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Prof. Dr. Alúızio F. R. Araújo
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RESUMO

Métodos baseados em funções de base (como as funções sigmoid e a q-Gaussian) e medidas

de similaridade (como distâncias ou funções de kernel) são comuns em Aprendizado de

Máquina e áreas correlatas. Comumente, no entanto, esses métodos não são equipados

para utilizar dados incompletos de maneira orgânica. Isso pode ser visto como um

impedimento, uma vez que dados parcialmente observados são comuns em vários domı́nios,

como aplicações médicas e dados provenientes de sensores.

Nesta dissertação, propomos metodologias para estimar o valor do kernel Gaussiano, da

distância Euclidiana , do kernel Epanechnikov e de funções de base arbitrárias na presença

de vetores possivelmente parcialmente observados. Para obter tais estimativas, os vetores

incompletos são tratados como variáveis aleatórias cont́ınuas e, baseado nisso, tomamos o

valor esperado da transformada de interesse.

Palavras-chave: Aprendizado de Máquina. Dados Incompletos. Kernel Gaussiano.

Distância Euclidiana. Kernel Epanechnikov. Funções de base.



ABSTRACT

Methods based on basis functions (such as the sigmoid and q-Gaussian functions) and

similarity measures (such as distances or kernel functions) are widely used in machine

learning and related fields. These methods often take for granted that data is fully observed

and are not equipped to handle incomplete data in an organic manner. This assumption is

often flawed, as incomplete data is a fact in various domains such as medical diagnosis

and sensor analytics. Therefore, one might find it useful to be able to estimate the value

of these functions in the presence of partially observed data.

We propose methodologies to estimate the Gaussian Kernel, the Euclidean Distance, the

Epanechnikov kernel and arbitary basis functions in the presence of possibly incomplete

feature vectors. To obtain such estimates, the incomplete feature vectors are treated

as continuous random variables and, based on that, we take the expected value of the

transforms of interest.

Keywords: Machine Learning. Missing Data. Gaussian Kernel. Euclidean Distance.

Epanechnikov Kernel. Basis functions.
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1 INTRODUCTION

Data completeness is a major assumption of most Machine Learning methods.

In real world problems, however, several data instances may suffer from unobserved/missing

attributes. This issue, referred to as missing/incomplete data problem, may happen due

to a variety of reasons such as sensor problems, device malfunction and operator mistakes

(EIROLA et al., 2014). The simplest way to deal with missing data consists of removing

the instances with missing attributes (listwise deletion) from the dataset. Even though

this approach may work in some cases, discarding data samples usually leads to loss of

important information to build a learning model (EIROLA et al., 2013). Another widely

used approach is to perform a pre-processing step of missing data imputation. After filling

the missing entries, any conventional learning method can be used. Examples of such an

approach can be found in (KANG, 2013), (LOBATO et al., 2015), (ASTE et al., 2015)

and (GHEYAS; SMITH, 2010).

According to Acuña and Rodrigues in (ACUÑA; RODRIGUEZ, 2004), problems

with more than 5% of missing samples may require sophisticated handling methods. In such

situations, good results can be achieved by not considering the imputation as a separate

step. Rather, it is possible to design a learning method that can handle incomplete data

in its formulation. By doing so, the inherent uncertainty of the imputation process is

taken into account and it has shown to be beneficial in many cases (SOVILJ et al., 2016).

On the other hand, direct imputation omits this uncertainty, which might be prejudicial

depending on the context.

For example, let Xi = (xi,1, . . . , xi,D)T and Xj = (xj,1, . . . , xj,D)T be two

(independent) possibly incomplete feature vectors. Suppose we are interested in estimating

the squared Euclidean distance ‖Xi −Xj‖2 between these vectors, which is an important

piece in many Machine Learning methods, such as Nearest Neighbors methods and k-means.

Treating the missing entries as independent random variables, according to Eirola et al.

(2013), the desired expected value can be expressed as:

E[‖Xi −Xj‖2] =
D∑
d=1

(E[xi,d]− E[xj,d])
2 + Var[xi,d] + Var[xj,d],

while imputing the missing entries of Xi and Xj with their expected value, would result
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lead to:

‖E[Xi]− E[Xj]‖2 =
D∑
d=1

(E[xi,d]− E[xj,d])
2,

which ignores the variances respective to the missing entries and, depending on their

magnitude, might grossly diverge from E[‖Xi −Xj‖2].

In this work, we provide tools to directly estimate transforms of incomplete

feature vectors, in the a similar fashion to what (EIROLA et al., 2013) proposed for the

squared Euclidean distance.

1.1 Objectives and chapters organization

The general objective of this work is to provide tools for adapting Machine

Learning methods which incorporate the uncertainty arising form the imputation process,

similarly to what was presented in (EIROLA et al., 2013) and Eirola et al. (2014) for the

squared Euclidean distance. We present these in the form of methodologies to estimate

transforms of the values which would be otherwise imputed. As specific objectives, we

address the problems of estimating:

1. the Gaussian Kernel between two possibly incomplete feature vectors;

2. the Euclidean Distance between two possibly incomplete feature vectors;

3. the Epanechnikov Kernel between two possibly incomplete feature vectors;

4. the value of basis functions applied to a possibly incomplete feature vector.

A theoretical background covering basic concepts and commonly used imputa-

tion methods is provided in chapter 2. Solutions to the aforementioned specific objectives

are presented, in order, in chapters 3, 4 and 5. In chapter 7, we provide final reflections on

the content of the presented work and discuss directions for future works.

1.2 Publications

During the span in which the work presented here was in development, a number

of articles have been published by the author. This includes articles which directly relate

to the thesis topic, as well as articles which are products of cooperation with colleagues

and faculty from diverse research areas. The former ones are listed in Subsection 1.2.1,

while the remaining ones are outlined in Subsection 1.2.2
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2 THEORETICAL BACKGROUND

In this chapter, we introduce some basic concepts which might be useful to

understanding the developments presented in the next chapters. In Section 2.1, we

introduce basic missing data concepts regarding the processes which causes entries to be

missing. In Section 2.2, we introduce the Gaussian Mixture Model (GMM) and address

how to use it to obtain statistics of missing components in a vector. In Section 2.3, we

introduce Expectation Maximization (EM) as a procedure to estimate the parameters of

a GMM from incomplete datasets. Finally, in Section 2.4, we give an overview of two

popular imputation strategies that will be used for comparison.

2.1 Missing Data Terminology

Consider a D-dimensional random vector X with observed entries indexed as

XO and missing ones as XM . Let I ∈ {0, 1}D be an indicator vector such that the In

equals one if and only if Xn is observed, i.e., n ∈ O. We say data is Missing Completely at

Random (MCAR) if the probability an entry is missing in X is independent of values of

both the observed and missing entries of X, which can be expressed as:

P (I|XO, XM) = P (I).

Differently from MCAR, data is said to be Missing at Random (MAR) when

the probability that a component Xn of X is missing is independent of its true (unknown)

value, but might depend of XO. This can be expressed as:

P (I|XO, XM) = P (I|XO)

When the probability that an entry is missing is intrinsically related to its

value, it is said that data is Missing Not at Random (MNAR). In this work, we consider

data is MAR. A more comprehensive account of missing data mechanisms can be found in

Molenberghs et al. (2014).

2.2 Modelling data using GMMs

To provide a flexible representation for the distribution from which the feature

vectors in a dataset X = {Xn}Nn=1 ⊂ RD were drawn, we assume it can be modelled as a
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linear superposition of C D-dimensional Gaussian densities, each with its own mean µ(c)

and covariance matrix Σ(c), with c = 1, . . . , C, i.e., a Gaussian Mixture Model (GMM)

. Given an arbitrary Xn ∈ RD, the probability density function of a GMM (HUNT;

JORGENSEN, 2003) with the aforementioned parameters takes the form:

p(Xn) =
C∑
c=1

w(c)N (Xn|µ(c),Σ
(c)

), (2.1)

where {w(c)}Cc=1 is a set of non-negative scalars that satisfy the convexity constraint∑C
c=1w

(c) = 1. The GMM model is a flexible and powerful modeling tool capable to

model a wide class of continuous distributions, provided a sufficient number of Gaussian

components.

It is instrumental for the developments in this work to be able to obtain

estimates of the non-central moments of the missing entries of a feature vector. It is known

that, for a single Gaussian (C = 1) these moments can be expressed as functions of its

mean vector and covariance matrix. In turn, the mean and covariance of the missing

entries can be computed by conditioning the Gaussian on the observed entries of the vector.

In a GMM, the moments are given by a weighted sum of the moments of the Gaussian

components.

