Quantitative metrics are interested in
comparing quantities extracted from crowd formations. Examples of these quantities are: how fast agents can
evacuate a room, the mean of distances between agents, the agents’ average velocity, the number of collisions,
etc. Qualitative metrics, on the other hand, are intended to compare visual aspects of the crowds. Usually, a
qualitative evaluation consists in checking whether the results of the simulation can mimic patterns observed
in real crowds. A key aspect to evaluate virtual crowd behavior is to have real data for comparison and
validation.

In (KAPADIA et al., 2009a), the authors proposed a framework for detecting anomalies on steering
behavior through predefined rules or user defined sketches. Singh et al. (2009) presented a benchmark
framework, composed of metrics of evaluation and a scoring method, for objectively evaluating steering
behaviors, so as to compare different steering algorithms. In (2011), Kapadia et al. introduced a method
of automatically generating and sampling the representative space of challenging scenarios and, in addition,
they propose a method of determining coverage and quality of a steering algorithm in this space.

Musse et al. (2012) proposed a model to quantitatively compare global flow characteristics of two crowds
(real or synthetic). The approach compares distances in 4-D histograms which take into account the agents’
velocities (speed and orientation). In (GUY et al., 2012), the authors introduced the Entropy Metric to
evaluate the predictability of crowd simulation techniques in terms of similarity to real-world crowd data.
Charalambous et al. (2014) presented a framework for visual crowd analysis. The proposed framework can
detect potentially erroneous behaviors in a simulation given a collection of arbitrary, user-selected evaluation
metrics.

Recently, frameworks for parameter estimation and comparative evaluation have been proposed. Berseth
et al. (2014) introduced a framework which searches for optimal parameters for a given model according to
pre- or user-defined metrics. The model’s parameters can be evaluated and optimized according to metrics
such as the coverage of the algorithm, the distance quality, time quality, pedestrian least-effort quality,
computational efficiency, similarity to ground truth, among others. In (2014), Wolinski et al. presented a
framework which has the objective of estimating the parameters of crowd simulators by fitting the simulated
steering behavior to real situations. This estimation is modeled as an optimization problem. The framework
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also supports a variety of metrics to compare reference data with simulation outputs.

2.2 A closer look to Ondřej’s model

The category of crowd simulators based on synthetic vision has an important representative that was intro-
duced in (ONDŘEJ et al., 2010), as presented in Section 2.1.2.7. In this thesis, it is proposed a novel model
that fits in this category. For this reason, it is very important to make a detailed presentation of Ondřej’s
model. This will allow not only a better understanding of Ondřej’s model, but also to clearly identify how
the model proposed in this work overcomes some of its drawbacks.

The use of synthetic vision is motivated by the possibility of mimicking the human perception as it is.
During locomotion, humans are always resorting to their senses to adapt the steering. It is known by the
literature that the visual sense has a strong role on locomotion (CUTTING et al., 1995; WARREN; FAJEN,
2004; RIO et al., 2014).

Cutting’s work (1995) on human locomotion in the field of cognitive science stated that humans are
successively answering two questions during interactions with moving and static obstacles: Will a collision
occur? and When will a collision occur? Through experiments, the authors could observe that these two
questions are answered by extracting two indicators from the perceived optic flow. The first indicator is the α̇
which represents the time-derivative of the bearing angle (α) under which obstacles are perceived (Figure 35);
and the second indicator is the time-to-collision, or ttc, which is deduced from the rate of growth of obstacles
in successively perceived images.

Figure 35 – “The bearing angle and its time-derivative, respectively α and α̇, allow detecting future collisions.
From the perspective of an observer (the walker at the bottom), a collision is predicted when
α remains constant in time. (left) α < 0 and α̇ > 0: the two walkers will not collide and the
observer will give way. (center) the bearing angle is constant (α̇ = 0). The two walkers will
collide. (right) α < 0 and α̇ < 0: the two walkers will not collide and the observer will pass
first”.

Source: Ondrej et al. (2010).

Still according to Cutting, the relevant information necessary to achieve collision-free locomotion is
entirely described by the pair (α̇, ttc), where a collision is predicted when α̇ is close to zero and it is
imminent if ttc is low. Based on these observations, Ondřej et al. developed a model for simulating crowds
where the agents react to their visual stimuli to avoid collisions with other agents and the environment. In
their work, the only difference to the Cutting’s statements is the use of the time-to-interaction concept, tti,
instead of ttc, for convenience, where tti means the remaining time until a collision and ttc was referred to
the increasing rate of the obstacles’ size perceived through the vision.
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In their model, at each time-step and for each agent, the visual perception is represented as a set of pixels
representing the static and moving obstacles from the agent’s point of view. For each of those pixels a pair
(α̇, tti) is computed. Then, the agent’s reaction to visual stimuli is twofold. First, for each pixel indicating
a future collision (α̇ close to zero), a turning is computed based on a threshold function (Figure 36). The
turning which avoids all the obstacles and deviates less from the goal is the chosen one. And second, when
the collision is imminent (i.e., there is at least a tti < 3s), the speed is adjusted according to the minimum
tti among all tti < 3s, so as to slow down the agent.

Figure 36 – Threshold function. Future collision is detected when the pair (α̇, tti) is below the function and
ttii > 0. The plot also illustrates that the lower the tti value, the higher the agent’s reaction.

Source: Ondrej et al. (2010).

Despite the good results reported, Ondřej’s model suffers from important drawbacks. These are mostly
consequence of a basic and unique response to the visual stimuli. Such features drastically limit the range
of possible solutions explored to solve risks of future collisions. For instance, the possibility of accelerating
to avoid an obstacle is not considered. Furthermore, collisions are often observed, since the model is purely
reactive. The agents only focus on avoiding the most imminent danger (most of the information generated by
the optical flow is discarded), neglecting the consequence of their action on other potential dangers. Finally,
although their model yields emergent patterns under specific traffic conditions (as expected), those patterns
often seem too strong and unnatural, probably because the agents tend to act similarly.

2.3 Final considerations

This chapter started with an overview of global and local path planning techniques. Their characteristics and
differences were briefly explained and discussed. Next, it was discussed the importance of going further on
planning trajectories by incorporating social behavior. Then, the important, and still underexplored, topic
of evaluation and validation was shortly overviewed. Finally, Ondřej’s model for simulating crowds with
synthetic vision was detailed for a better understanding.

In this thesis, it is presented an innovative model based on synthetic vision, which overcomes most of the
limitations presented by Ondřej’s model. Instead of systematically using the same rules to react to danger
of collision as in (ONDŘEJ et al., 2010), the proposed model performs locally optimal adaptations with
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respect to a cost function. This cost function is one of the core contributions of this work and is based on the
perceptual variables of the agent’s synthetic vision system. It considers both the risk of future collisions as
well as the relative heading toward the goal. Agents follow the gradient of the function to perform collision-
free locomotion up to their goal. Since it accounts for all visible obstacles and not only dangerous ones, the
resulting adaptation also accounts for the consequences of the motion change. This is the key contribution
of this work with respect to previous synthetic vision techniques.

In other words, the full set of possible adaptations is considered by the proposed method instead of
applying predefined reactions to future collisions. For this reason, in some sense the presented contributions
represent the same advance with respect to Ondřej’s model as the contribution of the first complete velocity-
based models (PARIS et al., 2007; BERG et al., 2008a) represented with respect to the early work of Reynolds
(REYNOLDS, 1999). In the next chapter, the proposed model is presented in details.



3 Gradient-based model

The objective of this work is to develop a new model for steering crowds based on the evaluation of a cost
function in real-time. The cost function is used to evaluate the agent’s current situation. This situation, in its
turn, is composed by the obstacles perceived by the agent as well as by its properties, such as its orientation
regarding its goal position and its current speed.

The first question explored by this work is: “Is it possible to define such cost function given an arbitrary
situation?”. As it is shown in the course of this chapter, this question is positively answered as soon as the
cost function is proposed in Section 3.4. After verifying that it was possible to define a cost function for
evaluating the agent’s current situation, a second question was raised “How could this function be used to
adapt the agent’s motion?”. The answer for this question is presented in Section 3.5. In short, the agent’s
motion adaption is modeled as a minimization problem, i.e., at each simulation’s time-step each agent will
try to minimize the cost function which evaluates its current situation.

