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ABSTRACT

Instance-based learners habitually adopt instance selection techniques to reduce complexity

and avoiding overfitting. Such learners’ most recent and well-known formulations seek to

impose some sparsity in their training and prediction structure alongside regularization to meet

such a result. Due to the variety of such instance-based learners, we will draw attention to the

Least-Squares Support Vector Machines and Minimal Learning Machines because they embody

additional information beyond the stored instances so they can perform predictions. Later, in this

thesis, we formulate variants that constrain candidate solutions within a specific functional space

where overfitting is avoided, and model complexity is reduced. In the Least-Squares Support

Vector Machines context, this thesis follows the pruning fashion by adopting the Class-Corner

Instance Selection. Such an approach focuses on describing the class-corner relationship among

the samples on the dataset to penalize the ones close to the corners. As for the Minimal Learning

Machine model, this thesis introduces a new proposal called the Lightweight Minimal Learning

Machine. It adopts regularization in the complexity term to penalize each sample’s learning,

resulting in a direct method. Usually, this penalization goes in alongside the term error. This

thesis describes strategies based on random and observed linearity conditions related to the data

for regression tasks. And, as for classification tasks, this thesis employs the before-mentioned

class-corner idea to regularize them. Thus, resulting in the ones close to the corners suffering

more penalization. By adopting such a methodology, we reduced the number of computations

inherent in the original proposal’s multilateration process without requiring any instance selection

criterion, yielding a faster model for out-of-sample prediction. Additionally, another remarkable

feature is that it derives a unique solution when other formulations rely on overdetermined

systems.

Keywords: instance selection; minimal learning machine; regularization; least-squares support

vector machine.



RESUMO

Os algoritmos de aprendizagem com base em instâncias normalmente adotam técnicas de seleção

de instâncias para reduzir a complexidade e evitar o sobreajuste. As formulações mais recentes e

conhecidas de tais algoritmos buscam obter alguma esparsidade em sua estrutura de treinamento

e predição junto com a regularização para atingir tal resultado. Devido à variedade de algoritmos

com base em instâncias, nesta tese, daremos atenção para as Máquinas de Vetores de Suporte

de Mínimos Quadrados e Máquinas de Aprendizagem Mínimas porque ambas incorporam

informações adicionais além das instâncias armazenadas para que possam realizar predições.

Posteriormente, nesta tese, formulamos variantes que restringem as soluções candidatas dentro

de um espaço funcional específico onde o sobreajuste é evitado e a complexidade do modelo é

reduzida. No contexto de Máquinas de Vetores de Suporte de Mínimos Quadrados, esta tese segue

o método de poda, adotando um algoritmo de seleção de instâncias com base em canto de classe.

Essa abordagem se concentra em descrever a relação de canto de classe entre as amostras no

conjunto de dados para penalizar as demais amostras próximas aos cantos. Quanto às Máquinas

de Aprendizagem Mínimas, esta tese apresenta uma nova proposta denominada Máquina de

Aprendizagem Mínima de Pesos Leves. Essa nova proposta adota a regularização no termo de

complexidade para penalizar o aprendizado de cada amostra, resultando em um método direto, já

que normalmente essa penalização acompanha o termo erro. Esta tese descreve estratégias com

base em condições aleatórias e características lineares da função alvo relacionadas aos dados

para tarefas de regressão. E, quanto à tarefas de classificação, esta tese emprega a ideia de canto

de classe mencionada anteriormente para regularizá-las. Assim, resultando em que as amostras

próximas aos cantos sofram mais penalização. Ao adotar essa metodologia, reduzimos o número

de cálculos inerentes ao processo de multilateração da proposta original sem exigir nenhum

critério de seleção de instância, gerando um modelo mais rápido para predições. Além disso,

outra característica notável é que é derivada uma solução única, enquanto que outras formulações

dependem de sistemas sobredeterminados.

Palavras-chave: seleção de instâncias; máquina de aprendizagem mínima; regularização;

máquina de vetor de suporte por mínimos quadrados.
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1 INTRODUCTION

Instance-based learners are computational models that, instead of making explicit

generalizations, compare instances of new problems with instances seen in the learning process

(previously stored in memory) (AHA et al., 1991). From such a class of models, we highlight

the algorithm of the Nearest K-Neighbors (K-NN) (COVER; HART, 1967), the Support Vector

Machine Machines (SVM) (CORTES; VAPNIK, 1995), the Relevance Vector Machine (RVM)

(TIPPING, 2001) and, more recently, the Minimal Learning Machine (MLM) (SOUZA JÚNIOR

et al., 2015).

Such models build hypotheses directly from the training instances themselves, thus

implying that the hypotheses’ complexity can grow with the data. For complex enough models

with a large number of free parameters, a perfect fit to the training data is possible (RUSSELL et

al., 2020). However, the generalization, as the complexity increases, tends to decrease.

In this case, reducing complexity means restricting the amount of data used in the

learning process. By this reduction, we also restrict the space of hypotheses that the model can

generalize. Following the principle of Occam’s razor (MACKAY, 1992): balancing both the

complexity of the induced model and the ability to generalize ends up being a challenging task,

while it is also highly desired.

Also, the difficulties inherent in dealing with the instance selection problem increase,

as some techniques still treat such a selection based on empirical assumptions about the instances’

locations. Moreover, some techniques treat such a selection as an isolated task, not fully

incorporating its effects into the induced models (GARCIA et al., 2012).

Aditionally, from the instance selection perspective, analyzing the instance selection

problem from a data set of size N individually, we observe two questions: (i) defining a subset

from the data set, with K samples; and (ii) how to identify which specific combination of samples

among the
�N

K
�

possible combinations.