For instance, consider an arbitrary vector Xn, with missing component values

Xn,M and observed component values Xn,O, where M and O denote the sets of indexes of

missing and observed component values, respectively. Then, the parameters µ(c) and Σ(c)

of the c-th component of the GMM can be partitioned into blocks as follows:

µ(c) =

µ(c)
O

µ
(c)
M

 , Σ(c) =

Σ
(c)
OO Σ

(c)
OM

Σ
(c)
MO Σ

(c)
MM

 . (2.2)

Then, the mean vector µ̃
(c)
n = E(c)[Xn,M |Xn,O] and covariance matrix Σ̃

(c)
n =

Var(c)[Xn,M |Xn,O] of the c-th Gaussian in the GMM, conditioned on Xn,O, are given by

µ̃(c)
n = µ

(c)
M + Σ

(c)
MO(Σ

(c)
OO)−1(Xn,O − µ(c)

O ), (2.3)

Σ̃(c)
n = Σ

(c)
MM − Σ

(c)
MO(Σ

(c)
OO)−1Σ

(c)
OM , (2.4)

and the first four non-central moments of a particular component xn,d of Xn,M are given
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by

E[xn,d] =
C∑
c=1

w(c)µ̃
(c)
n,d, (2.5)

E[x2n,d] =
C∑
c=1

w(c)
(

[µ̃
(c)
n,d]

2 + Σ̃
(c)
n,d

)
, (2.6)

E[x3n,d] =
C∑
c=1

w(c)
(

[µ̃
(c)
n,d]

3 + 3µ̃
(c)
n,dΣ̃

(c)
n,d

)
, (2.7)

E[x4n,d] =
C∑
c=1

w(c)
(

[µ̃
(c)
n,d]

4 + 6[µ̃
(c)
n,d]

2Σ̃
(c)
n,d + 3[Σ̃

(c)
n,d]

2
)
, (2.8)

in which µ̃
(c)
n,d denotes the d-th element of vector µ̃

(c)
n and Σ̃

(p)
n,d denotes the d-th element

along the main diagonal of matrix Σ̃
(p)
n .

2.3 EM for GMMs with Incomplete Data

Expectation-maximization algorithms are efficient approaches for finding a

maximum likelihood solution for models with latent variables as a Gaussian mixture

model, without relying on iterative numerical optimization techniques. Given a likelihood

function of some parameters, EM algorithms consist of two steps, an expectation and a

maximization step: In the first step, the expected value of some latent variables is taken;

in the latter, the most likely estimates for the parameters are computed. The two steps are

repeated until convergence of either the parameters or the likelihood. We briefly overview

the EM algorithm for GMMs with complete data and its extension for incomplete data

(HUNT; JORGENSEN, 2003).

Consider a data set X = {Xn}Nn=1 comprising N samples and the Gaus-

sian mixture distribution p(Xn) =
∑C

c=1w
(c)N (Xn|µ(c),Σ(c)) consisting of C densities

N (Xn|µ(c),Σ(c)). Let Θ = {w(c), µ(c),Σ(c)}Cc=1 with w(c) as mixing coefficient of the c-th

Gaussian and µ(c) and Σ(c) its mean vector and covariance matrix. We want to maximize

the likelihood LX (Θ) of the parameters Θ

LX (Θ) =
N∏
n=1

(
C∑
c=1

w(c)N (Xn|µ(c),Σ(c))

)
. (2.9)

After initializing the means, the covariances and the mixing coefficients, and calculating

the initial value of the likelihood, an expectation-maximization algorithm sequentially

repeats the expectation and the maximization steps:
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1. The expectation (E) step computes the expected memberships tn,c of each sample n

tn,c =
w(c)N (Xn|µ(c),Σ(c))∑
l w

(l)N (Xn|µ(l),Σ(l))
, (2.10)

with respect to each Gaussian c = 1, . . . , C.

2. The maximization (M) step consists of computing the most likely estimates for the

parameters in Θ

µ(c) =
1

Nc

N∑
n=1

tn,cXn, (2.11)

Σ(c) =
1

Nc

N∑
n=1

tn,c(Xn − µ(c))(Xn − µ(c))T , (2.12)

w(c) =
Nc

N
. (2.13)

with Nc =
∑N

n=1 tn,c and for c = 1, . . . , C.

Although the formulation is a well-established approach to fit Gaussian mixture

models to complete data, a number of modifications are required to extend it to the case

of incomplete data. The idea consists in treating missing values as latent variables to be

estimated in the expectation step. The likelihood given the observed values takes the form

LX (Θ) =
N∏
n=1

(
C∑
c=1

w(c)N (Xn,O|µ(c)
O ,Σ

(c)
OO)

)
, (2.14)

where Xn,O denotes the observed entries of Xn and {µ(c)
O ,Σ

(p)
OO}Cc=1 are the parameters of

the c-th Gaussian when marginalizing on the observed entries of Xn.

To make use of the marginal probability on the observed entries, the E-step in

Eq. (2.10) is modified to yield

tn,c =
w(c)N (Xn,O|µ(c)

O ,Σ
(c)
OO)∑

l w
(l)N (Xn,O|µ(l)

O ,Σ
(l)
OO)

. (2.15)

The E-step is further augmented with the following equations that compute

the parameters {µ̃(c)
n , Σ̃

(c)
n }Cc=1 of the distribution of the missing entries Xn,M conditioned

on Xn,O, i.e µ̃
(c)
n = E(c)[Xn,M |Xn,O] and Σ̃

(c)
n = Var(c)[Xn,M |Xn,O]. For each Gaussian:

µ̃(c)
n = µ

(c)
n,M + Σ

(c)
MO(Σ

(c)
OO)−1(Xn,O − µ(c)

n,O),

Σ̃(c)
n = Σ

(c)
MM − Σ

(c)
MO(Σ

(c)
OO)−1Σ

(c)
OM .
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As for the M-step, Eq. (2.13) that computes the weights of the mixture remains

functionally unaltered, while Eqs. (2.11) and (2.12) are modified to yield

µ(c) =
1

Nc

N∑
n=1

tn,cX̃
(c)
n ,

Σ(c) =
1

Nc

N∑
n=1

tn,c(X̃
(c)
n − µ(c))(X̃(c)

n − µ(c))T +
N∑
n=1

tn,cΣ
(c)
n ,

where:

X̃(c)
n =

Xn,O

µ̃
(c)
n

 , Σ(c)
n =

0OO 0OM

0MO Σ̃
(c)
n

 . (2.16)

In other words, X̃
(c)
n denotes the vector Xn imputed with µ̃

(c)
n on its missing entries and

Σ
(c)
n is the conditional covariance matrix Σ̃

(c)
n padded with zeros.

2.4 Imputation Methods

2.4.1 Conditional Mean Imputation

Conditional Mean Imputation (CMI) consists in estimating a probability distri-

bution for the missing entries in a vector and using its mean value to fill the entries. The

usual approach to obtain such distribution is to first obtain a model for the distribution

from which the feature vectors of the dataset were drawn and then condition on the

observed values of each incomplete vector.

Let p denote the probability density function obtained from a dataset X . Given

an incomplete vector X ∈ X , CMI consists in filling each missing entry xi,k of X with:∫ ∞
−∞

φp(φ|xi,O)dφ (2.17)

where p(·|xi,O) denotes the p.d.f. p conditioned on the observed entries of X.

For the case in which p is the p.d.f. of a Gaussian distribution, so is the

conditional p(·|xi,O), which can be obtained as described in Section 2.2. If the parameters

of p(·|xi,O) are µ (mean vector) and Σ (covariance matrix), Eq. 2.17 resumes to µ.

Similarly, if a GMM is used to model the data, Eq. 2.17 becomes a weighted

sum of the components of the conditioned components of the GMM. This process was also

addressed in Section 2.2.
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2.4.2 Incomplete-case K-NN Imputation

Incomplete-case k Nearest Neighbors imputation (ICkNNI) is a non-parametric

distance-based imputation method recently proposed by Hulse e Khoshgoftaar (2014). The

idea behind ICkNNI is to use the incomplete Euclidean distance in order to select the k

nearest fully observed neighbors for each incomplete feature vector, then filling the missing

entries with the average of the selected neighbors. In this Section , we provide a review of

ICkNNI.

Consider a set X = {Xn}Nn=1 comprising both complete and incomplete feature

vectors. Let xi,k denote the k-th component of Xi and Oi be the set of indices of the

observed entries in Xi. Furthermore, let

Ni,j = {Xn ∈ X |Oi ∪ {j} ⊆ On} (2.18)

be the set of points in X which count on all the observed features of Xi plus feature

j ∈Mi.