The cost function defined in this chapter is written as a function of the agent’s velocity (vector) de-
composed in speed (scalar) and orientation. In other words, it is defined a two-dimensional function. The
proposed model is described as a gradient-based one given the need of working with the gradient of the
function for minimizing it.

This chapter is organized into six sections. It starts by introducing the new variables used for vision-
based collision avoidance. These new variables satisfy the requirements for vision-based locomotion stated
by Cutting’s work (1995). Next, it is made an overview of the model in Section 3.2 where the simulation’s
control loop is introduced as well as the mathematical characterization of the agent’s state. This section is
followed by three sections which detail each phase of the simulation’s control loop:

Perception (Section 3.3) describes the agent’s visual perception;

Evaluation (Section 3.4) introduces the cost function and describes how it evaluates the perceived infor-
mation; and

Action (Section 3.5) describes how the agent’s motion is adapted according to the cost function’s gradient.

Final considerations are draw in the last section.

3.1 Variables for vision-based collision avoidance

It is acknowledged by the literature, as it was shown in Chapter 2, that the visual perception has an important
role on locomotion. Moreover, Cutting’s work (1995) states that humans, when walking, are successively
answering two questions: “Will a collision occur? ” and “When will a collision occur? ” And those questions
are answered resorting to two indicators in the optic flow (α̇ and ttc, respectively).

For the proposed model, two quantities are defined to answer those questions and to act analogously to
the pair (α̇, ttc). Considering two agents moving at constant velocity, the four situations depicted in Figure
37 can be observed. If they are converging, the distance between them will decrease and at some point, they
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will reach the minimum distance between them (figures 37 (a) and (b)). Otherwise, if they are diverging,
the distance will only increase (Figure 37 (d)). And, finally, if their motion is parallel, that distance will
remain constant (Figure 37 (c)). In the situation of convergence, the minimum reachable distance gives a
hint of a possible collision. In this work, this minimum distance is referred to as distance at closest approach
(or dca). A potential collision is predicted if dca is positive and smaller enough to make the agents’ body
envelopes intersect. The quantity dca answers the first Cutting’s question. Similarly to Ondřej’s work (2010),
a collision remaining time is computed to answer the second question. In this case, the remaining time to
reach the minimum distance, the so-called time to closest approach (or ttca) is computed. The terms ttca
used here and tti used by Ondřej might sound the same, but there is a difference between them. While both
quantities indicates a time to collision, Ondřej’s tti is just an approximation, whereas ttca represents the
exact remaining time to collision. The pair (dca, ttca) is used throughout this thesis to describe interactions
between agents and static and moving obstacles.

Figure 37 – These figures show four distinct situations with two agents. The top line illustrates the agents’
positions and velocities and the bottom line illustrates the distance between them over time,
if they maintain a constant velocity. Still in the bottom line, the green point represents the
pair (dca, ttca). (a) and (b) represent situations where the agents are converging. In (a), the
minimum distance between the agents (dca) is 0 at time 1, which represents a risk of collision,
and, in this case, the ttca is equal to 1 for the initial situation at the top. Whereas in (b), the
pair (dca, ttca) does not represent a risk of collision, since dca is greater than the sum of the
agents’ body radius. In (c), since the agents are moving in parallel, dca is constant (illustrated as
the green line) and ttca is undetermined. The situation in (d) shows the agents with a divergent
motion, in this case ttca is negative, i.e., dca lies behind the agents.
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3.2 Overview

The proposed approach is an agent-based approach. Agents are equipped with a synthetic vision system,
that allows them to perceive their environment, which consists of static and moving obstacles. This section
first provides an overview of the simulation loop controlling the agents’ motion according to their visual
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perception by means of a simulation example (Section 3.2.1). Then, the related mathematical formalism is
introduced in Section 3.2.2.

3.2.1 Control loop

The first contribution of this thesis is a new control loop to steer agents in crowded environments with static
and moving obstacles. Before introducing and examining the control loop, let us take a look at an example
of a simulation’s result, which is depicted in Figure 38. On the left of Figure 38, it is shown an environment
and the initial states of three agents that should move towards their goals. The current motion of agents
A and B presents a risk of collision in the future. By resorting to the proposed model, agent A changes its
linear trajectory and adapts its velocity in order to pass behind agent B (Figure 38 (right)).

Figure 38 – Example scenario. The left image shows the obstacles of the environment, the agents (A, B and
C) at their initial positions as well as their goals and velocities. Their current velocities raise a
risk of collision between agents A and B. The right image shows the trace of the collision-free
trajectories resulting from our vision-based control loop.

Source: the author.

This proposal has some resemblances to Kapadia’s model (KAPADIA et al., 2009b) given that both
approaches resort to a control loop for steering agents. In the latter case, the control is composed of a
sensory, affordance and selection phases. This could be associated to the perception, evaluation, action
phases introduced in this chapter. However, the resemblances end here. Kapadia’s perception phase is based
on egocentric circular discrete fields with a limited radius, in which agents must have a local representation
of the environment in the form of several scalar fields. Their model plans a local trajectory according to the
best affordance in the field resorting to unrealistic assumptions such as not taking into account occlusion
and a perception of 360◦. This is a very important contrast with the proposed model in which is intended to
more realistically simulate a human-like perception.

In the proposed model, agents are steered to reach their goals and to avoid collisions according to the
loop shown in Figure 39. The control loop is composed of three phases: perception, evaluation and action.
The complete 3-phase loop is performed for each time-step of the simulation and for each agent. A central
element of this loop is the agent’s synthetic vision system: a perceptual space which is a set of three 2-D
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matrices of pixels values (perceived obstacles, ttca map, dca map). Figures 40 (a), (b) and (c) illustrate those
three matrices for the perceptual space of agent A at the initial state of Figure 38 (left).

Figure 39 – The 3-phase control loop. Perception: the agent perceives the surrounding environment re-
sorting to its synthetic vision. Evaluation: the agent assesses the cost of the current situation.
Action: the agent takes an action to reduce the cost of the situation.

Source: the author.

The role of the perception phase is to project the visually perceptible obstacles of the environment to the
perceptual space. This step is similar to performing a graphical rendering of the scene from the agent’s point
of view. However, instead of rendering the texture and color of obstacles, pixels capture some geometrical
information: the time to closest approach (ttca) and the distance at closest approach (dca). The perception
phase is detailed in Section 3.3. Figure 40 (a) illustrates what agent A perceives of the surrounding obstacles
and agents, and figures 40 (b) and (c) show the ttca and dca maps.

The role of the evaluation phase is to estimate how ‘good’ the agent’s current velocity is, given the risk
of collision with the perceived obstacles and the alignment with the goal. That evaluation is made through
the definition of a cost function Ct, which consists of two components: the obstacles cost Co, which captures
the risk of collision based on the perceived matrices of ttca and dca; and the movement cost Cm, which
considers the task of reaching a goal based on the agent’s speed sa, orientation θa and angle with the goal
αg. The definition of this cost function is another important contribution of this work. The evaluation phase
is detailed in Section 3.4. Figure 40 (d) illustrates the Co associated with each pixel. The risk of collision
with agent B is well estimated as the corresponding pixels have a high cost.

The role of the action phase is to update the agent’s velocity to minimize the cost function Ct. To this
end, the partial derivatives of Ct with respect to the agent’s motion variables are computed and the locally
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Figure 40 – Images representing the vision of the agent A in Figure 38 (left). (a) Obstacles detected by agent
A for the situation. (b) and (c) show the time to closest approach (ttca) and distance at closest
approach (dca) for each perceived obstacle (blue encodes a low value, while red corresponds to
a high value). Obstacles with low ttca and dca convey a significant risk of collision, which leads
to high cost in (d). To solve the problem, the agent determines the partial derivatives of the
obstacles cost with respect to direction and speed ((e) and (f), respectively). Collision is avoided
by descending the gradient so as to reduce the cost. The resulting trajectories are shown in
Figure 38 (right).

Max

Min

(a) Perceived obstacles (b) ttca map (c) dca map

(d) Obstacles cost (e) Cost derivative
w.r.t. direction

(f) Cost derivative
w.r.t. speed

Source: the author.

optimal move is deduced. The action phase is detailed in Section 3.5. Figures 40 (e) and (f) illustrate the
partial derivatives of Co for each pixel.