By borrowing a definition from Least-Square Support Vector Machines (LSSVM)

(SUYKENS; VANDEWALLE, 1999) literature, Mall and Suykens (2015) categorized efforts

to reduce the number of support vectors in LSSVMs into two groups: (i) reduction methods

and (ii) direct methods. The reduction methods focus on training a usual LSSVM and, then,

apply some pruning strategy, identifying the new support vectors so that the newly trained model

can be derived, while the direct ones enforce sparsity from the beginning. Additionally, in the

most recent and adopted formulations of Minimal Learning Machine (MLM), named Random-
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MLM (SOUZA JÚNIOR et al., 2015), a lower-rank linear system is obtained by (randomly)

selecting reference points (samples) as a manner to also impose some sparsity in both training

and prediction alongside regularization.

In both cases, the sparsity criterion, often related to overfitting in neural network

sparsity, is interpreted as an indicator of success in learning due to several empirical investiga-

tions (HUESMANN et al., 2021). However, recent experiments suggest that our comprehension

of sparsity is insufficient to fully understand its underlying relationship to generalization errors

(HUESMANN et al., 2021 apud LIU et al., 2019) (HUESMANN et al., 2021 apud ZHOU et al.,

2019). Interestingly, even though sparsity inevitably induces an underutilization of the network’s

capacity (AYINDE et al., 2019), it has never been considered to be used to explain overfitting.

Nevertheless, sparsity in LSSVMs and MLMs is associated with restricting the hy-

pothesis space since it acts by accounting for (and used for restricting) the number of parameters

– the support vectors in LSSVM and the reference points in MLM – to later measure the model

complexity. In short, one can indeed account for the degree of freedom via sparsity, but sparsity

is not directly related to generalization.

Another aspect that is not widespread in the current literature, and the object of study

and contribution of this thesis, is the use instance selection algorithm as regularization in the

complexity term, resulting in a direct method. Usually, we see formulation respect to applying

instance selection algorithms with a focus on the error term or simply acting as a reduction

method. Such a path mentioned above does not thrive in this thesis.

1.1 Objectives

Provide an instance selection algorithm that later can be embedded into the estimation

of model parameters in one solution. In this way, we will have an algorithm capable of dealing

with two existing problems in instance-based models: (i) the lack of an instance selection

mechanism; (ii) and control of the model’s complexity. In a more specific sense, this thesis has

the following objectives:

a) to provide an instance selection algorithm;

b) to assess such an instance selection algorithm in the LSSVM framework;

c) to provide a new MLM formulation able to integrate such an instance selection

mechanism during the learning phase as regularization;

d) to evaluate aspects of the proposals mentioned above, namely, the prediction
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error performance, the goodness-of-fit of estimated vs. measured values, and the

model complexity.

1.2 Publications

The following articles were written and published during the period in which this

thesis was under development:

a) Saulo A. F. Oliveira, João P. P. Gomes e Ajalmar R. Rocha Neto. “Sparse

Least-Squares Support Vector Machines via Accelerated Segmented Test: a Dual

Approach”. Neurocomputing. 2018.

b) José A. V. Florêncio, Saulo A. F. Oliveira, João P. P. Gomes e Ajalmar R.

Rocha Neto. “A new perspective for Minimal Learning Machines: A lightweight

approach”. Neurocomputing. 2020.

1.3 Document organization

This rest of the thesis is organized in six chapters, which are described below.

Chapter 2 presents the Theoretical Background and various aspects related to the

foundation concepts of this thesis. We first present the Instance based-learners because we

will treat the instance relevance later in the following chapters and contributions to this thesis.

From this perspective, we present the Least-Squares Support Vector Machines and the Minimal

Learning Machines, describing their modeling aspects related to when parameters pop in but

driven by training examples. Furthermore, we present some foundations concepts related to the

control of complexity (Regularization) associated with training examples.

In Chapter 3, we present the first contribution of this thesis, named Class Corner

Instance Selection, as a manner to provide a control mechanism for Reducing Complexity

by Instance Selection on Least-Squares Support Vector Machines. From that, we derived the

second contribution of this thesis, a LSSVM model that incorporates the Instance Selection,

that performs both reduce set and support vector selection.

In Chapter 4, we deal with reducing complexity in Minimal Learning Machines by

Instance Selection. Here, we formulate the third contribution of this thesis: a “Lightweight”

Minimal Leaning Machine model that employs regularization by Instance Selection. In this

contribution, we highlight how the general MLM framework can take advantage of such a
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strategy to learn in a restricted hypothesis space and generate a faster model for prediction in

regression tasks.

In Chapter 5, we revisit the Lightweight Minimal Leaning Machine. This time,

we combine both the first contribution and the third contribution of this thesis to deal with

classification tasks in a straightforward manner. Such a combination results in the fourth and

last contribution is the Class Corner Lightweight Minimal Learning Machine. It relies on

regularizing the distance complement (as for a non-corner sample) to each class’ corners to

achieve the final parameters.

Finally, we present the concluding remarks and possible unfolding works from this

thesis’s four contributions in Chapter 6.

1.4 Statement of authorship

The work presented in this thesis comes from two previously published papers. Next,

we now provide authorship information for such papers.

Chapter 3 is based on:

Saulo A. F. Oliveira, João P. P. Gomes e Ajalmar R. Rocha Neto. “Sparse
Least-Squares Support Vector Machines via Accelerated Segmented Test: a
Dual Approach”. In Neurocomputing, 2018.

The lead author – of the paper above and the thesis in hand - developed the problem

formulation, developed the algorithm, developed the empirical tests, and wrote most of the paper.

The second and third authors provided advisory feedback w.r.t. the design and development of

the project. They contributed directly to the writing and editing of the paper.