The incomplete euclidean distance d can be defined as:

d(Xi, Xj) =


√∑

k∈Oi
(xi,k − xj,k)2, if Oi ⊆ Oj;

∞, otherwise.

(2.19)

In Incomplete-Case k-Nearest-Neighbors Imputation algorithm (ICkNNI), for

each incomplete feature vector Xi ∈ X , and l ∈ Oi, we construct the set Ci,j consisting of

the k nearest neighbors of Xi in the set Ni,j according to d(Xi, ·). Then we fill the missing

component xi,j with:∑
Xj∈Ci,j

xj,l
k
. (2.20)
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3 EXPECTED GAUSSIAN KERNEL

The Gaussian Kernel, often referred to as the Radial Basis Function (Radial

Basis Function (RBF)) kernel is one of the most common kernels in Machine Learning,

finding application in various methods, such as Support Vector Machines, Gaussian

Processes and RBF networks.

Given twoD-dimensional vectorsXi = (xi,1, . . . , xi,D)T andXj = (xj,1, . . . , xj,D)T ,

the Gaussian kernel is given by

k(Xi, Xj) , exp

{
−
‖Xi −Xj‖2

2σ2

}
, (3.1)

where σ2 > 0 is the scale hyper-parameter and ‖Xi −Xj‖2 =
∑D

d=1 (xi,d − xj,d)2, i.e., ‖ · ‖

denotes the L2 norm.

In this Chapter, we present a methodology to estimate k(Xi, Xj) when vectors

Xi, Xj ∈ X count on one or more missing components.

3.1 Formulation

Let Xi and Xj be two possibly partially observed feature vectors drawn from a

same distribution and let z = ‖Xi −Xj‖2. Note z is a random variable as it is a tranform

of the missing entries of Xi and Xj. In turn, so is k(Xi, Xj), since it can be written as:

k(Xi, Xj) = exp

{
−

z

2σ2

}
. (3.2)

Thus, estimating k(Xi, Xj) comes down to computing:

E[k(Xi, Xj)] = E

[
exp

{
−

z

2σ2

}]
=

∫ ∞
−∞

exp

{
−

z

2σ2

}
pz(z)dz (3.3)

where pz denotes the probability density function of z. Furthermore, as z is non-negative:

E[k(Xi, Xj)] =

∫ ∞
0

exp

{
−

z

2σ2

}
pz(z)dz =

∫
(0,∞)

exp

{
−

z

2σ2

}
pz(z)dz. (3.4)

Recall the definition of the moment-generating function Mz of a random variable

z with p.d.f. pz whose support is (0,∞):

Mz(t) =

∫
(0,∞)

etzpz(z)dz, (3.5)



26

hence:

E[k(Xi, Xj)] = Mz

(
−

1

2σ2

)
, (3.6)

i.e., computing E[k(Xi, Xj)] boils down to evaluating Mz(·) at t = −1/(2σ2). For such, we

need to choose a distribution for z.

For d = 1 . . . D, let φ2
d = (xi,d − xj,d)2. Consequently, since the differences φd

can1 be treated as random variables, z =
∑D

d=1 φ
2
d is a sum of squared random variables.

According to Roberts e Geisser (1966), the distribution of a squared random variable φ2d is

said to be Gamma - with parameters αd and βd - if:

1. the distribution pd of φd can be written as:

pd(φd) = h(φd)|φ|2αd−1 exp(−βdφ2
d);

2. There exists a constant ζ such that:

∀φd : h(φd) + h(−φd) = ζ.

A variety of different distributions conform to the above conditions. Some

examples are the Gaussian distribution, the Skew Normal (AZZALINI, 1985) (which

generalizes the Gaussian distribution and allows for non-zero asymmetry), Kotz-type

distributions (that are bi-modal and may have light tails) as well as other heavy- and

light-tailed distributions obtained similarly to the Skew Normal (ROBERTS; GEISSER,

1966; JOHNSON N.; BALAKRISHNAN, 1995; GENTON, 2004).

It is then reasonable to model z as a sum of Gamma-distributed random

variables. Furthermore, Covo e Elalouf (2014) showed the sum of independent Gamma

distributed random variables can be well approximated by a Gamma distribution under

mild conditions. This independence assumption is satisfied if we assume the missing

components of a vector are independent among themselves. This premise can be found in

(EIROLA et al., 2013) and (EIROLA et al., 2014), and we take it as well. Thus, we assume

z follows a Gamma distribution with shape and inverse scale parameters, respectively,

α, β > 0. Hence, pz(·) is given by:

p(z|α, β) =
βα

Γ(α)
zα−1 exp (−βz), (3.7)

1 In case both xi,d and xj,d are known, we could attribute a small variance to φd.
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where Γ(α) =
∫ +∞
0

uα−1 exp (−α)du is the gamma function.

In particular, for the Gamma distribution, Mz(·) has a closed-form solution:

Mz(t) =

(
1−

t

β

)−α
∀t < β, (3.8)

and Eq. (3.6) turns into:

E[k(Xi, Xj)] = Mz

(
−

1

2σ2

)
=

(
2βσ2

2βσ2 + 1

)α

. (3.9)

To estimate k(Xi, Xj), we still have to estimate the parameters α and β of the

Gamma distribution. These can be obtained via method-of-moments from the mean E[z]

and the variance Var[z] of the squared distance z:

α =
E[z]2

Var[z]
, β =

E[z]

Var[z]
. (3.10)

The problem of estimating E[z] can be approached using the results from

(EIROLA et al., 2013) and (EIROLA et al., 2014), in which expected squared distances

are expressed in the form

E[z] =
∑

d/∈Mi∪Mj

(xi,d − xj,d)2 +
∑

d∈Mj\Mi

E[(xi,d − xj,d)2]

+
∑

d∈Mi\Mj

E[(xi,d − xj,d)2] +
∑

d∈Mi∩Mj

E[(xi,d − xj,d)2], (3.11)

with Mi,Mj ⊆ {1, . . . , D} denoting the sets of indexes of the missing components of Xi

and Xj, respectively. Since all of the terms in eq. (3.11) can be expanded to yield:

E[(xi,d − xj,d)2] = E[x2i,d] + E[x2j,d]− 2E[xi,d]E[xj,d]

=

{
E[x2i,d]− E[x2i,d] + E[x2j,d]− E[x2j,d]

+ E[xi,d]
2 + E[xj,d]

2 − 2E[xi,d]E[xj,d]

= (E[xi,d]− E[xj,d])
2 + Var[xi,d] + Var[xj,d],

the expected squared distance z can be compactly written as

E[z] =
D∑
d=1

(E[xi,d]− E[xj,d])
2 + Var[xi,d] + Var[xj,d]. (3.12)
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Although not derived in (EIROLA et al., 2013) and (EIROLA et al., 2014),

analogous reasoning can be used to express the variance of the squared distances Var[z]:

Var[z] = Var

[
D∑
d=1

(xi,d − xj,d)2
]

=
D∑
d=1

Var
[
(xi,d − xj,d)2

]
+

D∑
d=1

D∑
l=d+1

Cov
[
(xi,d − xj,d)2, (xi,l − xj,l)2

]
.

(3.13)

Using independence assumptions stated before, Eq. (3.13) reduces to:

Var[z] =
D∑
d=1

Var
[
(xi,d − xj,d)2

]
=

D∑
d=1

E
[
(xi,d − xj,d)4

]
− E

[
(xi,d − xj,d)2

]2

=



D∑
d=1

E
[
x4i,d + x4j,d − 4x3i,dxj,d − 4xi,dx

3
j,d + 6x2i,dx

2
j,d

]
−

D∑
d=1

E
[
(xi,d − xj,d)2

]2
.

(3.14)

Together, eqs. (3.12) and (3.14) show how the expectation and the variance of

squared distances can be expressed only in terms of non-central moments of Xi and Xj.

Such moments can be estimated by imposing a distribution from which Xi and Xj are

drawn and estimating the parameters of such distribution. Any model-estimation method

capable of generating probability distributions for each missing variable can be used for

the task.

3.2 Experiments and Results

We perform two different experiments to validate our approach, the Expected

Gaussian Kernel (EGK) . In the first, we study how the uncertainty on the estimation of

the missing values affects the quality of the kernel estimate. In second, we evaluate EGK

on real-world data. Table 2 summarizes the details of these experiments.

In the first experiment, EGK is compared against Conditional Mean Imputation

(CMI) (HUNT; JORGENSEN, 2003) and Expected Square Distance (ESD) (EIROLA et

al., 2013). It is interesting to notice that these methods differ from EGK mainly in the

level in which the estimation problem is cast. In CMI, the values of the missing entries

of Xi and Xj are estimated (and later used to compute k(Xi, Xj)). The ESD approach
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Table 2 – Overview of the experiments.