The agent’s change of orientation and speed is determined through the collective information of the
gradient of the cost functions computed at each pixel. Thus, the values illustrated in figures 40 (e) and (f)
induced agent A to perform a left turn and to reduce its speed in order to avoid collision with agent B. A
small noise ε is added to the agent’s new direction θa so as to disrupt symmetry as shown in Figure 39.

3.2.2 Mathematical characterization of the agent’s state

The current state of an agent a is defined by its position pa, orientation θa and speed sa which are used to
compute its velocity vector va given by:

va = (vxa, vya) = (sa cos θa, sa sin θa) = sav̂a . (3.1)

These quantities and others which are used throughout the thesis are summarized in Table 1 and il-
lustrated in Figure 41. For the sake of simplicity, the parameters of the terms are omitted, for example,
va(sa, θa) would be more adequate to refer to va as well as dcaoi,a(poi,a,voi,a) and ttcaoi,a(poi,a,voi,a)

would be more adequate to refer to dcaoi,a and ttcaoi,a. Other simplifications can be found in the text and
they are appropriately referred when needed. A more detailed description of these quantities is given in the
following sections.

3.3 Perception: Acquiring information

The perception phase (see top left of Figure 39) consists in gathering, for each agent, information about the
surrounding environment. This is achieved by performing a graphical rendering of the scene from the agent’s
point of view. However, instead of rendering the visual aspect of the obstacles (e.g., color, texture, lighting),
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Table 1 – Notation description. Bold face notation represents vectors, otherwise the notation represents
scalar variables.

Symbol Description

t0 Current time-step.

Pa(t) Position of agent a at time t (2D point)

pa Current position of agent a (pa = Pa(t0))

va Velocity of agent a (2D vector)

sa Speed of agent a (sa = ‖va‖)

sacomf
Comfort speed of agent a

θa Orientation of agent a (angle measured with the x-axis)

αg Bearing angle with respect to the goal

Poi(t) Position of obstacle oi at time t (2D point)

poi Current position of obstacle oi (poi = Poi(t0))

voi Velocity of obstacle oi (2D vector)

voi|a Velocity of obstacle oi relative to agent a (2D vector)

poi|a Current position of obstacle oi relative to agent a

ttcaoi,a Time to closest approach between agent a and obstacle oi

dcaoi,a Distance between agent a and obstacle oi at the closest approach

Source: the author.

some kinematic properties are associated with each pixel. The agent’s synthetic vision is used to identify the
visible obstacles. The set of pixels through which an obstacle is detected (marked in red in Figure 40 (a))
composes the perceptual space O. In the perceptual space, each pixel is treated as an independent obstacle,
i.e., obstacles are abstracted as a set of pixels O = {oi}.

For each obstacle oi perceived by a given agent, the relative position poi|a and relative velocity voi|a are
computed as follows (see Table 1 for notations):

poi|a = poi − pa , (3.2)

voi|a = voi − va . (3.3)

Note that the velocity va is not extracted from the analysis of the visual flow. Instead, the velocity of visible
3-D obstacles is directly retrieved from the simulation state. To compute the velocity of the obstacle’s part
which corresponds to the pixel, GPU interpolation is used, as will be described in Section 4.1. This approach
allows treating objects of arbitrary shapes where different parts of the object move with different velocities.

poi|a and voi|a allow us to deduce ttcaoi,a and dcaoi,a (figures 40 (b) and (c), respectively). Assuming
that the relative motion of a pixel is constant, ttcaoi,a quantifies the remaining time before agent a reaches
the minimum distance to the obstacle oi; and dcaoi,a is the distance between the agent and the obstacle at
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Figure 41 – Illustration of the variables used to model interactions.

Source: the author.

the time of the closest approach.

Knowing that the squared distance, D2, between agent a and obstacle oi at time t is given by:

D2(t) = ‖poi|a + t voi|a‖
2 , (3.4)

the time to closest approach (ttcaoi,a) between agent a and obstacle oi is given by the following equation:

d

dt
D2(ttcaoi,a) = 0 , (3.5)

where
d

dt
D2(ttcaoi,a) = 2

(
poi|a + ttcaoi,a voi|a

)
· voi|a . (3.6)

By solving Eq. (3.5), ttcaoi,a is given by:

ttcaoi,a =


t ∈ R : voi|a = (0, 0)

−
poi|a · voi|a
‖voi|a‖2

: voi|a 6= (0, 0)
, (3.7)

where t is any time value belonging to R. Once the value of ttcaoi,a is known, the dcaoi,a can be easily
computed:

dcaoi,a = ‖dcaoi,a‖ (3.8)

=
√
D2(ttcaoi,a) (3.9)

= ‖poi|a + ttcaoi,avoi|a‖ , (3.10)

given that x2 = x · x = ‖x‖2.

In Figure 40, the maps are encoded using a color code in which blue represents a value close to zero and
red represents a large value. Because we assume a linear motion and the agent is oriented parallel to the right
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wall (see Figure 38 left), the dca of the agent with respect to the right wall is constant. The corresponding
ttca, on the other hand, increases with the distance from a point on the wall to the agent.

The ttca and dca maps, along with the quantities defining the agents’ motion (i.e., the speed, sa; the
orientation, θa; and the angle with respect to the goal, αg) allow a full characterization of the current
situation. This information is thus passed to the evaluation phase, which is described in detail in the next
section.

3.4 Evaluation: A cost function to evaluate risk of collision

The goal of the evaluation phase (top right of Figure 39) is to estimate the risk of collision with obstacles
while maintaining the agent heading toward the goal. To this end, for each agent a, we define a cost function
Ct composed of two terms:

Ct = Cm + Co , (3.11)

where the movement cost Cm accounts for whether or not the agent is heading towards the goal; and the
obstacles cost Co evaluates the importance of risk of collision with obstacles. In the following sections, we
give the details regarding Cm and Co. Here, once again, the parameters of the functions were omitted for the
sake of simplification. What is important to know is that those functions are written in terms of sa and θa,
which allows us to compute their gradients with respect to these terms which compose the agent’s velocity.
Another simplification made was to drop the index referring to the agent, then, from here on Ct, Cm and Co
are referring to Ct,a, Cm,a and Co,a, respectively.

3.4.1 Movement cost

The movement cost function Cm is defined so that it is minimal when the agent is heading towards the goal
at its comfort speed:

Cm = 1− Cα + Cs
2

, (3.12)

where

Cα = exp

(
−1

2

(
αg
σαg

)2
)

, (3.13)

Cs = exp

(
−1

2

(
sa − sacomf

σs

)2
)
, (3.14)

αg and sa are the function arguments and σαg
and σs are parameters used to adapt the shape of the cost

function.

Cm is thus defined as a sum of two Gaussians functions (equations (3.12), (3.13) and (3.14)). The width
of both Gaussians can be independently controlled through σαg and σs. A plot of the movement cost function
with σαg = 2 and σs = 3 is shown in Figure 42.

As it will be detailed in Section 4.2, changing these parameters will directly play on the agents’ avoidance
strategy, i.e., their preference to adapt their speed or their orientation to perform collision avoidance.

3.4.2 Obstacles cost

The obstacles cost Coi,a accounts for the risk of collision between agent a and each perceived obstacle oi. This
cost is high when both the distance at the closest approach dca (which indicates an existing risk of collision)
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Figure 42 – Plot of the movement cost function Cm (Equation 3.12) with σαg
= 2 and σs = 3.

Source: the author.

and the time to closest approach ttca (which indicates how imminent the collision is) have low values. Coi,a
is defined as a two-dimensional Gaussian function:

Coi,a = exp

[
−1

2

((
ttcaoi,a
σttca

)2

+

(
dcaoi,a
σdca

)2
)]

, (3.15)

where ttcaoi,a and dcaoi,a are the function arguments and σttca and σdca are parameters used to adapt the
shape of the function. σttca controls avoidance anticipation time, whereas σdca controls the distance the agent
must keep from obstacles. A plot of the obstacles cost function with σttca = 2 and σdca = 0.3 is shown in
Figure 43 (with these parameters, the cost is high only when dca is low).

Figure 43 – Plot of the obstacles cost function Co (Equation 3.15) with σttca = 2 and σdca = 0.3.