Chapter 4 is based on:

José A. V. Florêncio, Saulo A. F. Oliveira, João P. P. Gomes e Ajalmar R. Rocha
Neto. “A new perspective for Minimal Learning Machines: A lightweight
approach”. In Neurocomputing, 2020.

The lead author developed the algorithm and empirical tests and wrote ⇡ 1⁄2 of the

paper. The second author developed the problem formulation, the theoretical analysis, provided

feedback on the experiment design, and contributed significantly to the paper’s general writing

and editing. Both third and fourth authors provided advisory feedback w.r.t. the design and

development of the project. They contributed directly to the writing and editing of the paper.
Finally, Chapter 5 comprises a novel proposal sent for peer review.
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Saulo A. F. Oliveira, João P. P. Gomes e Ajalmar R. Rocha Neto. “Controlling
complexity in Instance-based classifiers: a class-corner approach”.

The lead author developed the problem formulation, developed the algorithm, devel-

oped the empirical tests, and wrote most of the paper. The second and third authors provided

advisory feedback w.r.t. the design and development of the project. They contributed directly to

the writing and editing of the paper.
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2 THEORETICAL BACKGROUND

A large class of machine learning problems ends up as being equivalent to a function

estimation/approximation task. The function is “learned” during the learning/training phase by

digging in the information that resides in the available training data set. This function relates the

so-called input variables to the output variable(s). Once this functional relationship is established,

one can in turn exploit it to predict the value(s) of the output(s), based on measurements from the

respective input variables; these predictions can then be used to proceed to the decision making

phase (THEODORIDIS, 2020).

In parametric modeling, the aforementioned functional dependence that relates the

input to the output is defined via a set of parameters, whose number is fixed and a-priori known.

The values of the parameters are unknown and have to be estimated based on the available input-

output observations. In contrast to the parametric, there are the so-called nonparametric methods.

In such methods, parameters may still be involved to establish the input–output relationship, yet

their number is not fixed; it depends on the size of the data set and it grows with the number of

observations (THEODORIDIS, 2020).

This approach is called instance-based learning or memory-based learning. The

simplest instance-based learning method is table lookup: take all the training examples, put

them in a lookup table, and then when asked for a given query x, see if x is in the table; if it is,

return the corresponding label y. The problem with this table lookup method is that it does not

generalize well: when x is not the table, all it can do is return some default value (RUSSELL et

al., 2020).

Fousing on the task of supervised learning which states the following: Given a

training set D = {(xi,yi)}N
i=1 of N example input–output sample pairs, where xi 2 RD and

yi 2 RS where each yi was generated by an unknown function y = f (x), discover a function h(·)

that approximates the true function f (·) (RUSSELL et al., 2020).

From the above, one can notice that learning is a search through the space of possible

hypotheses for one that will perform well, even on new examples beyond the training set. Also,

since f (·) is unknown, we will approximate it with a function h(·) selected from a hypothesis

space H.

In Figure 1, one see a fundamental problem in inductive learning: how do we choose

from among multiple consistent hypotheses? Defining simplicity is not easy, but it seems clear

that a degree-1 polynomial is simpler than a degree-7 polynomial, and thus Figure 1(a) should
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Figure 1 – Possible hypotheses for some data set. In (a) there is a consistent linear hypothesis,
while in (b) there is a consistent degree-7 polynomial hypothesis for the same data
set.

696 Chapter 18. Learning from Examples
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f(x) f(x) f(x) f(x)

Figure 18.1 (a) Example (x, f(x)) pairs and a consistent, linear hypothesis. (b) A con-
sistent, degree-7 polynomial hypothesis for the same data set. (c) A different data set, which
admits an exact degree-6 polynomial fit or an approximate linear fit. (d) A simple, exact
sinusoidal fit to the same data set.

generalizes well if it correctly predicts the value of y for novel examples. Sometimes theGENERALIZATION

function f is stochastic—it is not strictly a function of x, and what we have to learn is a
conditional probability distribution, P(Y | x).

When the output y is one of a finite set of values (such as sunny, cloudy or rainy),
the learning problem is called classification, and is called Boolean or binary classificationCLASSIFICATION

if there are only two values. When y is a number (such as tomorrow’s temperature), the
learning problem is called regression. (Technically, solving a regression problem is findingREGRESSION

a conditional expectation or average value of y, because the probability that we have found
exactly the right real-valued number for y is 0.)

Figure 18.1 shows a familiar example: fitting a function of a single variable to some data
points. The examples are points in the (x, y) plane, where y = f(x). We don’t know what f
is, but we will approximate it with a function h selected from a hypothesis space, H, whichHYPOTHESIS SPACE

for this example we will take to be the set of polynomials, such as x5+3x2+2. Figure 18.1(a)
shows some data with an exact fit by a straight line (the polynomial 0.4x + 3). The line is
called a consistent hypothesis because it agrees with all the data. Figure 18.1(b) shows a high-CONSISTENT

degree polynomial that is also consistent with the same data. This illustrates a fundamental
problem in inductive learning: how do we choose from among multiple consistent hypotheses?
One answer is to prefer the simplest hypothesis consistent with the data. This principle is
called Ockham’s razor, after the 14th-century English philosopher William of Ockham, whoOCKHAM’S RAZOR

used it to argue sharply against all sorts of complications. Defining simplicity is not easy, but
it seems clear that a degree-1 polynomial is simpler than a degree-7 polynomial, and thus (a)
should be preferred to (b). We will make this intuition more precise in Section 18.4.3.