Objective Setup

EX1 Assess the quality of the kernel
estimation as a function of the
uncertainty on the estimation of
the missing values.

Xi and Xj are drawn from an
univariate Normal distribution
with known mean and variance,
but Xi missing.

EX2 Validate the method on Real-
world data.

Different datasets from the UCI
repository were employed.

consists in estimating ‖Xi − Xj‖2 and plugging it into the kernel expression. On the

other hand, EGK directly estimates the transform of interest. This conceptual difference

between the approaches is condensed in Eqs. (3.15) to (3.17).

k̂EGK(Xi, Xj) = E

[
exp

{
−
‖Xi −Xj‖2

2σ2

}]
, (3.15)

k̂ESD(Xi, Xj) = exp

{
−

E
[
‖Xi −Xj‖2

]
2σ2

}
, (3.16)

k̂CMI(Xi, Xj) = exp

{
−
‖E[Xi]− E[Xj]‖2

2σ2

}
. (3.17)

It has been pointed out by Eirola et al. (2013) that estimating the missing

entries before taking the squared euclidean distance tends to underestimate the expected

value of this transform. As a consequence - see Eq. (3.12) -, we have

k̂ESD(Xi, Xj) ≤ k̂CMI(Xi, Xj). (3.18)

Assuming z is Gamma-distributed, a similar statement can be made via direct

application of Jensen’s inequality. Recall Jensen’s inequality states that:

g(E[φ]) ≤ E[g(φ)] (3.19)

for any integrable real-valued random variable φ and convex function g(·). Applying it

directly to Eq. (3.15), one can obtain

k̂ESD(Xi, Xj) ≤ k̂EGK(Xi, Xj). (3.20)
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3.2.1 EX1: Univariate Normal data with known parameters

For this experiment, we fix Xj = 3, assume Xi ∼ N (2, σ2
n) and estimate

k(Xi, Xj). Since the distribution of Xi is known, there is no need to estimate a model for

the data as the true distribution N (2, σ2
n) is given. We set the kernel hyper-parameter

σ2 = 1.

To obtain a benchmark, we compute a Monte Carlo (Monte Carlo (MC))

estimate of k(Xi, Xj) by performing 108 draws of Xi from N (2, σ2
n), taking the kernel

value for each of these draws and then averaging the computed kernel values. Using this

procedure, we aim to accurately approximate the expected value the kernel. Based on

that, a method is as good as its estimates are similar to the ones obtained by via Monte

Carlo. Table 3 compiles the results of the experiments for different values of σ2
n.

Table 3 – Kernel Estimates using different methods

σ2
n MC CMI ESD EGK

10−2 0.6065 0.6065 0.6035 0.6065
10−1 0.6052 0.6065 0.5769 0.6045
100 0.5507 0.6065 0.3679 0.5429
101 0.2881 0.6065 0.0041 0.2868
102 0.0990 0.6065 1.1698e-22 0.0990

Note that CMI computes the same approximation regardless of the value of

σ2
n. This is expected, since the the expected value of Xi depends only of µ. While both

CMI and ESD quickly deteriorate as σ2
n increases, EGK maintains a steady performance,

approximating the Monte Carlo estimate more accurately. It is also interesting to notice

that the results above ratifies Eqs. (3.18) and (3.20).
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3.2.2 EX2: Experiments on Real-World Data

In this second experiment, we evaluate the performance of EGK in real world

data sets for different amounts of missing data. All data used for this experiments is

available at the UCI repository of Machine Learning data sets (LICHMAN, 2013). Details

concerning the number and size of the feature vectors in each of data set can be found in

Table 4.

Table 4 – Data sets description

Dataset Size Features

MPG 392 7
FOREST-FIRE (FIRE) 517 4
COLUMN (COL) 310 6
HABERMAN (HAB) 306 3
DIABETES (PID) 768 8
IRIS 150 4
CONCRETE COMPRESSION (COMP) 1030 80
CONCRETE SLUMP (SLUMP) 103 8

Ten similar rounds of experiment were carried. In each of these, the percentage

of instances with missing vectors was iteratively increased from 10% to 50% (in steps of

20%) of the dataset size. The number of features to be deleted in each of these vectors is

decided independently by drawing a number from {1, · · · , dD/3e}. In each step we use

different methods to estimate the kernel matrix and measuring the Root Mean Squared-

Error between these estimates and the true kernel matrix computed beforehand. In this

experiments, the true distribution of the data is unknown, thus, at each step we estimate

a GMM comprising three components.

We do not consider CMI in this experiment, as it was consistently outperfor-

med by the other methods in the previous experiment. Instead, we substitute it by the

Incomplete-Case k-Nearest-Neighbors Imputation algorithm (ICkNNI) (HULSE; KHOSH-

GOFTAAR, 2014), a well-known distance-based imputation algorithm that does not rely

on the estimation of a statistical model for the data. The parameters for ICkNNI were

implemented as suggested in Hulse e Khoshgoftaar (2014). Results, in terms of average

Root Mean Square Error (RMSE), are presented in Table 5. We employed Wilcoxon’s

signed-rank test, with a 5% significance level, to verify the statistical significance of the

results. The symbols 3 and 7 indicate the result of the hypothesis test (3 fail to reject,

and 7 reject).

Unsurprisingly, the performance of all methods decrease with the amount of
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missing values. Specifically for ESD and EGK, performance deteriorates due to the quality

of distribution estimated for the data, which is affected by the amount of missing data.

Again, EGK achieved the best overall results. This fact provides some evidence

that the assumptions taken in the formulation of EGK do not affect negatively its per-

formance on real world data. Additionally, it is interesting to verify that even using a

statistical model with only three Gaussians, EGK was able to outperform a non-parametric

model such as the ICkNNI.

Table 5 – Gaussian kernel estimation on real-world data: average RMSE

% ICkNNI ESD EGK

MPG 10% 0.016575 7 0.014763 7 0.01426
30% 0.027873 7 0.02532 7 0.021949
50% 0.035591 7 0.030675 7 0.027207

FIRE 10% 0.040201 3 0.033981 3 0.044753
30% 0.068591 3 0.05635 3 0.071251
50% 0.088094 3 0.068472 3 0.083955

COL 10% 0.010816 7 0.0093255 7 0.0077406
30% 0.018743 7 0.015251 7 0.013154
50% 0.023485 7 0.019241 7 0.016712

HAB 10% 0.045808 7 0.041623 7 0.035796
30% 0.077246 7 0.068928 7 0.059605
50% 0.098103 7 0.083429 7 0.073179

PID 10% 0.0025677 7 0.0019287 7 0.0018322
30% 0.0044262 7 0.0031619 7 0.0030542
50% 0.0055869 7 0.0037776 7 0.0036778

IRIS 10% 0.037567 7 0.034068 7 0.028645
30% 0.069988 7 0.060438 7 0.051269
50% 0.090736 7 0.07312 7 0.062649

COMP 10% 0.012263 7 0.016336 7 0.014708
30% 0.020423 7 0.026614 7 0.024129
50% 0.026896 7 0.032401 7 0.029939

SLUMP 10% 0.010205 3 0.0089769 7 0.0082288
30% 0.017697 7 0.014825 7 0.013209
50% 0.022699 7 0.021153 7 0.019243
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3.3 Conclusion

In this chapter, we presented a methodology to estimate the Gaussian Kernel

between two feature vectors Xi and Xj when one or both have missing entries. The

proposed method takes the expected value of the kernel k(Xi, Xj) as a transform of the

squared Euclidean distance z = ‖Xi−Xj‖2. In turn, z is modelled as a Gamma-distributed

random variable and a procedure is outlined to compute the parameters that govern this

distribution.

The proposed strategy, coined EGK was compared against other methods in

the literature, outperforming these in artificial and real-world scenarios.
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4 EXPECTED EUCLIDEAN DISTANCE

Given twoD-dimensional vectorsXi = (xi,1, . . . , xi,D)T andXj = (xj,1, . . . , xj,D)T ,

the Euclidean distance η between Xi and Xj is given by

η = z1/2 ,

√√√√ D∑
d=1

(xi,d − xj,d)2, (4.1)

where, as in the previous Chapter, z denotes the squared distance between Xi and Xj.

In this Chapter, we present a methodology to estimate η when vectors Xi, Xj ∈

X count on one or more missing components. Following the developments of the previous

chapter, we assume z is a Gamma-distributed random variable.