Source: the author.
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Let us recall that the obstacle oi corresponds to the obstacle seen by agent a through the pixel pi (see
Section 3.3). However, agent a can detect several obstacles from its visual flow (one for each pixel). The
costs Coi,a of each obstacle are combined by simply averaging the cost of all the visible obstacles, such that:

Co = Co,a =
1

n

n∑
i=1

Coi,a , (3.16)

where n is the number of visible obstacles.

Figure 40 (d) shows the obstacles cost for the situation depicted in Figure 38 (left). Note that the pixels
for which the cost is high (marked in red in Figure 40 (d)) correspond to those which have a low value for
both ttca and dca (i.e., marked in blue in figures 40 (b) and (c)).

3.5 Action: Gradient descent

Each agent aims at moving toward its goal while avoiding some risk of collision with obstacles. As the cost
function Ct models these two criteria, agents continuously adapt their velocity in order to locally optimize
the cost function Ct. Technically, this is efficiently done by computing the gradient of Ct and by updating
the agent’s velocity to follow the gradient (steepest descent). This operation is repeated at each time-step.

The gradient descent method uses the information provided by the gradient of a function to reach a local
minimum. Given a function F (x), defined and differentiable, and an initial guess xn, the method says this
function decreases fastest if one goes from xn in the direction of the negative gradient of F at xn, ∇F (n).
Thus, it can be defined:

xn+1 = xn − λn∇F (xn), n ≥ 0 , (3.17)

where λn is the size of the step which can change at every iteration. The sequence should converge to a local
minimum.

Assuming that an obstacle’s motion is constant and given that the gradient of the cost function ∇Ct
only depends on the agent’s motion variables (sa, θa), the agent’s new motion, given by (s

(new)
a , θ

(new)
a ), is

thus computed by giving a step of size λn such that:

(s(new)
a , θ(new)

a ) = (sa, θa)− λn∇Ct(sa, θa) + (0, ε) , (3.18)

where a small noise value ε ∼ U(−0.1, 0.1) is added to disrupt symmetric situations.

The λn value can have a strong impact in the optimization process, and it is thus worth discussing it
before continuing. A too small λn might make the optimization take a long time to converge, whereas a too
large one might make it diverge. Moreover, the ideal λn might not be a fixed value, but instead a value which
is adapted according to the characteristics of the function we wish to minimize. There are ways of adapting
the step size to assure convergence. The most straightforward solution (CAUCHY, 1847) is to perform a
line search, choosing a step size which minimizes the cost function. Nevertheless, evaluating the proposed
cost function for a set of steps is impractical, because it would require to render the agent’s vision for each
step size evaluated. Another known solution, proposed by Barzilai and Borwein (1988), defines an adaptive
step size by approximating the secant equation. This solution requires the evaluation of the current and
the previous steps. However, it is also not applicable for the proposed cost function, because the proposed
function is changing every step according to the number of pixel in the agent’s vision (Equation (3.16)).
Therefore, evaluating the current step with the previous does not make sense. Finding the correct adaptive
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step size can thus be cumbersome in the context of our problem. The computational cost required for this
type of solution could have a very negative impact in the model performance, while the benefits from such
an approach would probably be very limited. This idea is confirmed by the experiments made which show
that using a the fixed value of λn = 1 yields good results. Nevertheless, future research works could aim at
solving the problem of efficiently finding an adaptive step size.

Then, ∇Ct is evaluated as follows:

∇Ct =

[
∂Ct
∂sa

∂Ct
∂θa

]
(3.19)

=

[(
∂Cm
∂sa

+
∂Co
∂sa

) (
∂Cm
∂θa

+
∂Co
∂θa

)]
. (3.20)

Note that the partial derivatives of both Cm and Co can be explicitly evaluated as detailed in the Appendix A.
The values of the partial derivatives of the obstacles cost function Coi,a, for the situation in Figure 38 (left),
can be visualized in figures 40 (e) and (f). In those images, blue represents a negative value, green a value
close to zero, and red a positive value. Since most of the obstacles in Figure 40 (e) with non-zero value have
a blue color, the agent will tend to turn left. In Figure 40 (f), the obstacles have mostly a red color, causing
the agent to reduce its speed.

3.6 Final considerations

In this chapter, the proposed model was presented and detailed. The new variables for vision-based collision
avoidance were first introduced. Then, it was defined a control loop composed of three phases: perception,
evaluation and action. This loop tries to mimic the real human perception/action loop. In the perception
phase the agent’s visual information is acquired. The following phase uses this information to evaluate the
current situation of the agent, by resorting to cost functions. Finally, in the action phase, the gradient descent
method is used to minimize the cost function by adapting the agent’s velocity. The model represents a great
advance when compared to the previous one (ONDŘEJ et al., 2010) with respect to the use of the visual
information. Here, the entire agent’s visual information is taken into account, and moreover, the evaluation
of the gradient of the cost function provides the nearly optimal movement adaptation.

In the next chapter, the algorithm developed for the proposed model is described as well as the technical
aspects are discussed.





4 Implementation and parameterization

This chapter starts by describing in details the algorithm developed for the proposed model as well as the
technical aspects related to this implementation (Section 4.1). In the following section, the influence of each
parameter of the model is analyzed. This analysis is followed by the description of a strategy for setting up
the model’s parameters in order to fit global features observed in experimental data.

4.1 Implementation

4.1.1 Gradient-based model for agents equipped with synthetic vision

Algorithm 1 shows a pseudocode of the proposed approach. It consists of two successive loops: computing
Ct and its gradient ∇Ct,a for each agent a (lines 1 to 19); and a second loop to update the state of the agents
in terms of ∇Ct,a (lines 20 to 22).

Algorithm 1 Gradient-based model implementation.
1: for all agents a do
2: pa,va ← get_state(a)
3: camera← set_up_camera(pa,va)
4: perc_space← render_environment()
5: for all pixels pi ∈ perc_space do
6: if has_visible_obstacle(pi) then
7: oi ← get_obstacle(pi)
8: poi ,voi ← get_motion(oi)
9: poi|a,voi|a ← relative_motion (pa,va,poi ,voi)

10: ttcaoi,a ← compute_ttca
(
poi|a, voi|a

)
11: dcaoi,a ← compute_dca

(
poi|a, voi|a, ttcaoi,a

)
12:

(
∂Coi,a
∂sa

,
∂Coi,a
∂θa

)
← grad_pixel_cost (ttcaoi,a, dcaoi,a)

13: perc_space (pi)←
(
∂Coi,a
∂sa

,
∂Coi,a
∂θa

)
14: end if
15: end for
16: ∇Co =

(
∂Co
∂sa

,
∂Co
∂θa

)
← grad_obstacle_cost (perc_space)

17: ∇Cm =

(
∂Cm
∂sa

,
∂Cm
∂θa

)
← grad_movement_cost (∆s, αg)

18: ∇Ct,a ← grad_cost (∇Co,∇Cm)
19: end for
20: for all agents a do
21: va ← adapt_agent_motion (∇Ct,a)
22: end for

The first loop fetches the agent’s current position pa and the current velocity va (line 2) which are then
used to set up its virtual camera (line 3). In line 4, environment obstacles are rendered to the perceptual
space (a texture). The loop over perceived pixels starts in line 5. If an obstacle oi is visible through pixel pi
(line 6), the corresponding obstacle is retrieved and its relative motion is deduced (lines 7 to 9). In line 10,
ttcaoi,a is computed according to Equation (3.7). Simillarly, in line 11, Equation (3.10) is used to compute
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dcaoi,a. The partial derivatives of the current obstacles cost are then computed in line 12. Next, the gradient
of the obstacles cost (line 16), the gradient of the movement cost (line 17) and the gradient of the total cost
(line 18) are computed. The second loop (lines 20 to 22) updates the simulation by iterating and adapting
the motion of each agent, using the gradient ∇Ct and Eq. (3.18).

4.1.2 Technical aspects

The algorithm implementation takes place in CPU and GPU. Per pixel operations in lines 5 to 15 are
executed in parallel: they were implemented in OpenGL Shading Language (GLSL). More precisely, lines 7
to 9 were implemented in the vertex shader while lines 10 to 13 were implemented in the fragment shader.
The computation of the gradient of the obstacles cost (line 16) is suitable for parallelization, but for now just
a CPU version was implemented. The rest of the algorithm was implemented using C++.