Figure 18.1(c) shows a second data set. There is no consistent straight line for this
data set; in fact, it requires a degree-6 polynomial for an exact fit. There are just 7 data
points, so a polynomial with 7 parameters does not seem to be finding any pattern in the
data and we do not expect it to generalize well. A straight line that is not consistent with
any of the data points, but might generalize fairly well for unseen values of x, is also shown
in (c). In general, there is a tradeoff between complex hypotheses that fit the training data
well and simpler hypotheses that may generalize better. In Figure 18.1(d) we expand the

(a)
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Source – Adapted from Russell et al. (2020).

be preferred to Figure 1(b).

2.1 Instance-based learning

The earliest instance-based algorithms were synonymous with nearest neighbor

for pattern classification, though the field has now progressed well beyond the use of such

algorithms. At that time, the principle of instance-based methods was often understood in

the earliest literature as follows: “. . . similar instances have similar classification” (AHA et

al., 1991). However, according to a broader and more powerful principle to characterize such

methods would be: “ Similar instances are easier to model with a learning algorithm, because of

the simplification of the class distribution within the locality of a test instance” (AGGARWAL,

2014).

The primary output of an instance-based algorithm is a concept description. As in the

case of a classification model, this is a function that maps instances to category values. However,

unlike traditional classifiers, which use extensional concept descriptions, instance-based concept

descriptions may typically contain a set of stored instances and some information about how

the stored instances may have performed in the past during classification (AGGARWAL, 2014).

According to AHA et al. (1991), there are three primary components in all instance-based

learning algorithms:

a) Similarity or Distance Function. It computes the similarities between the

training instances, or between the test instance and the training instances. This is
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used to identify a locality around the test instance;

b) Classification Function. It yields a classification for a particular test instance

with the use of the locality identified with the use of the (similarity) distance

function. In the earliest descriptions of instance-based learning, a nearest neigh-

bor classifier was assumed, though this was later expanded to the use of any kind

of locally optimized model;

c) Concept Description Updater. It typically tracks the classification performance,

and makes decisions on the choice of instances to include in the concept descrip-

tion.

Traditional classification algorithms eagerly construct explicit abstractions and gen-

eralizations (e.g., decision trees or rules) in a pre-processing phase, while instance-based learners

use them along with the training data to construct the concept descriptions. Thus, the approach

is lazy in the sense that knowledge of the test sample is required before model construction.

Clearly, the tradeoffs are different in the sense that “eager” algorithms avoid too

much work at prediction but are myopic in their ability to create a specific model for a test

instance in the most accurate way. Additionally, traditional modeling techniques such as decision

trees, regression modeling, Bayes, or rule-based methods are commonly used to create an

optimized classification model around the test instance. The optimization inherent in the test

sample localization provides the most significant advantages of instance-based learning (AHA et

al., 1991).

In this thesis, we will draw attention to such instance based-learners in the context of

Nearest Neighbors, Least-Squares Support Vector Machines, and Minimal Learning Machines.

Such learners embody, beyond the stored instances, additional information so they can perform

predictions. Later, in this thesis, we formulate variants that find them constrained candidate

solutions that lie within a specific functional space. We describe such learners in the following

subsections.

2.1.1 The Nearest Neighbor Classifier

One can improve on table lookup with a slight variation: given a query xq, find

the k examples that are nearest to xq. This is called k-nearest neighbors lookup. We will use

the notation NN k(xq) to denote the set of k nearest neighbors. To do classification, first find

NN k(xq), then take the plurality vote of the neighbors (which is the majority vote in the case of
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binary classification). To avoid ties, k is always chosen to be an odd number. To do regression,

we can take the mean or median of the k neighbors, or we can solve a linear regression problem

on the neighbors (RUSSELL et al., 2020).

As usual, cross-validation can be used to select the best value of k. The very word

“nearest” implies a distance metric (RUSSELL et al., 2020). Typically, distances are measured

with a Minkowski distance or Lp norm to measure the distance from a query point xq to an

example point x j, defined as

d(x j,xq) =

 

Â
i

|x j,i� xq,i|p

! 1
p

. (2.1)

The NN k(xq) function is conceptually trivial: given a set of N examples and a query

xq, iterate through the examples, measure the distance to xq from each one, and keep the best

k (RUSSELL et al., 2020). From this, the output prediction is according to:

h(x) = argmax
v

Â
(xi,yi)

[yi = v] such that (xi,yi) 2NN k(x). (2.2)

See both Algorithm 1 and Algorithm 2 for the training and prediction procedure in k-KNN,

respectively.

Algorithm 1 Training procedure in k-NN.

KNN-TRAINING(X ,Y)

1 Store samples into memory (perhaps build a data structure with indexed data).

Algorithm 2 Prediction procedure in KNN.

KNN-PREDICT(x?,k)

⇤ Rescue the k nearest neighbors from memory.
1 Compute S NN k(x).

⇤ Yield the majority label from nearest neighbors.
2 return argmax

v
Â

(xi,yi)
[yi = v] so that (xi,yi) 2 NN k(x).

If we are satisfied with an implementation that takes O(N) execution time, then that

is the end of the story. But instance-based methods are designed for large data sets, so we would

like an algorithm with sublinear run time. Elementary analysis of algorithms tells us that exact
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table lookup is O(N) with a sequential table, O(logN) with a binary tree, and O(1) with a hash

table (RUSSELL et al., 2020).

An interesting property of the nearest-neighbor (k = 1) classifier is that, in the limit

N! •, the error rate is never more than twice the minimum achievable error rate of an optimal

classifier, i.e., one that uses the true class distributions (BISHOP, 2016 apud COVER; HART,

1967).

2.1.2 Least-Squares Support Vector Machine Classifiers

The Least-Squares Support Vector Machine (LSSVM) (SUYKENS; VANDEWALLE,

1999) is a supervised method whose training step consists of solving a linear system resulting

from the optimally conditions that appear from minimizing the primal optimization problem of

SVM (CORTES; VAPNIK, 1995) in a least-squares sense. Output prediction for new incoming

inputs is achieved by using the resulting solution (Lagrange multipliers and bias) alongside the

input data into a high-dimensional feature space.