4.1 Formulation

Note that η is a random variable as it is a non-negative transform of Xi and

Xj. Hence, taking the expected value of η consists in computing:

E[η] =

∫ +∞

0

η p(η) dη. (4.2)

Drawing from the previous chapter, we say z follows a Gamma distribution

with parameters α and β that can be estimated from the non-central moments of Xi and

Xj as described bofore. It is then sensible to choose the Nakagami (NAKAGAMI, 1960)

distribution for η. By definition, since η is the square-root transform of z:

η ∼ Nakagami(m,Ω), (4.3)

where m and Ω are, respectively, the shape and spread parameters of the Nakagami

distribution. Under this setup, the expected value of η is given by:

E[η] =
Γ(m+ 1

2
)

Γ(m)

(
Ω

m

) 1
2

. (4.4)

In turn, using the method-of-moments, the parameters m and Ω can be written

as functions of the mean and variance of z according to:

m =
E2[z]

Var[z]
, Ω = E[z]. (4.5)

Remind E[z] and Var[z] can be computed from the non-central moments of Xi

and Xj, as described in Chapter 3.
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4.2 Experiments and Results

We perform two different experiments to validate our methodology (EED) . In

the first, we study how the uncertainty on the estimation of the missing values affects the

quality of the distance estimate. In second, we evaluate EED on real-world data. Table

6 summarizes the details of these experiments. The following subsections present and

discuss the results.

Table 6 – Overview of the experiments.

Objective Setup

EX1 Assess the quality of the dis-
tance estimation as a function
of the uncertainty on the esti-
mation of the missing values

Xi and Xj are drawn from an
univariate Normal distribution
with known mean and variance,
but Xi missing

EX2 Validate the method on real-
world data

Different datasets from the UCI
repository were employed.

In the first experiment, EED is compared against the CMI and ESD. As in the

case of EEK, EED differs from these methods fundamentally in the level in which the

estimation problem is cast. The conceptual differences between CMI, ESD and EED are

explicitly shown in Eqs. (4.6) to (4.8).

ηEED(Xi, Xj) = E

[√
‖Xi −Xj‖22

]
, (4.6)

ηESD(Xi, Xj) =
√

E
[
‖Xi −Xj‖22

]
, (4.7)

ηCMI(Xi, Xj) =
√
‖E[Xi]− E[Xj]‖2. (4.8)

As stated by Eirola et al. (2013), estimating the missing entries before taking

the squared euclidean distance tends to underestimate the expected value of this transform.

As a consequence, since
√
· is strictly increasing:

ηCMI(Xi, Xj) ≤ ηESD(Xi, Xj). (4.9)

For the case in which Xi and Xj are univariate and abide to the conditions

for z to be Gamma-distributed, a similar statement can be made for EED by applying

Jensen’s inequality directly to eq. (4.6):

ηCMI(Xi, Xj) ≤ ηEED(Xi, Xj). (4.10)
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4.2.1 EX1: Univariate Normal data with known parameters

For this experiment, we fix Xj = 3, assume Xi ∼ N (2, σ2
n) and estimate η.

Since the distribution of Xi is known, there is no need to estimate a model for the data as

the true distribution N (2, σ2
n) is given.

To obtain a benchmark, we compute a Monte Carlo (MC) estimate of η by

performing 108 draws of Xi from N (2, σ2
n), taking the Euclidean distance to Xj for each of

these draws and then averaging over the computed distances. This is done to obtain an

accurate approximation of the expected value the kernel. Based on that, a method is as

good as its estimates are similar to the ones obtained via Monte Carlo. Table 7 shows the

averaged Euclidean distance computed by each method for different values of σ2
n.

Table 7 – Euclidean distance estimates.

σ2 MC CMI ESD EED

10−2 1 1 1.005 1
10−1 1.0002 1 1.0488 1.0045
100 1.1667 1 1.4142 1.1866
101 2.6481 1 3.3166 2.6505
102 8.019 1 10.0499 8.0188

As in Subsection 3.2.1, note that CMI computes the same approximation

regardless of the value of σ2
n. This is expected, since the expected value of Xi depends only

on µ. On the other hand, as shown in (EIROLA et al., 2013), the variance of the estimates

is taken into account in ESD, providing more accurate results than those obtained with

CMI.

While results show ESD clearly outperforms CMI, the quality of its approxima-

tion degrades as σ2
n increases. In contrast to that, EED maintains a steady performance

and obtains the best results for all values of σ2. Note also that the results presented follow

the behaviour described in Eqs. (4.9) and (4.10).

4.2.2 EX2: Experiments on Real-World Data

We evaluate the performance of EED on real-world datasets. For that purpose,

six datasets were selected from the UCI Machine Learning Repository (LICHMAN, 2013).

Further details on these datasets are available in Table 4.
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Thirty similar rounds of experiment were carried. In each of these, the per-

centage of instances with missing samples was iteratively increased from 10% to 50% (in

steps of 20%) of the dataset size. The number of features to be deleted in each of these

vectors is decided independently by drawing a number from {1, · · · , dD/3e}. In each step

we use different methods to estimate the pairwise distance matrix and measuring the

RMSE between these estimates and the true distance matrix computed beforehand. In this

experiments, the true distribution of the data is unknown, thus, at each step we estimate

a GMM, as specified by Mesquita et al. (2017) .

As in subsection 3.2.2, we do not consider CMI in this experiment, as it was

consistently outperformed by the other methods in the previous experiment. Instead, we

substitute it by the ICkNNI, using the parameters suggested in Hulse e Khoshgoftaar (2014).

Results, in terms of average RMSE, are presented in Table 8. We employed Wilcoxon’s

signed-rank test, with a 5% significance level, to verify the statistical significance of the

results. The symbols 3 and 7 indicate the result of the hypothesis test (3 fail to reject,

and 7 reject).
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Table 8 – Euclidean distance estimation on real-world data: average RMSE

% ICkNNI ESD EED

MPG 10% 0.1672 3 0.1620 7 0.1607
30% 0.3036 7 0.2780 7 0.2758
50% 0.3967 7 0.3593 7 0.3561

FIRE 10% 0.3239 3 0.2635 3 0.2644
30% 0.6018 3 0.5278 3 0.5354
50% 0.7218 3 0.8219 7 0.7973

COL 10% 0.1665 7 0.1203 7 0.1176
30% 0.2968 7 0.2475 7 0.2431
50% 0.4477 7 0.3162 7 0.3121

HAB 10% 0.2803 7 0.2140 7 0.2047
30% 0.4510 7 0.3923 7 0.3805
50% 0.6064 7 0.5118 7 0.4971

PID 10% 0.2699 7 0.2246 7 0.2216
30% 0.4745 7 0.3988 7 0.3946
50% 0.6274 7 0.5252 7 0.5214

IRIS 10% 0.1509 7 0.1202 7 0.1184
30% 0.2617 7 0.2195 7 0.2148
50% 0.3492 7 0.2828 7 0.2800

COMP 10% 0.1731 3 0.1791 7 0.1761
30% 0.3067 7 0.3261 7 0.3243
50% 0.4192 3 0.4247 7 0.4198

SLUMP 10% 0.2178 7 0.1645 7 0.1635
30% 0.3721 7 0.2827 7 0.2815
50% 0.5180 7 0.3986 7 0.3955
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With regard to the RMSE performance, we observe that EED outperforms

CMI and ESD in all scenarios, i.e., with small and large amount of missing data. As

expected, the performance gap between EED and ESD is smaller than the gap between

EED and CMI. The hypothesis test indicates significant difference between EED and the

other methods.

4.3 Conclusion

In this chapter, we presented a methodology to estimate the Euclidean distance

between two feature vectors Xi and Xj when one or both count on missing entries. The

proposed method computes the expected value of the squared-root transform z1/2 of the

random variable z = ‖Xi−Xj‖2. As in the previous chapter, we assume z can be modelled

with a Gamma distribution. As a consequence, z1/2 is Nakagami-distributed and its

expected value can be easily obtained from the distribution parameters.

The proposed strategy, coined EED is validated in artificial and real-world

scenarios, outperforming other methods in the literature.
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5 EPANECHNIKOV KERNEL

Given twoD-dimensional vectorsXi = (xi,1, . . . , xi,D)T andXj = (xj,1, . . . , xj,D)T ,

the Epanechnikov kernel is given by:

k(Xi, Xj) ,

(
1− ‖Xi −Xj‖2

l

)p
= l−p(l − z)p, (5.1)

where p ∈ N− {0} and l ∈ R+ are kernel hyper-parameters.

In this Chapter, we present a methodology to estimate k(Xi, Xj) when vectors

Xi, Xj ∈ X count on one or more missing components. As in the previous Chapters, it is

assumed z ∼ Gamma(α, β).