As for the camera set up, it has been used the same settings as (ONDŘEJ et al., 2010): a field of view
of 150◦, a height of 80◦, an orientation towards the ground with an angle of −40◦(so that the upper clipping
plane is horizontal), and a resolution of the vision texture of 256 × 48 pixels. The camera is positioned
according to agent’s eye level and oriented according to its motion direction.

The agents also have been represented in a similar fashion to (ONDŘEJ et al., 2010) so as to enable
comparisons: cones with 0.3m of radius and 1.7m of height. Cones are used because of the simplified geometry
and the similarity to human shape in the sense of usually being wider at the base than at the top. Cones
also allow the agent to see behind each others ‘shoulders’. However, the proposed approach allows agents
and obstacles to have arbitrary shapes and sizes, as it is shown in Chapter 5.

In the next section, the role and influence of each model’s parameter are detailed. A data-driven setup
for fitting parameters is also presented.

4.2 Model parameterization

In Chapter 3, the cost function was introduced as a composition of Gaussian functions (equations (3.11),
(3.15), (3.13) and (3.14)). The shape of that function depends on four parameters. The influence of these
parameters on the agents’ behavior is discussed in Section 4.2.1, where it is shown that they allow to control
for each agent: the speed adaptation, the orientation adaptation, the distance to keep from obstacles and the
anticipation to motion adaptation. These parameters can be defined empirically, but Section 4.2.2 details
how to define a set of parameters according to real data obtained from experiments.

4.2.1 Influence of model parameters

The proposed algorithm has four parameters: σttca and σdca for the obstacles cost function (Equation (3.15));
and σs and σαg for the movement cost function (equations (3.13) and (3.14)). Their values can be intuitively
adjusted by users. Indeed, σttca directly affects the agent’s anticipation time whereas σdca modulates the
minimum distance to obstacles. Their effects on avoidance trajectories are shown in Figure 44. Increasing
σdca results in a larger minimum distance between the agents whereas increasing the σttca results in an earlier
motion adaptation to avoid collisions.

The movement cost parameters have direct impact on avoidance strategies. Greater σs values result in
a preference for adapting speed in order to avoid collisions, whereas, on the other hand, larger σαg

values
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Figure 44 – Influence of the parameters on the agents’ motion. Variation of the obstacles cost function’s
parameters σttca and σdca (Equation (3.15)). Images on the left show trajectories and images on
the right show the Co plots.

(a) σttca = 2 and σdca = 0.6

(b) Learned parameters (Table 2): σttca = 1.8 and σdca = 0.3

(c) σttca = 0.3 and σdca = 0.3

Source: the author.

favors the agents’ reorientations. This effect is illustrated in Figure 45: eight agents are initially disposed
in a circle and have to reach the diametrically opposite position. The top row (Figure 45 (a)) corresponds
to a large value for σs and a small value for σαg

(respectively 3 and 1): speed adaptation is favored over
changes of direction. Trajectories are mainly rectilinear, some agents wait and give way to others rather
than going around the obstacles (speed is color coded). The bottom row (Figure 45 (c)) corresponds to the
opposite configuration: a large value for σαg

and a small value for σs. It can be seen from the depicted
trajectories that agents tend to prefer an adaptation of the motion direction. Figure 45 (b) shows results
for an intermediate configuration (using the learned parameters of Table 2 discussed in the next section), in
which the agents adapt both their speed and direction to avoid collisions. These four parameters discussed
here can be set differently for each agent, allowing the simulation of heterogeneous agents.
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Figure 45 – Influence of the parameters on the agents’ motion. Variation of the goal cost function’s param-
eters σαg

and σs (equations (3.13) and (3.14)). Images on the left show trajectories and images
on the right show the Cm plots.

(a) σs = 3 and σαg
= 1

(b) Learned parameters (Table 2): σs = 3.3 and σαg
= 2

(c) σs = 1 and σαg
= 3

Source: the author.

4.2.2 Data-based parameters setup

An objective strategy to find the parameters’ setting consists in fitting the model to experimental data.
To this end, the framework developed by (WOLINSKI et al., 2014) to learn the model’s parameters from
experimental data was used. The Wolinski’s framework allows using several different metrics for comparing
the trajectories synthesized by the model and those experimentally measured. The motion data used in this
work is illustrated in Figure 46. In that experiment, six people were positioned on the border of a circle and
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needed to reach the diametrically opposite position.

Figure 46 – Photo of the experiment where six people were positioned on the border of a circle and needed
to reach the diametrically opposite position.

Source: MimeTIC team at INRIA-Rennes Bretagne Atlantique.

For comparing real and simulated trajectories, it was used the progressive difference metrics, a variant
of Guy’s metrics (GUY et al., 2012) which is prone to capture global motion features and avoids overfitting
problems. Table 2 shows the values of the model’s parameters after calibration. The results depicted in
Figure 47 show that, after calibration, our model produces trajectories with motion adaptations similar to
the real data. Although trajectories do not exactly fit (as expected, given the used metrics), global features
are similar: some agents adapt its direction, while others tend to go in a straight line; some accelerate, and
others decelerate.

Table 2 – Model’s parameters learned from data.

σαg σs σttca σdca scomf

Value 2.0 3.3 1.8 0.3 1.5

Variance 0.9 0.5 0.3 0.0 0.1

Source: the author.

4.3 Final considerations

In this chapter, the technical aspects of the proposed model were presented. Moreover, the influence of
each parameter of the model was discussed and examples of resulting trajectories for different parameters
setting were shown as well as the plots of the obstacles cost and movement cost functions. Then, Wolinski’s
framework (2014) was used to calibrate the model according to experimental data.
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Figure 47 – Comparison of experimental trajectories (a) with the trajectories generated by the proposed
model after fitting the model to data (c). It can be seen that, after calibration, the agents
are able to follow the experimental data. Nevertheless, for some particular cases, a different
parameter setting might be required.

(a) Experimental trajectories (b) Our model trajectories
Source: the author.

Now that the model was introduced and the role of its parameters was defined, it is possible to present
and to discuss the results obtained with it. This is done in the next chapter where the model is compared
with other important approaches in several challenging scenarios.



5 Results

In this chapter, the results obtained with the proposed model are presented and discussed. For evaluating the
new approach and for making comparisons among different approaches, several challenging scenarios were
defined. Those scenarios are described as follows:

Room, illustrated in Figure 40. Three agents move in a room. This is the simple test-case example used
to introduce our technique.

S-corridor, illustrated in Figure 48 (a). Five agents are placed at the beginning of a sinuous corridor.
Their goal is set at the corridor’s exit. Note that no intermediary waypoint is set.

Corridor, illustrated in Figure 48 (b). Agents are set in two opposite groups going to opposite directions
in a corridor.

Opposite, illustrated in Figure 48 (c). Agents are set in two opposite groups going in opposite directions.

Columns, illustrated in Figure 48 (d). Six static obstacles (columns) are added to the Opposite scenario.

Multi-obstacle, illustrated in Figure 48 (e). Groups of agents need to traverse scenario composed of several
obstacles.

H-corridor, illustrated in Figure 48 (f). A group of agents traverses the corridor from left to right. During
the traversal the agents need to avoid moving obstacles crossing the corridor vertically.

Crossing, illustrated in Figure 48 (g). Agents are set in two groups which must cross orthogonally.

1-D Periodic Corridor, illustrated in Figure 48 (h). Agents are placed in a line in a periodic corridor,
i.e., when an agent reaches the end of the corridor it reenters at the beginning.

Circle, illustrated in Figure 48 (i). Agents are set on the border of a circle and need to reach the diamet-
rically opposite position.

Some of those scenarios are changed during the chapter for experimental purposes. For example, the Opposite
scenario is tested also with random initial positions to disrupt symmetry.

The results are described through the following sections. In sections 5.1 and 5.2, qualitative and quan-
titative evaluations are performed, respectively. In the following section, the performance is measured and
a comparison between the models based on synthetic vision is made. Finally, some considerations are draw
in the last section. The companion video1 shows the corresponding animations with moving 3-D characters.
The proposed model is compared with the following models:

OSV The original approach based on synthetic vision proposed by Ondřej et al. (ONDŘEJ et al., 2010),
which was selected as a representative of previous vision-based algorithms;

1 http://1drv.ms/1Bgd6JX
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Figure 48 – The initial configuration of each scenario.