The LSSVM primal problem is defined as:

min
w,xxx

J (w,xxx ) =
1
2

w|w+
g
2

N

Â
i=1

x 2
i

such that w|f(xi)+b = yi�xi, i = 1, . . . ,N, (2.3)

where f : RD! RS is a feature map to a high-dimensional feature space (which can be infinite

dimensional, i.e., S = •), xxx = {xi}N
i=1 are the errors (xi 2 R) and g 2 R+ is the cost parameter

that controls the trade-off between allowing training errors and forcing rigid margins. The

solution for Equation 2.3 is the saddle point of the following Lagrangian function:

L(w,b,xxx ,aaa) = J (w,xxx )+
N

Â
i=1

ai (yi�w|f(xi)�b�xi) , (2.4)

where aaa = {ai}N
i=1 are the Lagrangian multipliers, with ai 2 R. After eliminating w and xxx , one

obtains the Karush-Kuhn-Tucker (KKT) system Au = v from the conditions for optimality:
2

4 0 111|

111 WWW+ g�1I

3

5

| {z }
A

2

4 b

aaa

3

5

| {z }
u

=

2

4 0

Y

3

5

| {z }
v

, (2.5)

where WWW is the kernel matrix in which Wi, j = hf(xi)|f(x j)i = K(xi,x j) for i, j = 1,2, . . . ,N

with K(·, ·) a Mercer kernel function, I is the identity matrix of size N⇥N, Y = [y1,y2, . . . ,yN ]|,



31

and 111 is a matrix of ones with a proper dimension. From the KKT conditions, we get that

w =
N

Â
i=1

aif(xi), (2.6)

ai = yixi. (2.7)

From Equation 2.7, the main problem with respect to LSSVM arises: the lack of

sparseness. In real-world problems xi usually is nonzero and yi 2 {±1}, thus, resulting in ai 6= 0.

The pratical effect of such construction is that most input samples will be employed as support

vectors.

The learning algorithm of LSSVM simple requires the solution of the system of

linear equations described in Equation 2.5 where A is a non-singular symmetric dense matrix

and v is a dense vector. The unique dense solution u = [b, aaa|]| can be obtained as follows

u = A�1v. In possession of the Lagrange multipliers aaa and the bias b from u, one can now

predict the out-of-sample inputs.

Predicting the outputs for new input data mainly refers to employ the resulting

Lagrange multipliers aaa and bias b alongside the input data into a high-dimensional feature space,

that is

h(x) = sign

 
N

Â
i=1

aiK(x,xi)+b

!
. (2.8)

Among all the kernel functions, the (Gaussian) RBF kernel:

K(x,z) = exp
✓
k x� z k2

2
2s

◆
, for s > 0,

is the most popular choice. For a more details with respect to the LSSVM model the reader is

referred to the work by Suykens and Vandewalle (1999).

Furthermore, we present the algorithms for training and out-of-sample prediction in

Algorithm 3 and Algorithm 4, respectively.

2.1.3 Minimal Learning Machine

The Minimal Learning Machine (MLM) (SOUZA JÚNIOR et al., 2015) is a super-

vised method used for pattern recognition and regression tasks. From the general framework for

supervised learning, MLM estimates h(·) for the target function f (·) from the data D through the

distance domain. For that, the problem is stated by employing pairwise distance matrices of each

point of D, namely, D and DDD, both representing the Euclidean distance – in the notation of d(·, ·)
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Algorithm 3 Training procedure in LSSVM.

LSSVM-TRAINING(X ,Y,g)

⇤ Construct the linear system Au = v.

1 A =


0 111|

111 WWW+ g�1I

�
.

2 v =


0
Y

�
.

⇤ Solve it.
3 u = A�1v.

⇤ Rescue the Lagrange multipliers aaa and bias b from u, that is u = [b, aaa|]|.
4 return aaa , b.

Algorithm 4 Prediction procedure in LSSVM.

LSSVM-PREDICT(x?)

⇤ Employ both aaa and b alongside the input data into a high-dimensional feature space.

1 Compute ŷ = sign
✓

N
Â

i=1
aiK(x,xi)+b

◆

2 return ŷ.

– of each point from D to the i-th reference point of D, i.e., Di, j = d(xi,x j) and DDDi, j = d(yi,y j),

then they have N⇥N dimensions.

For the sake of simplicity, in the following description and notation of MLM, con-

sider the two distance mapping functions F : RD ! RN and Y : RS ! RN . Here F(x) =
⇥
d(x,x1),d(x,x2), . . . ,d(x,xN)

⇤| while Y(y) =
⇥
d(y,y1),d(y,y2), . . . ,d(y,yN)

⇤|. Furthermore,

we call D and DDD the input and output spaces, respectively. Stated that, by assuming that the

mapping between the distance matrices has a linear structure for each response, the MLM model

can be rewritten in the form:

DDD = DB+E, (2.9)

where E is a residuals matrix.