5.1 Formulation

Note that the Epanechnikov kernel k(Xi, Xj) is a p-th order polynomial of z

and can be expanded to yield:

k(Xi, Xj) =

p∑
r=0

(
p

r

)
(l)−r(−z)r, (5.2)

consequently, due to the linearity of expectation, estimating k(Xi, Xj) resumes to compu-

ting:

E[k(Xi, Xj)] =

p∑
r=0

(
p

r

)
(−l)−rE[zr], (5.3)

which is a weighted sum of the non-central moments of z. As in the previous chapters, we

assume z ∼ Gamma(α, β) . Therefore, its i-th non-central moment E[zi] is given by:

E[zi] = β−i
Γ(α + i)

Γ(α)
, (5.4)

and, since i is a non-negative integer, eq. (5.4) simplifies to:

E[zi] = β−i
i−1∏
j=0

(α + i). (5.5)

As before, the parameters α and β of the Gamma distribution can be estimated

via the method-of-moments - see Eq. (3.10) - from E[z] and Var[z]. Also as stated in

Chapter 5, E[z] and Var[z] can be computed from the non-central moments of Xi and Xj -

see Eqs. 3.12 and 3.14.
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5.2 Experiments and Results

We perform two different experiments to validate our methodology (EEK) . In

the first, we study how the uncertainty on the estimation of the missing values affects

the quality of the kernel estimate. In second, we evaluate EEK on real-world data. Table

9 summarizes the details of these experiments. The following subsections present and

discuss the results.

Table 9 – Overview of the experiments.

Objective Setup

EX1 Assess the quality of the kernel
estimation as a function of the
uncertainty on the estimation of
the missing values

Xi and Xj are drawn from an
univariate Normal distribution
with known mean and variance,
but Xi missing

EX2 Validate the method on Real-
world data

Different datasets from the UCI
repository were employed.

In the first experiment, EEK is compared against the CMI, and ESD. As in

the case of methodologies proposed in previous chapters, EEK differs from these methods

fundamentally in the level in which the estimation problem is cast. The conceptual

differences between CMI, ESD and EEK are explicitly shown in Eqs. (4.6) to (4.8).

k̂EEK(Xi, Xj) = E

[
p∑
r=0

(
p

r

)
(−l)−r‖Xi −Xj‖2r

]
, (5.6)

k̂ESD(Xi, Xj) =

p∑
r=0

(
p

r

)
(−l)−rE

[
‖Xi −Xj‖2

]r
, (5.7)

k̂CMI(Xi, Xj) =

p∑
r=0

(
p

r

)
(−l)−r‖E[Xi]− E[Xj]‖2r. (5.8)

For the case in which Xi and Xj abide to the conditions that make z a Gamma-

distributed random variable, when p is such that g(ν) = νp is convex, applying Jensen’s

inequality directly to Eq. (5.6) we obtain:

k̂EEK(Xi, Xj) ≥ k̂ESD(Xi, Xj). (5.9)
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5.2.1 EX1: Univariate Normal data with known parameters

For this experiment, we set the kernel hyperparameters p = 2 and l = 40.

Furthermore, we fix Xj = 3 and assume Xi ∼ N (2, σ2
n). Since the distribution of Xi is

known, there is no need to estimate a model for the data as the true distribution N (2, σ2
n)

is given.

To obtain a benchmark, we compute a Monte Carlo (MC) estimate of the kernel

by performing 108 draws of Xi from N (2, σ2
n), taking the Euclidean distance to Xj for each

of these draws and then averaging over the computed distances. This is done to obtain an

accurate approximation of the expected value of the kernel. Based on that, a method is as

good as its estimates are similar to the ones obtained via Monte Carlo. Table 10 shows

the average Epanechnikov kernel computed by each method for different values of σ2
n.

Table 10 – Epanechnikov kernel estimates.

σ2 MC CMI ESD EEK

10−2 0.9799 0.9801 0.9799 0.9799
10−1 0.9782 0.9801 0.9781 0.9782
100 0.9610 0.9801 0.9604 0.9610
101 0.8161 0.9801 0.7921 0.8161
102 2.0403 0.9801 0.0001 2.0401

Observe that CMI computes the same approximation regardless of the value of

σ2
n. This is expected, since the the expected value of Xi depends only on µ. While both

CMI and ESD quickly deteriorate as σ2
n increases, EEK is consistent, approximating the

MC estimate more accurately. Note that results above presented respect Eq. (5.9).

5.2.2 EX2: Experiments on Real-World Data

We evaluate the performance of EEK on real-world datasets. For that purpose,

five datasets were selected from the UCI Machine Learning Repository (LICHMAN, 2013).

Further details on these datasets are available in Table 11.

Table 11 – Data sets description

Dataset Size Features

IRIS 150 4
HAYES 160 3
HABERMAN (HAB) 306 3
BOSTON STOCKS (STOCK) 950 9
CONCRETE COMPRESSION (COMP) 1030 80
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Thirty similar rounds of experiment were carried out. In each of these, the

percentage of instances with missing samples was iteratively increased from 10% to 50%

(in steps of 20%) of the dataset size. The number of features to be deleted in each of

these vectors is decided independently by drawing a number from {1, · · · , dD/3e}. In each

step we use different methods to estimate the kernel matrix and measuring the RMSE

between these estimates and the true kernel matrix computed beforehand. The process

was repeated for each p ∈ {2, 3, 4}. In this experiments, the true distribution of the data

is unknown, thus, at each step we estimate a GMM comprising three components.

As in Subsection 3.2.2, we do not consider CMI in this experiment, as it was

consistently outperformed by the other methods in the previous experiment. Instead, we

substitute it by the ICkNNI, using the parameters suggested in Hulse e Khoshgoftaar

(2014). Results, in terms of average RMSE, are presented in Table 12. We employed

Wilcoxon’s signed-rank test, with a 5% significance level, to verify the statistical significance

of the results. The symbols 3 and 7 indicate the result of the hypothesis test (3 fail to

reject, and 7 reject).

With regard to the RMSE performance, we observe that EEK outperforms

CMI and ESD in most scenarios, i.e., with small and large amounts of missing data. As

expected, the performance gap between EEK and ESD is smaller than the gap between

EEK and CMI. The hypothesis test indicates, in most cases, significant difference between

EEK and the other methods.

5.3 Conclusion

In this Chapter, we presented a methodology to estimate the Epanechnikov

kernel between two feature vectors Xi and Xj when one or both count on missing entries.

The proposed method computes the expected value of the kernel as a transform of the

random variable z = ‖Xi − Xj‖2. As in the previous chapters, we assume z can be

modelled with a Gamma distribution. As a consequence, E[k(Xi, Xj)] becomes a weighted

sum of first p non-central moments of z and can be easily obtained from the distribution

parameters.

The proposed strategy, EEK, is validated in artificial and real-world scenarios,

outperforming other methods in the literature.
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Table 12 – Comparison between EEK and other methods.