(a) S-corridor (b) Corridor (c) Opposite

(d) Columns (e) Multi-obstacle (f) H-corridor

(g) Crossing (h) 1-D Periodic Corridor (i) Circle

Source: the author.

RVO2 A broadly used algorithm (and therefore an excellent benchmark model), which is representative of
velocity-based avoidance techniques (BERG et al., 2011).

It was also compared with a particle-based model (HELBING et al., 2000). However, since its results
were consistently worse than those of OSV and RVO2, the results were not reported. Ideally, the model could
be compared to many other techniques, but only the most relevant techniques to compare with were retained
here.

5.1 Qualitative evaluation

Synthetic vision enables processing static and dynamic obstacles of any shape in the same fashion: everything
is abstracted as visible pixels moving relatively to each agent. In Figure 49, for example, it is shown a
simulation in the Circle scenario with ellipse-shaped agents, which are more similar to the human shape.
The highlight in Figure 49 shows how the space for maneuvers is affected by the shape of the agents by using
this representation of cones with a ellipsoidal base. In that case, if the agents were circular-shaped, the blue
agent would not fit between the red ones.

This process of abstracting the environment into pixels also implicitly filters invisible obstacles and gives
priority to nearer obstacles (of equivalent size) as they are represented by more pixels. These properties are
illustrated by the Room, Columns, S-corridor, Corridor, H-corridor and Multi-obstacle scenarios which mix
static obstacles and moving agents. The S-corridor scenario (Figure 50) is particularly challenging because
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Figure 49 – Circle scenario with ellipse-shaped agents. This example illustrates the ability of the pro-
posed model of representing agents of any shape. The highlighted part shows how the space for
maneuvers can be increased by using another kind of representation like this.

Source: the author.

Figure 50 – Comparison of the results for the S-corridor scenario. The agents must traverse the corridor so
as to reach their goals. Trajectories were synthesized without resorting to a global path planner.
Note that only for the proposed model (a) the agents could reach the end of the corridor. In the
other models ((b) and (c)) most of the agents got stuck at the first turn.

(a) Proposed model (b) OSV (c) RVO2

Source: the author.

no intermediary waypoint is defined for agents. It illustrates what the new proposed control loop brings in
terms of motion quality: agents are perfectly able to find a locally optimal trajectory sketched by the shape of
the corridor. None of the other techniques tested on this scenario were able to correctly steer agents through
the environment without global motion planning.

The achieved improvements in terms of quality can also be visually assessed in the Corridor (Figure 51),
Opposite (Figure 52) and Columns scenarios (Figure 53). In the Columns scenario, more specifically, the
presence of obstacles forces the agents to reorganize themselves. The proposed model and OSV produce
plausible emerging patterns: traffic is segregated in lanes according to the moving direction and the position
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Figure 51 – Comparison of the results for the Corridor scenario. The groups of agents must traverse the
corridor so as to reach their goals at the opposite side. In (b) and (d) lanes are kept and agents
pass close to each other, while in (c) strong patterns are observed where the groups keep a large
distance from each other.

(a) Initial configuration (b) Proposed model (c) OSV (d) RVO2

Source: the author.

of the columns, yielding a pattern which is easily observed in the real world. However, the results of OSV
model show that agents keep a very large distance to other agents moving in the opposite direction. This
results in too strong emergent pattern signatures and unnatural interaction distances. The proposed model,
on the other hand, searches for the locally safest moves, which prevents our animation from displaying too
strong patterns and agents at too close or too large distances. It is able to perfectly adapt agents motion to
the scenario by merging lanes of agents moving in the same sense. As for the RVO2 model, it makes agents
perform the strictly required amount of maneuvers to avoid collision. Such a simplistic approach does not
seem sufficient to solve this type of scenario: some agents agglomerate behind the columns and the expected
lanes pattern does not emerge. The histogram in Figure 54 also suggests that the proposed model deals
better with this scenario: most of the agents move at a speed close to their comfort speed (1.5m/s) and,
unlike for the other models, there are no agents moving very slowly or almost stopped.

In the H-corridor scenario (Figure 55), a group of controlled agents (in red) has the goal of horizontally
traversing a corridor. However, two groups of non-controlled agents (in green) vertically cross the corridor,
temporarily obstructing the controlled agents’ path. To reach their goal without collisions, some of the agents
must stop and wait for the moving obstacles to pass. Figure 55 shows that the three models provide clearly
different results. For OSV, the agents keep a very large distance to the walls, forming a single lane at the
center of the corridor. The agents are able to wait for the moving obstacles to pass when needed, although
some of them are dragged by the flow of non-controlled agents. As for RVO2, the agents get too close to the
moving obstacles, which makes some of them be dragged. Finally, for the proposed model, most of the lanes
are kept, the agents do not get too close to the moving obstacles and some agents accelerate to anticipate
the obstacles’ movement. Visually, both results (Columns and H-Corridor) are more satisfying as shown in
the video2, which corroborates the initial qualitative evaluation.

Finally, in theMulti-obstacle scenario (Figure 56) the differences between the models are also highlighted.
For OSV, the agents avoid passing too close to each other, then the trajectories are sparser. Whereas for

2 http://1drv.ms/1Bgd6JX
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Figure 52 – Comparison of the results for the Opposite scenario. The groups of agents must reach their
goals at the opposite side. In both aligned (top) and unaligned (bottom) situations lanes of
agents can be observed for all the models. OSV produces strong patterns, the lanes are very far
from each other. In RVO2, the agents do not respect personal space. In our model, the agents
do not spread as OSV and respect personal space at same time.

(a) Initial configuration (b) Proposed model (c) OSV (d) RVO2

(e) Initial configuration (f) Proposed model (g) OSV (h) RVO2

Source: the author.

RVO2, two things can be observed: first, the trajectories are too rectilinear which means the agents do not
adapt direction too much; and, second, the agents cannot anticipate and avoid a traffic jam of occurring at
the center. The proposed model is a mid-term, where the agents do not keep unrealistic distances from each
other neither fall into traffic jams.

5.2 Quantitative evaluation

5.2.1 Microscopic features

In this section, a microscopic evaluation of the tested methods is made, i.e., an evaluation based on the
individual behavior of each of the agents. To reach this goal, it was used the Wolinski’s framework introduced
in (WOLINSKI et al., 2014) so as to fit the models to a circle scenario (with 12 people) available with the
framework. To measure the distance between the simulations and the read data, the progressive difference
metrics (a fast variant of the entropy metrics by (GUY et al., 2012)) was used, which is especially interesting
since it captures the global motion characteristics instead of making agents follow exactly the real trajectories.
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Figure 53 – Comparison of the results for the Columns scenario. Similar to the Opposite scenario but with
columns. For OSV the strong patterns are present, but agents are still able to organize lanes and
to avoid the columns. In RVO2, the agents are not able to produce lanes and some get stuck
for a while when facing the columns. In the proposed model the lanes are still formed with no
emergence of a strong separation as in OSV.

(a) Initial configuration (b) Proposed model (c) OSV (d) RVO2

Source: the author.

Figure 54 – Histograms showing the distribution of the speed in the Columns scenario for the three tested
algorithms: the proposed model, OSV, RVO2.
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Source: the author.

The following scores were obtained: 0.26 for RVO2, 0.35 for OSV and 0.06 for the proposed gradient-based
model, where lower score means better performance.

5.2.2 Macroscopic features

The objective of the analysis made in this section is to quantify and compare global features of the trajectories
generated by the three tested models. Let us start by analyzing the traffic segregation phenomenon observed
for the Opposite scenario in the qualitative analysis. This phenomenon can be illustrated with the two
histograms of Figure 57. The left histogram shows the distribution of distances between nearest agents moving
in the same direction (red-red or blue-blue nearest agents). The right histogram shows the distribution of
distances between nearest agents moving in opposite directions (red-blue nearest agents). The proposed
approach is the one resulting into smallest differences between the two distributions. Visually, such result is
more satisfying as shown in the video3, which corroborates the initial quantitative evaluation.