The learning process consists of finding the mapping between the distances in the

input and output space. Since we assume such a mapping has a linear structure for each response,

the regression model can be rewritten in the form:

min
B

J (B) =k DB�DDD k2
F

, (2.10)
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it can be estimated by:

B̂ = D�1DDD. (2.11)

Predicting the outputs for new input data mainly refers to project the new data point

through the mapping and estimate the image of such a projection. Therefore, it is necessary

that the pattern x be also represented in the domain of distances so that we can represent it in

the output space. Such a representation is achieved by F(x)B. From this, the problem is to

estimate the image ŷ = h(x), from F(x)B and the images of reference points. This problem

can be treated as a multilateration (NIEWIADOMSKA-SZYNKIEWICZ; MARKS, 2009). In a

geometric viewpoint, estimate ŷ belonging to the set RS is equivalent to solving the determined

set of N non-linear equations corresponding to the S-dimensional hyper-spheres centered on

the images of the reference points, denoted by {yi}N
i=1. The location of ŷ can be estimated by

minimizing the objective function below:

ŷ = h(x) = argmin
y
k Y(y)�F(x)B k2 . (2.12)

For better understanding, we present, in short, the general algorithms for training

and prediction procedures in MLM. Keep in mind that according to the selected formulation

(presented in the following subsection), one might require other hyperparameters. The MLM

training procedure is sketched in Algorithm 5. The training procedure comprises two parts: (i)

the pairwise distance matrices computation; and (ii) the multi-response linear regression solution

on such matrices. Additionally, the prediction procedure is done by projecting the data to the

output space and find its image, as one can see in Algorithm 6.

Algorithm 5 Training procedure in MLM.

MLM-TRAINING(X ,Y)

1 Compute both distance pairwise matrices D and DDD from X and Y , respectively.
2 Compute B̂ = D�1DDD.
3 return B̂.

2.2 Model Complexity in Machine Learning

In describing the computational complexity of an algorithm, we are generally inter-

ested in the number of basic mathematical operations, such as additions, multiplications and
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Algorithm 6 Prediction procedure in MLM.

MLM-PREDICT(x?, B̂)

⇤ Project x? to the output space by computing F(x?) B̂.
1 Compute ŷ = arg min

y
k Y(y)�F(x?) B̂ k2.

2 return ŷ.

divisions it requires, or in the time and memory needed on a computer. Although in the current

context, the complexity issue emerges in a somewhat disguised form is usually defined in terms

of the number of free parameters the model can learn, e.g., hidden units and layers and their

connectivity, the form of activation functions, and free parameters of the learning algorithm

itself.

From this perspective, one can choose different functions and norms as terms in the

model formulation to account such a complexity.

2.2.1 Model performance vs. Model complexity

The central challenge in machine learning is that our algorithm must perform well

on new, previously unseen inputs–not just those on which the model was trained. The ability to

perform well on previously unobserved inputs is called generalization.

How can we affect performance on the test set when we can observe only the training

set? The field of statistical learning theory provides some answers (GOODFELLOW et al.,

2016). Under this process, the expected test error is greater than or equal to the expected value

of training error. The factors determining how well a machine learning algorithm will perform

its ability to:

a) make the training error small;

b) make the gap between training and test error small.

In Figure 2, we see a classical expected result of having model complexity variation

and the training error. The training error tends to zero as the model complexity increases; for

complex enough models with a large number of free parameters, a perfect fit to the training

data is possible. However, the test error initially decreases, because more complex models

“learn” the data better, up to a certain point. After that point of complexity, the test error

increases (THEODORIDIS, 2020).
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Figure 2 – Model complexity vs. Error (Model performance).

110 CHAPTER 3 LEARNING IN PARAMETRIC MODELING

FIGURE 3.12

The training error tends to zero as the model complexity increases; for complex enough models with a large number
of free parameters, a perfect fit to the training data is possible. However, the test error initially decreases, because
more complex models “learn” the data better, up to a certain point. After that point of complexity, the test error
increases.

performance against the training data set would lead to an “optimistic” value of the performance index,
because this is computed on the same set on which the estimate was optimized; this trend has been
known since the early 1930s [22]. For example, if the model is complex enough, with a large num-
ber of free parameters, the training error may even become zero, since a perfect fit to the data can be
achieved. What is more meaningful and fair is to look for the so-called generalization performance of
an estimator, that is, its average performance computed over different data sets which did not partic-
ipate in the training (see the last paragraph of Section 3.9.2). The error associated with this average
performance is known as the test error or the generalization error.8

Fig. 3.12 shows a typical performance that is expected to result in practice. The error measured on
the (single) training data set is shown together with the (average) test error as the model complexity
varies. If one tries to fit a complex model, with respect to the size of the available training set, then
the error measured on the training set will be overoptimistic. On the contrary, the true error, as this is
represented by the test error, takes large values; in the case where the performance index is the MSE,
this is mainly contributed by the variance term (Section 3.9.2). On the other hand, if the model is too
simple the test error will also attain large values; for the MSE case, this time the contribution is mainly
due to the bias term. The idea is to have a model complexity that corresponds to the minimum of the
respective curve. As a matter of fact, this is the point that various model selection techniques try to
predict.

For some simple cases and under certain assumptions concerning the underlying models, we are
able to have analytical formulas that quantify the average performance as we change data sets. How-
ever, in practice, this is hardly ever the case, and one must have a way to test the performance of an

8 Note that some authors use the term generalization error to denote the difference between the test and the training errors.
Another term for this difference is generalization gap.

Source – Adapted from Theodoridis (2020).

Some efforts advocate for the idea of having a model complexity that corresponds to

the minimum of the respective curve depicted in Figure 2. Such a task is indeed difficult because

it is not possible to choose the model that fits the data best: more complex models can always fit

the data better, leading us inevitably to implausible overparameterized models that generalize

poorly.

From that, two central challenges in machine learning arise: underfitting and

overfitting. Underfitting occurs when the model cannot obtain a sufficiently low error value on

the training set. Overfitting occurs when the gap between the training error and test error is too

large (GOODFELLOW et al., 2016).

Figure 3 – Appropriate Fitting vs. Underfitting vs. Overfitting.

1 degree polynomial

(a) Underfitting.