p = 2

% ICkNNI CMI ESD EEK

IRIS 10% 0.3624 7 0.3627 7 0.3620 7 0.3619
30% 0.3627 7 0.3628 7 0.3608 7 0.3604
50% 0.3595 7 0.3595 7 0.3563 7 0.3556

HAYES 10% 0.2533 7 0.2531 7 0.2526 7 0.2523
30% 0.2551 7 0.2544 7 0.2498 7 0.2495
50% 0.2540 7 0.2551 7 0.2481 7 0.2473

HAB 10% 0.2770 7 0.2771 7 0.2754 7 0.2751
30% 0.2718 7 0.2723 7 0.2675 7 0.2669
50% 0.2660 7 0.2661 7 0.2584 7 0.2573

STOCK 10% 0.4444 7 0.4447 7 0.4426 7 0.4423
30% 0.4452 7 0.4458 7 0.4400 7 0.4390
50% 0.4462 7 0.4473 7 0.4369 7 0.4353

COMP 10% 0.3546 7 0.3556 7 0.3513 7 0.3504
30% 0.3553 7 0.3580 7 0.3446 7 0.3427
50% 0.3542 7 0.3601 7 0.3363 7 0.3333

p = 3

% ICkNNI CMI ESD EEK

IRIS 10% 0.4195 7 0.4197 7 0.4185 7 0.4183
30% 0.4204 7 0.4205 7 0.4169 7 0.4162
50% 0.4177 7 0.4177 7 0.4121 7 0.4110

HAYES 10% 0.3093 7 0.3091 7 0.3079 7 0.3075
30% 0.3124 7 0.3115 7 0.3043 7 0.3037
50% 0.3121 7 0.3137 7 0.3023 7 0.3010

HAB 10% 0.3315 7 0.3317 7 0.3290 7 0.3290
30% 0.3256 7 0.3264 7 0.3191 7 0.3187
50% 0.3196 7 0.3200 7 0.3081 7 0.3073

STOCK 10% 0.4392 7 0.4397 7 0.4368 7 0.4346
30% 0.4412 7 0.4426 7 0.4342 7 0.4336
50% 0.4425 7 0.4449 7 0.4302 7 0.3292

COMP 10% 0.3536 7 0.3551 7 0.3493 3 0.3495
30% 0.3558 7 0.3603 7 0.3423 7 0.3418
50% 0.3560 7 0.3645 7 0.3325 7 0.3312

p = 4

% ICkNNI CMI ESD EEK

IRIS 10% 0.3624 7 0.3627 7 0.3620 7 0.3619
30% 0.3627 7 0.3628 7 0.3608 7 0.3604
50% 0.3595 7 0.3595 7 0.3563 7 0.3556

HAYES 10% 0.3437 7 0.3436 7 0.3415 7 0.3411
30% 0.3480 7 0.3470 7 0.3372 7 0.3366
50% 0.3486 7 0.3506 7 0.3348 7 0.3335

HAB 10% 0.3602 7 0.3602 7 0.3569 3 0.3568
30% 0.3555 7 0.3567 7 0.3467 7 0.3460
50% 0.3507 7 0.3514 7 0.3353 7 0.3337

STOCK 10% 0.4221 7 0.4227 7 0.4192 7 0.4191
30% 0.4248 7 0.4266 7 0.4165 7 0.4162
50% 0.4261 7 0.4293 7 0.4116 7 0.4111

COMP 10% 0.3321 7 0.3336 7 0.3269 3 0.3272
30% 0.3342 7 0.3396 7 0.3187 7 0.3182
50% 0.3373 7 0.3471 7 0.3103 7 0.3089
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6 EXPECTED VALUE OF BASIS FUNCTIONS

Single-Layer Feedforward Neural Networks (SLFNNs) can often be expressed

in terms of basis expansion functions, i.e., the predicted output ŷ ∈ R for an input vector

X ∈ RD can be expressed as

ŷ =
H∑
h=1

κhφh(X). (6.1)

where φh : RD → R is the activation function of the h-th hidden neuron and κh ∈ R is the

weight of the link between this neuron and the output node.

For instance, for conventional Random Neural Networks (RNNs) using the

sigmoid (also known as logistic) activation function, we have:

ŷ =
H∑
h=1

κhg(λh ·X) (6.2)

where g(t) = 1/(1 + e−t) and λh ∈ RD is the vector of weights that links the input layer

to the h-th hidden neuron. Thus, φh can be written as a non-linear transform of λh ·X.

This is also true - with different expressions for g(·) - for Single-Layer Feedforward Neural

Network (SLFNN)s using the hyperbolic tangent, logit, probit or cosine as the activation

function.

On the other-hand, for centroid-based SLFNNs , such as Radial Basis Function

Networks and q-Generalized Random Neural Networks, Eq. (6.1) is equivalent to:

ŷ =
H∑
h=1

κhg(‖X − λh‖2) (6.3)

with λ ∈ RD now as the h-th centroid of the network.

In this chapter, we propose two sampling strategies to estimate the value of a

basis expansion function φ(X) when X has missing entries. The first one addresses the

case in which φ can be expressed as a transform of λ ·X. The latter deals with the case

in which φ(X) is a transform of ‖X − λ‖2. Both strategies are based on the Unscented

Transform (UT) and sample only O(1) scalar points. Special attention is given to the

sigmoid and the q-Gaussian activation functions.
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6.1 Formulation

The problem of estimating φ(X) for a D-dimensional vector X counting on

missing entries consists in computing

E[φ(X)] =

∫
RD

φ(X)p(X)dX, (6.4)

for which there is no trivial general solution and tailored ones depend on both the format

of φ(·) and p(·). However, for any φ(·) and p(·), it is possible to approximate Eq. (6.4) via

sampling or numerical integration methods.

The UT, originally proposed in (JULIER; UHLMANN, 1997), is a sampling-

based method for estimating statistical moments of a probability distribution associated

to a random variable which results from a nonlinear transformation of another random

variable (LEÃO; YONEYAMA, 2011).

In order to estimate φ(X) using the UT, a set S = {γl}Ll=1 ⊂ RD of sigma points

(SPs), with respective weights {kl}Ll=1 ⊂ R, associated to the original random variable

X are deterministically chosen. Then, the SPs are passed through φ(·), resulting in a

transformed set of SPs. Finally, the transformed SPs (and their corresponding weights)

are used in order to approximate E[φ(X)]. Although there is no restriction on their sign,

the weights k1, · · · , kL must respect the convexity constraint

L∑
l=1

kl = 1 (6.5)

to provide an unbiased estimate (JULIER; UHLMANN, 2004).

The implementation of the UT to estimate φ(X) can then be summarized by

the following equations:

δl ← φ (γl) ∀ 1 ≤ l ≤ L, (6.6)

E[φ(X)] ≈
L∑
l=1

klδl. (6.7)

There are different possible ways to choose the SPs and respective weights. Let

M denote the set of indices corespoding to missing features in X. A common approach

is to use a symmetric set of L = 2|M | + 1 SPs with identical weights, as described in
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Equations (6.8) to (6.11).

γ1=E[X] (6.8)

γl =γ1 +
[√
|M |Σ

]
l−1

∀ 1 < l ≤ |M |+ 1 (6.9)

γl =γ1 −
[√
|M |Σ

]
l−(d+1)

∀ d+ 1 < l ≤ 2|M |+ 1 (6.10)

kl=
1

2|M |+ 1
∀ 1 ≤ l ≤ 2|M |+ 1 (6.11)

where
[√
|M |Σ

]
l

denotes the l-th row of the matrix square root of |M |Σ, which is the

covariance matrix Σ of XM (conditioned on XO) multiplied by the number of missing

entries |M |.

Although this UT approach could be applied directly to estimate the value

of arbitrary basis expansion functions in our context, the number of required samples L

grows with the number of missing entries, which could make it computationally inefficient

when X counts on many missing features.

To alleviate this problem, we propose two methodologies based on the UT

that require only three one-dimensional sigma points, independent of |M |. The first

one, presented in Subsection 6.1.1, is tailored to the sigmoid function and can be easily

generalized to any φ(·) that can expressed as transform of λ ·X. The latter, in Subsection

6.1.2, deals with the q-Gaussian function and can be adapted for any φ(·) that is a transform

of ‖X − λ‖2.

6.1.1 Sigmoid Function

Given an input vector X = (x1, . . . , xD)T , the sigmoid function is given by:

fσ(X) =
1

1 + e−λ·X
, (6.12)

in which λ = (λ1, . . . , λD)T is a predefined constant vector.

Note that fσ(X) can be written as a transform of the random variable λ ·X,

whose expectation is given by:

E[λ ·X] =
D∑
d=1

λdE[xd], (6.13)

and has variance:

Var[λ ·X] =
D∑
d=1

λ2dVar[xd]. (6.14)
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Using the aforementioned UT scheme, we can approximate E[fσ(X)] using L = 3 sigma

points as follows:

E[fσ(X)] ≈
∑

i∈{−1,0,1}

(
1 + exp{−E[λ ·X]− iVar[λ ·X]}

)−1
3

(6.15)

It is important to notice this methodology also applies to any transform of X

that can be written as a function of λ ·X.

6.1.2 q-Gaussian Function

For an input vector X = (x1, . . . , xD)T , the q-Gaussian activation function can

be expressed as:

G(X) = eq(−‖X − λ‖2ν−1) (6.16)

where λ = (λ1, . . . , λD)T , ν > 0 and q ∈ R are predefined constants while

eq(t) = [1 + (1− q)t]
1

1−t . (6.17)

Note that G(X) can be written as a transform of ‖X −λ‖2, whose expectation is given by

E[‖X − λ‖2] =
D∑
d=1

(E[xd]− λd)2 + Var[xd], (6.18)

and has variance:

Var[‖X − λ‖2] =
D∑
d=1

E[x4d]− E[x2d]
2 + 4λ2dVar[xd]. (6.19)

Thus, E[G(X)] can be approximated using the aforementioned UT scheme with exactly

L = 3 sigma points, as follows:

E[G(X)] ≈
∑

i∈{−1,0,1}

eq(−(E[‖X − λ‖2] + i
√

Var[‖X − λ‖2])ν−1)
3

(6.20)

Notice that this methodology can be trivially adapted to estimate the value of

any specific transform φ(X) that can be expressed as a function of ‖X − λ‖2.