3 http://1drv.ms/1Bgd6JX
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Figure 55 – Comparison of the results for the H-corridor scenario. The red agents want to reach their
goals which makes them move to the right. However, two obstacles, composed of non-controlled
agents (in yellow), traverse the flow of red agents. In the proposed model, agents anticipated the
motion of obstacles and stopped while the obstacles cross the corridor, then they started moving
again. In OSV, agents also waited but they formed a line to not get close to the walls. In RVO2,
agents stopped too late and some got lost and others were dragged by the obstacles.
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Source: the author.

Let us focus on the Crossing scenario shown in Figure 58, where two perpendicular flows of agents
must cross. The top row depicts the resulting trajectories for the proposed model, OSV and RVO2. It can
be clearly seen that the OSV model makes the agents cross at a very large distance, which makes them
disperse unnecessarily. RVO2, on the other hand, makes minimal adaptation in direction and speed, which
causes the agents to cross at very small and implausible distances. As for the proposed model, it provides
an intermediate solution where the agents tend to keep a natural distance between themselves (not too large
as OSV, not too close as RVO2). This feature is quantified by the distances histogram shown in Figure 59,
where the occurrences of large distance is dominated by the OSV model and the occurrences of distances
very close to zero are dominated by RVO2.

Still regarding Figure 58, it was performed a cluster analysis to quantify the emergence of 45◦ lanes
patterns as observed in real crowds (CIVIDINI et al., 2013). To achieve this goal, it was implemented the
clusters detection algorithm of (MOUSSAïD et al., 2012) which states that “two pedestrians belong to the
same cluster at a given moment of time if one of them is following the other”. The orientation of each
detected cluster is determined by fitting a line to its agents. The bottom row of Figure 58 shows the detected
clusters for a given step in the crossing scenario. The expected pattern is clearly well defined in the case of
the proposed model, where the 11 clusters were detected with an average slope of 45◦ and a small standard
deviation (±2◦). For OSV, 26 clusters emerged with an average slope of 32◦ and a high standard deviation
(±41◦). As for RVO2, it does not produce the expected pattern: the initial structure of agents is almost
unchanged after passing the crossing zone.
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Figure 56 – Comparison of the results for the Multi-obstacle scenario. The same global features observed
in the other scenarios are present in this scenario. In OSV, the agents keep a distance to moving
obstacles which seems to be too large, whereas in RVO2, the agents pass too close, and at some
point a traffic jam can be observed close to the center.

(a) Initial configuration (b) Proposed model

(c) OSV (d) RVO2

Source: the author.

Another way of quantifying global features of a model is to determine its Fundamental Diagram (FD)
(SEYFRIED et al., 2005), which measures the speed of the agents as a function of the density of agents in
a given area. The agents’ speed as a function of the density was measured using a 1-D Periodic Corridor
scenario (as depicted in Figure 48 (h)) that works similarly to the circular corridor used for experiments with
real people in (JELIĆ et al., 2012). In this 1-D case, the density is measured as ρ = n

p , where n is the number
of agents and p is the circle’s perimeter. Several experiments were performed with varying agents density
for the three tested models using the same parameters setting. The resulting FDs are shown in Figure 60,
as well as a FD issued from real data from (JELIĆ et al., 2012). It can be seen that, out of the three tested
models, the proposed model presents the most similar curve to the real data. In OSV, the speed is not highly
affected by the density, whereas in RVO2 sometimes the speed increases with the density and such behavior
is not observed nor expected in fundamental diagrams.

Finally, the circle example (Figure 61) shows the ability of the proposed technique to explore the full
range of reachable velocities to perform collision avoidance maneuvers. Reorientations are noticeable from
the agents’ trace, whereas speed variations are encoded in the trail color. The parts of the trails with a color
closer to red correspond to speed accelerations to pass in front of some other agents. Blue corresponds to



81

Figure 57 – Histograms showing the distribution of the distance to the nearest neighbor (NN) of the same
group and to the NN of the opposite group, in the unaligned Opposite scenario for the three
tested algorithms: the proposed model, OSV, RVO2.
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Source: the author.

parts of the agent’s path where the agent moved slower than its comfort speed. OSV reactions are limited
to turns to avoid future collisions and decelerations to avoid imminent impacts: this limited set of reactions
is clearly visible in this scenario. RVO2 does not handle well these highly symmetric situations: reachable
velocities are completely constrained and agents stop. Even when noise is added to such situations, the
simulation results into unnatural gathering of agents at very close distance in the center of the circle (see
the video4). Figure 62 shows the histogram of the agents’ speed for the circle scenario. The result confirms
that the proposed model is the single one which agents accelerate to avoid collisions. Moreover, the proposed
model is the one with a larger number of agents moving at a speed close to their comfort speed (1.5m/s) and
less slow agents (speed < 0.5m/s).

5.3 Performance

The simulations were performed on a MacBook with 2.13 GHz Intel Core 2 Duo processor, 4.0 GB of RAM,
NVidia GeForce 9400M graphics card with 16 CUDA cores and 256 MB of dedicated RAM. The algorithm
was written in C/C++ and OpenGL was used for graphics. Figure 63 (left), displays the average simulation
loop runtime compared with OSV on the Opposite scenario. Synthetic vision techniques cannot compete
with RVO2-like geometrical approaches, but still shows reasonable performances as it can run at 10 FPS
for 300 agents in a low-profile computer. Compared with OSV, the proposed technique performs a larger
amount of computations in GPU. However, it only needs a 2-channel texture to store the results (the two
partial derivatives), whereas OSV requires a 4-channel texture. This makes the GPU/CPU data transfer
time slightly faster for the proposed model. Moreover, it only process two texture channels in CPU whereas
OSV must process four. This is why, overall, both methods roughly exhibit the same execution time.

Synthetic vision algorithms manipulate large amounts of data (12288 pixels per agent for a 256 × 48

camera resolution, for example). The main bottleneck is the texture download from GPU to CPU. This can
be alleviated by downsizing the camera’s resolution. Figure 63 (right) shows the performance of the proposed
model for different camera resolutions in the Opposite scenario with 50 agents. Figure 64 shows the effect of

4 http://1drv.ms/1Bgd6JX
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Figure 58 – Results for the Crossing scenario. Two groups of unaligned agents moving orthogonally. The
images in the following columns show the groups of agents separated by flow (red goes to the
right and blue goes to the bottom) on the top and separated by clusters on the bottom for each
of the three tested models.
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resolution decrease on simulation results for the proposed model and OSV. Results show that the proposed
new technique is much less sensitive to this parameter. Visual differences in the trajectories can hardly be
observed even when reducing the original resolution by 93.75%. A special case of camera resolution is 256×1,
in which case the agent keeps a wide view (rightmost column of Figure 64). Finally, Figure 65 shows the
performance of the proposed model when varying the number of agents and the camera resolution. It is
noticeable that the more agents lesser is the influence of the camera resolution on performance.

5.4 Final considerations

The results presented in this chapter show the ability of the new technique proposed for local collision
avoidance. Moreover, it was demonstrated several improvements on the quality of trajectories over previous
representative works. Wolinski’s framework showed that the proposed model is more prone to reproduce
global features observed in real data. Also, the strong patterns observed in the other models are not present
here, as the agents in the proposed model distribute the space among them similarly regardless the obstacles’
flow.

Regarding only techniques based on synthetic vision some observations could be made. First, the pro-
posed technique is less sensitive to the camera resolution. And second, despite the additional computation
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Figure 59 – Histograms showing the distribution of the distance to the nearest neighbor (NN) of the opposite
group, in the Crossing scenario for the three tested algorithms: the proposed model, OSV,
RVO2.
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required, the proposed technique has similar performance compared with OSV.

In the next chapter, an overall discussion of the contributions of this work is made. It is followed by a
discussion about its current limitations whereas possible ways of solving these limitations are listed as future
work.
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Figure 60 – Results for the 1-D Periodic Corridor scenario. The image compares the fundamental dia-
gram (relation between density and speed) of the three tested models and real data.
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Figure 61 – Comparison of the results for the Circle scenario with symmetric (top) and noisy (bottom)
initial positions. The goal of the agents is to reach the diametrically opposed position. The
agents color encodes the speed: dark blue means the agent is stopped or moving slower than its
comfort speed; light green means the agent is moving at its comfort speed; and red means the
agent is moving faster than its comfort speed. Results are shown for the proposed model, OSV
and RVO2.