4 degree polynomial

(b) Appropriate capacity.

15 degree polynomial

(c) Overfitting.

Source – Own authorship. Inspired from Goodfellow et al. (2016).
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One way to control the capacity of a learning algorithm is by choosing its hypoth-

esis space, the set of functions that the learning algorithm is allowed to select as being the

solution (GOODFELLOW et al., 2016). In Figure 3, one can see how capacity is related to

complexity. Models with insufficient capacity are unable to solve complex tasks. Models with

high capacity can solve complex tasks, but when their capacity is higher than needed to solve the

present task, they may overfit.

In Figure 3, one can see such a principle in action when comparing linear, degree-4,

and degree-15 predictors attempting to fit a problem where the actual underlying function is from

the cos family. The linear function is unable to capture the curvatures in the actual underlying

problem, so it underfits. The degree-15 predictor can represent the correct function. However, it

can also represent infinitely many other functions that pass exactly through the training points

because there are more parameters than training examples. We have little chance of choosing a

solution that generalizes well when so many wildly different solutions exist. In such an example,

the degree-4 model perfectly matched the task’s actual structure, so it generalizes well to new

data.

In defiance of such an idea that higher complexity (over-parametrized) models have

lower bias but higher variance, deep learning practitioners have not experienced such an aspect

in modern neural networks (NAKKIRAN et al., 2019). Indeed, this behavior has guided a

best practice in deep learning for choosing neural network architectures, specifically that the

network should be large enough to permit effortless zero loss training (called interpolation) of

the training data1. Such behavior is portrayed as “double descent” risk curve, see Figure 4,

in which it subsumes the classical U-shaped (Figure 2) by extending it beyond the point of

interpolation (BELKIN et al., 2019).

All of the learned predictors to the right of the interpolation threshold fit the train-

ing data perfectly and have zero empirical risk. The capacity of the function class does not

necessarily reflect how well the predictor matches the inductive bias appropriate for the prob-

lem at hand. Choosing the smoothest function that perfectly fits observed data is a form of

Occam’s razor. However, when considering larger function classes that contain more candidate

predictors compatible with the data, we can find interpolating functions with smaller norms

and are thus “simpler”. Thus, increasing function class capacity improves the performance of

classifiers (BELKIN et al., 2019).
1 Ruslan Salakhutdinov. Deep learning tutorial at the Simons Institute, Berkeley. Available at: https://simons.

berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1, 2017. It was accessed on September 05th, 2021.

https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1
https://simons.berkeley.edu/talks/ruslan-salakhutdinov-01-26-2017-1
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Figure 4 – The double descent risk curve.
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Figure 1: Curves for training risk (dashed line) and test risk (solid line). (a) The classical
U-shaped risk curve arising from the bias-variance trade-o�. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high capacity function classes (i.e., the “modern” interpolating regime), sep-
arated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk.

When function class capacity is below the “interpolation threshold”, learned predictors exhibit
the classical U-shaped curve from Figure 1(a). (In this paper, function class capacity is identified
with the number of parameters needed to specify a function within the class.) The bottom of the
U is achieved at the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting: to the left of the sweet spot, predictors are under-fit, and immediately to the
right, predictors are over-fit. When we increase the function class capacity high enough (e.g.,
by increasing the number of features or the size of the neural network architecture), the learned
predictors achieve (near) perfect fits to the training data—i.e., interpolation. Although the learned
predictors obtained at the interpolation threshold typically have high risk, we show that increasing
the function class capacity beyond this point leads to decreasing risk, typically going below the risk
achieved at the sweet spot in the “classical” regime.

All of the learned predictors to the right of the interpolation threshold fit the training data
perfectly and have zero empirical risk. So why should some—in particular, those from richer
functions classes—have lower test risk than others? The answer is that the capacity of the function
class does not necessarily reflect how well the predictor matches the inductive bias appropriate for
the problem at hand. For the learning problems we consider (a range of real-world datasets as well
as synthetic data), the inductive bias that seems appropriate is the regularity or smoothness of
a function as measured by a certain function space norm. Choosing the smoothest function that
perfectly fits observed data is a form of Occam’s razor: the simplest explanation compatible with
the observations should be preferred (cf. [38, 6]). By considering larger function classes, which
contain more candidate predictors compatible with the data, we are able to find interpolating
functions that have smaller norm and are thus “simpler”. Thus increasing function class capacity
improves performance of classifiers.

Related ideas have been considered in the context of margins theory [38, 2, 35], where a larger
function class H may permit the discovery of a classifier with a larger margin. While the margins
theory can be used to study classification, it does not apply to regression, and also does not pre-
dict the second descent beyond the interpolation threshold. Recently, there has been an emerging
recognition that certain interpolating predictors (not based on ERM) can indeed be provably sta-
tistically optimal or near-optimal [3, 5], which is compatible with our empirical observations in the
interpolating regime.

In the remainder of this article, we discuss empirical evidence for the double descent curve, the

3

Source – Adapted from Belkin et al. (2019).

Finally, if there is one thing both classical statisticians and deep learning practitioners

agree on is “more data is always better” (NAKKIRAN et al., 2019).

2.2.2 Controlling complexity

We can control whether a model is more likely to overfit or underfit by altering

its capacity. Informally, a model’s capacity is its ability to fit a wide variety of functions.

Models with low capacity may struggle to fit the training set. Models with high capacity can

overfit by memorizing properties of the training set that do not serve them well on the test

set (GOODFELLOW et al., 2016).

From this perspective, it raises the Occam’s razor principle (MACKAY, 1992) that

states that unnecessarily complex models should not be preferred to simpler ones. Such a

principle reinforces that employing mechanisms to penalize over-complex models is beneficial

for model generalization.