6.2 Experiments and Results

We perform two different sets of experiments to validate our methodologies. In

the first, we study how the uncertainty on the estimation of the missing values affects the
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quality of the function estimates. In the second, we validate our estimation procedures

on real-world data. Table 13 summarizes the details of these experiments. The following

subsections present and discuss the results. In the first experiment, we compare our

strategy against the CMI. In the later ones, we also compare it against ICkNNI.

Table 13 – Overview of the experiments.

Objective Setup

EX1 Assess the quality of the estima-
tion as a function of the uncer-
tainty on the estimation of the
missing values

λ is fixed and X is drawn from
an univariate Normal distribu-
tion with known mean and vari-
ance.

EX2 Validate the method on Real-
world data

Different datasets from the UCI
repository were employed.

6.2.1 EX1: Univariate Normal data with known parameters

For this experiment, we set λ = 3 and assume X ∼ N (2, σ2
n). Since the

distribution of X is known, there is no need to estimate a model for the data as the true

distribution N (2, σ2
n) is given. For the q-Gaussian function, we set q = 1/2 and ν = 4.

To obtain benchmarks, we compute Monte Carlo (MC) estimates of both fσ

and the q-Gaussian by performing 108 draws of X from N (2, σ2
n), taking the value of the

transforms for each sample and then average over the respective computed values. This is

done to obtain an accurate approximation of the expected value of the basis functions.

Based on that, a method is as good as its estimates are similar to the ones obtained via

Monte Carlo.

We compare our methodologies against CMI, a common imputation procedure.

Table 14 shows the average value of sigmoid function computed by each method for different

values of σ2
n. Table 15 holds similar statistics for the q-Gaussian function. In these tables,

both our methodologies are referred to as Simplified UT (SUT).
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Table 14 – Sigmoid function estimates.

σ2
n MC CMI SUT

10−2 0.9974 0.9975 0.9975
10−1 0.9963 0.9975 0.9967
100 0.9541 0.9975 0.9833
101 0.7402 0.9975 0.6757
102 0.5972 0.9975 0.6658

Table 15 – q-Gaussian function estimates.

σ2
n MC CMI SUT

10−2 0.9381 0.9385 0.9379
10−1 0.9332 0.9385 0.9327
100 0.8858 0.9385 0.8828
101 0.6599 0.9385 0.5869
102 17.9307 0.9385 17.9307

Unsurprisingly, the estimates obtained using CMI are the same regardless of

the value of σ2
n. This is expected, since the the expected value of X depends only of µ.

While both CMI quickly deteriorate as σ2
n increases, SUT is consistent, approximating the

MC estimate more accurately.

6.2.2 EX2: Experiments on Real-World Data

We evaluate the performance of the proposed methodology in real-world datasets.

For that purpose, 7 datasets were selected from the UCI Machine Learning Repository

(LICHMAN, 2013). Further details on these datasets are available in Table 16.

Table 16 – Data sets description

Dataset Size Features

CANCER 194 32
MPG 392 7
CPU 209 9
CONCRETE COMPRESSION (COMP) 1030 80
BOSTON HOUSING (HOUSING) 506 13
RED WINE (RED) 1599 11
WHITE WINE (WHITE) 4898 3

For both the sigmoid and q-Gaussian functions, twenty similar rounds of

experiment were carried. In each of these rounds, the percentage of instances with missing

samples was iteratively increased from 10% to 50% (in steps of 20%) of the dataset size.
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The number of features to be deleted in each of these samples is decided independently by

drawing a number from {1, · · · , dD/3e}. In each step we use different methods to estimate

the transforms, and measured the RMSE between the obtained estimates and the true

function values computed beforehand. At each these, the vector λ, in each iteration, was

chosen at random, independently and with equal probability, from the complete examples

in the dataset. Since the true distribution of the data is unknown, we estimate a GMM

comprising three components. Besides CMI, we also compare our method against ICkNNI,

using the parameters suggested in Hulse e Khoshgoftaar (2014).

Results, in terms of average RMSE, are presented in Table 17 for the sigmoid

function and in Table 18 for the q-gaussian. We employed Wilcoxon’s signed-rank test,

with a 5% significance level, to verify the statistical significance of the results. The symbols

3 and 7 indicate the result of the hypothesis test (3 fail to reject, and 7 reject).

Table 17 – Comparison between SUT and other methods to compute the sigmoid function
on real-world data - RMSE values.

% ICkNNI CMI SUT

Cancer 10 66.5377 65.947 54.4
30 64.9537 68.1487 46.746
50 70.4197 69.5927 43.209

MPG 10 3.79667 3.76827 2.8901
30 4.12047 3.86267 2.9708
50 4.24257 4.08617 3.0207

CPU 10 123.437 120.587 82.31
30 106.787 103.697 78.437
50 115.847 120.277 78.753

Compression 10 8.21387 8.19567 8.0523
30 8.40743 8.43253 8.3549
50 8.56553 8.53913 8.4992

Boston Housing 10 5.06357 5.04797 4.625
30 5.29717 5.23177 4.6414
50 5.55687 5.37767 4.7814

Red Wine 10 0.678247 0.678987 0.66255
30 0.681917 0.680547 0.65806
50 0.680047 0.681077 0.65715

White Wine 10 0.752537 0.75237 0.74851
30 0.752797 0.752937 0.74967
50 0.754037 0.753083 0.7517
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Table 18 – Comparison between SUT and other methods to compute the q-Gaussian
function on real-world data - RMSE values.

% ICkNNI CMI SUT

Cancer 10 61.7747 62.87 45.119
30 62.7317 70.8547 42.632
50 74.6577 63.3047 40.526

MPG 10 2.99747 3.00867 2.83
30 3.0197 3.00067 2.8676
50 3.13137 3.15217 2.9199

CPU 10 52.2537 55.021 3 87.105
30 110.5 3 112.11 3 83.031
50 187.927 154.297 70.111

Compression 10 7.7274 3 7.7412 3 7.7099
30 7.8419 3 7.8907 3 7.8701
50 7.964 3 7.9434 3 7.9131

Boston Housing 10 4.64637 4.5777 3.9617
30 4.9837 5.38997 4.2295
50 5.37237 5.2067 4.3628

Red Wine 10 0.687997 0.688277 0.65382
30 0.688137 0.689127 0.64616
50 0.69187 0.69917 0.64542

White Wine 10 0.78623 3 0.77484 3 0.75504
30 0.75943 3 0.79594 3 0.73886
50 0.7798 3 0.84248 3 0.74111

As one can notice, SUT achieved the best overall results in most of the cases.

Additionally, it is interesting to verify that even using a statistical model with only three

Gaussians, SUT was able to outperform a non-parametric model such as the ICkNNI.

6.3 Conclusion

In this chapter, we presented methodologies to estimate the value of basis

functions from incomplete feature vectors. The proposed strategies used the unscented

transform to compute the expected value of the transforms. It is important to highlight

that our strategies require O(1) samples, more specifically three, independent of the number

of missing entries on the input vector.

The proposed strategies were validated in artificial and real-world scenarios,

outperforming other methods in the literature.
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7 CONCLUDING REMARKS

The contribution presented in this thesis is fourfold and consists on methodolo-

gies to estimate the value of the Gaussian Kernel, the Euclidean Distance, the Epanechnikov

kernel and of arbitary basis functions in the presence of missing data. These contributions

are presented, respectively, in Chapters 3, 4, 5, 6. The common idea behind all the

solutions is to treat the missing entries in the feature vectors as random variables and

taking the expected value of the quantities of interest.

In Chapters 3, 4 and 5, the expectations are taken with respect to the (Gamma-

distributed) squared distance z between these vectors. By doing so, we provide elegant

formulas which depend only on the non-central moments of the missing components.

In Chapter 6, we provide tools for estimating the value of arbitrary basis

functions. The proposed estimation procedure is based on the Unscented Transform and

requires O(1) samples, independent of the number of missing entries on the input.

The proposed methodologies take into account the uncertain nature of these

entries, which would otherwise be lost if data was directly imputed.

To obtain estimates of the non-central moments needed, we assume the data

distribution can be modelled as a GMM, whose parameters can be computed via EM. It is

important to highlight that the developments presented are not bound to this assumption

as the GMM could be easily substituted by any other probabilistic model.

The proposed approaches were validated against standard strategies to handle

missing data, ESD (EIROLA et al., 2013; EIROLA et al., 2014) and ICkNNI (HULSE;

KHOSHGOFTAAR, 2014), which, in contrast to the former ones, is non-parametric

and does not rely on the quality of a model estimated from the data. Even though our

methodologies also depend on the quality of such a model, they consistently outperformed

the aforementioned methods in both artificial and real-world scenarios.

An obvious unfolding of this work is to apply the methods presented in the

previous chapters directly to Machine Learning algorithms. This front has already been

partially explored in Mesquita et al. (2017).
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