(a) Initial configuration (b) Proposed model (c) OSV (d) RVO2

(e) Initial configuration (f) Proposed model (g) OSV (h) RVO2

Source: the author.
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Figure 62 – Histograms showing the distribution of the speed in the Circle scenario for the three tested
algorithms: the proposed model, OSV, RVO2.
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Figure 63 – Performance comparison for the Opposite scenario. Left: different number of agents. Right:
different camera resolutions (50 agents).

Source: the author.
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Figure 64 – Impact of the camera resolution for our model and OSV. In our model the obstacles perception
and anticipation are only slightly affected, even using a 1-D camera resolution.

Camera resolution
256× 48 128× 24 64× 12 32× 6 16× 3 256× 1

Our model

OSV

Source: the author.

Figure 65 – Performance for the Opposite scenario varying the number of agents and the camera resolution.

Source: the author.





6 Conclusion

In this thesis, a new synthetic vision-based simulation algorithm is presented. The main contribution of this
work is a new steering scheme based on:

a) A cost function which evaluates the agents’ situation w.r.t. their target and risk of collision; and

b) A locally optimal gradient-descent scheme.

Vision-based approaches are interesting for many reasons and a particular motivation is to link with the
Neuroscience community (e.g., to decipher visual guidance of the human locomotion in crowds). The results
presented here show that high-quality trajectories can be generated and entertainment applications can be
aimed too. In particular, this new method prevents some known artifacts generated by previous ones as
demonstrated in the previous chapter. The contribution of this work is not a simple revisiting of vision-
based algorithms, it makes this method more robust, especially with its new mathematical foundations. The
new control scheme is more easily extendable to new behaviors and types of interactions between agents
by defining some corresponding cost functions. In addition, the proposed model has moved from a purely
reactive to a locally optimal steering of agents in complex situations mixing static and dynamic obstacles.

The simulations with the proposed model show a more human-like behavior than the other models. This
opinion is based on the fact that this model is able to more closely follow the experimental data than the
other models (see Section 5.3). Moreover, the model produces agent behaviors which are commonly observed
in the day-to-day life, but which the other models cannot reproduce, such as accelerating to avoid collisions.
Finally, the presented histograms indicate that, in the proposed model, agents keep a more natural distance
between them, which reduces the strong and unrealistic patterns produced by other models.

The quality of the results can be partially explained by the use of perceptual variables to answer the two
questions humans put to achieve a collision-free navigation (CUTTING et al., 1995):

1. Is a collision going to occur? (dca)

2. If so, when is it going to occur? (ttca)

Furthermore, the use of a control loop which tries to emulate the information flow in real humans locomotion
also helps explaining these results.

Limitations

Despite the good results obtained, some limitations of this approach can be pointed out. Firstly, we
need to look for a way of evaluating how closely is the synthetic perception/action loop to the real human
perception/action loop. However, the definition of the real human perception/action loop in crowds is still
an open problem and thus there are no available metrics to perform such an evaluation. Probably some
cooperation between the fields of Crowd Simulation and Cognitive Science would be required to cope with this
problem. Secondly, although the parameters’ setting has been kept intuitive and the number of parameters
has been kept low, a single parameter setting which fits all types of situations could not be found at this stage.
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Some parameters had to be manually adjusted for different contexts. A typical example is the anticipation
time which must be reduced when density increases. Nevertheless, several examples of the same kind could
be generated with the same parameter set (e.g., Opposite, Columns and Crossing). Note that this statement
is true for most advanced simulation algorithms. Thirdly, the proposed cost function is limited to collision
avoidance and goal reaching behaviors. Finally, this method is not able to deal with complex navigation in
large environments and should be integrated to a global motion planner.

Future work

Future work aims at directly tackling those limitations. Regarding the variation of parameters with
different scenarios, the focus of future research should be put on identifying the current situation and selecting
the appropriate parameters setting, rather than trying to find a single parameters setting which would work
well in all situations (and which might not exist). To this end, one could resort to machine learning and
image processing techniques, so as to classify the situations and learn their respective parameters based on
features of the visual flow. Alternative frameworks for parameter optimization can also be considered, such
as SteerFit (BERSETH et al., 2014).

To extend the proposed method with a richer set of behaviors, as well as to handle larger sets of contexts
such as high density ones, different cost functions can be defined and combined. As an example, instead
of ttca and dca, a cost function for ‘high-density’ contexts could be based on the pressure agents perceive
from other agents in contact with them, or the simple distance they keep to the others. Another example
is interactions with more dynamic obstacles like cars, for which a notion of collision energy could be added
to avoid more carefully the most threatening obstacles. With such future extensions, it is expected that the
idea of perceptual models for crowd simulation can be more generally developed and the relevance of the
subtleties of human behaviors in such contexts can be provided.



APPENDIX A – Gradient of the cost function

Computing the gradient

∇Ct =

[
∂Ct
∂sa

∂Ct
∂θa

]
(A.1)

implies computing the partial derivatives given by:
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The values of the partial derivatives of Cm (see Eqs. (A.2) and (A.3)) are given by:
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To determine the values of the partial derivatives of Co (see Eqs. (A.4) and (A.5)) the following quantities
must be computed:
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∂sa

= −Coi,a
(
∂ttcaoi,a
∂sa

ttcaoi,a
σ2
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+
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(A.8)
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ttcaoi,a
σ2
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+
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∂θa

dcaoi,a
σ2
dca

)
. (A.9)

In the next two sections of this appendix, we show how to compute the partial derivatives of ttcaoi,a and
dcaoi,a required to evaluate Eqs. (A.8) and (A.9).





APPENDIX B – Partial derivatives of ttcaoi,a

Let us assume that voi|a 6= (0, 0) in which case the ttcaoi,a is given by:

ttcaoi,a = −f
g

(B.1)

where
f = poi|a · voi|a (B.2)

g = voi|a · voi|a . (B.3)

The partial derivative of ttca with respect to a hypothetical argument x is thus:

∂ttcaoi,a
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= −
∂f
∂x

g
+

∂g
∂x f

g2
. (B.4)

Let us recall that:
voi|a = (vxoi − sa cos θa, vyoi − sa sin θa) . (B.5)

Let us also notice the following equalities:

∂ voi|a

∂θa
= sa (sin θa,− cos θa) = (vya,−vxa) (B.6)

and
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The partial derivatives of g are given by:
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and
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Using Eqs. (B.4), (B.8) and (B.10) we can compute:
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Using Eqs. (B.4), (B.9) and (B.11) we can compute:
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APPENDIX C – Partial derivatives of dcaoi,a

Let us recall the expression of dcaoi,a:

dcaoi,a = ‖dcaoi,a‖= ‖poi|a + ttcaoi,avoi|a‖

= (dcaoi,a · dcaoi,a)
1/2 . (C.1)

The partial derivative of dcaoi,a with respect to a hypothetical argument x is given by:
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The rightmost term of Eq. (C.2) can be developed as:
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given that poi|a is a constant, this equation can be simplified as:
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To compute the partial derivative of dcaoi,a with respect to θa, we can use the results from Eqs. (B.6),
(B.12), (C.2) and (C.4), yielding:
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Similarly, to compute the partial derivative of dcaoi,a with respect to sa, we can use the results from
Eqs. (B.7), (B.13), (C.2) and (C.4).
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APPENDIX D – Additional examples



98

Figure 66 – Comparison of the results for the Opposite scenario with many agents and structured
initial positions. The two groups of agents (red and blue) have as goal to switch positions.
Results are shown for the proposed model, OSV and RVO2.
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Figure 67 – Comparison of the results for the Opposite scenario with many agents and noisy initial
positions. The two groups of agents (red and blue) have as goal to switch positions. Results
are shown for the proposed model, OSV and RVO2.
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Figure 68 – Comparison of the results for the Columns scenario with many agents. The two groups of
agents (red and blue) have as goal to switch positions. Results are shown for the proposed model,
OSV and RVO2.
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Figure 69 – Comparison of the results for the Crossing scenario with many agents in four groups. The
four groups of agents have as goal to reach the opposite positions. Results are shown for the
proposed model, OSV and RVO2.
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