One can employ Occam’s razor principle in many different aspects during the model

learning process. It goes from the feature selection/feature engineering up to model selection,

through parameter optimization, among others, all focused on refining the resulting models.

Such a principle advocates the same in each of these stages: “the simple is the better”. A simple

model that fits a data set well is likely to capture that data’s essential features without absorbing

too much noise.

It is also worthy to note that despite the wide popularity and acceptance of such a

principle that states that simple explanations are generally more likely to be trustworthy than com-

plex ones, there is little empirical evidence that demonstrates that the world is simple (SOBER,
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2015). Such opposite viewpoints often meet each other when the genuine risk of reducing

complexity is at the expense of accuracy. On such occasions, it is recommended to only apply

Occam’s razor when the available models’ predictive performances are equally good.

Before we address how to control model complexity, considering both underfit and

overfit, we need to discuss the relationship between the parameters and complexity. The models

are categorized into two categories: the parametric and nonparametric ones.

2.2.2.1 Model complexity in parametric models

Linear regression and neural networks use the training data to estimate a fixed set

of parameters w. That defines our hypothesis hw(·), and at that point we can throw away the

training data, because they are all summarized by w. A learning model that summarizes data

with a set of parameters of fixed size (independent of the number of training examples) is called

a parametric model. No matter how much data one throws at a parametric model, it will not

change its mind about how many parameters it needs (RUSSELL et al., 2020).

We can control the model performance by choosing what kind of functions we allow

them to draw solutions from and controlling the representation of such functions. We can also

give a learning algorithm a preference for one solution over another in its hypothesis space. Thus,

when some functions are eligible, one is preferred over all others due to some criterion related to

complexity (GOODFELLOW et al., 2016).

Next, we present some strategies for accounting and dealing with model complexity

that can be employed when preferring one solution face others:

a) Decay strategies. They encourage the parameter values to decay towards zero,

unless supported by the data. In statistics, it provides an example of a parameter

shrinkage method because it shrinks parameter values towards zero. It has the

advantage that the error function remains a quadratic function of the parameters,

and so its exact minimizer can be found in closed form – L1 and L2 regularization;

b) Elimination strategies. Differently from the Decay ones, they allow some

parameters to have some relatively higher values while others parameters with

values towards zero. Therefore, weights with small values can be interpreted as

being of little relevance to the model’s output, and thus can be eliminated. It is

also commonly referred to as the `0-norm, although it is not an actual norm. Thus,

contrasting with sparsity, which counts the number of strictly equal elements to
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zero – FOcal Underdetermined System Solver (GORODNITSKY; RAO, 1997)

and Ortogonal Matching Pursuit (TROPP; GILBERT, 2007);

c) Bayesian strategies. As the name implies, they result from the application of

Bayesian inference techniques to verify the parameter relevance through the

learning phase – Sparse Bayesian Learning (TIPPING, 2001);

d) (Meta)Heuristics-based strategies . Instead of performing a full search through

the hipotesis space H, one uses a (meta)heuristic to perform a model selection –

Genetic algorithms (SIVANANDAM; DEEPA, 2007), Simulatead annealing, etc;

e) Prunning. They reduce the number of learned parameters, aiming to obtain

models with the best possible generalization capacity. In general, such techniques

use an overly complex model and to eliminate the less relevant parameters,

thus, generating models with more generalization capabilities – Optimal Brain

Damage (LECUN et al., 1990) and Optimal Brain Surgeon (HASSIBI et al.,

1993).

2.2.2.2 Model complexity in nonparametric models

Since parametric models will not change its mind about how many parameters they

need. Sometimes, when there are thousands or millions or billions of examples to learn from, it

sounds better to let the data speak for themselves rather than forcing them to speak through a

tiny set of parameters.

A nonparametric model is one that cannot be characterized by a bounded set of

parameters. For example, suppose that each hypothesis we generate simply retains within itself

all of the training examples and uses all of them to predict the next example. Such a hypothesis

family would be nonparametric because the effective number of parameters is unbounded - it

grows with the number of examples (RUSSELL et al., 2020).

Since there are multiple degrees of freedom for constructing such models, including

some freedom in penalizing them for finding consistent hypotheses is beneficial, they are still

subject to underfitting and overfitting, just like parametric methods (RUSSELL et al., 2020).

Regularization2 is an elegant and efficient tool to cope with the complexity of the

model; that is, to make it less complex, more smooth. There are different ways to achieve
2 Regularization was first suggested by the great Russian mathematician Andrey Nikolayevich Tychonoff (some-

times spelled Tikhonov) for the solution of integral equations (THEODORIDIS, 2020).
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this. One way is by constraining the norm of the unknown vector, as ridge regression does.

When dealing with more complex, compared to linear, models, one can use constraints on the

smoothness of the involved nonlinear function; for example, by involving derivatives of the

model function in the regularization term. Also, regularization can help when the adopted

model and the number of training points are such that no solution is possible (THEODORIDIS,

2020). Also, it allows complex models to be trained on data sets of limited size without severe

over-fitting, essentially by limiting the effective model complexity (BISHOP, 2016).

It works by driving the searching for a hypothesis that directly minimizes loss and

complexity into one metric, allowing us to find the best hypothesis all at once:

h? = argmin
h 2 H

loss(h)+l complexity(h), (2.13)

where l is a parameter, a positive number that serves as a conversion rate between loss and

hypothesis complexity. Such a formulation requires us to make two choices: the loss function and

the complexity measure, which is called a regularization function. The choice of regularization

function depends on the hypothesis space. Usually, one employs one of the abovementioned

strategies for accounting such a complexity measure (e.g. vector norms).

From a different viewpoint, reducing the hypothesis complexity (via norm) can be

considered as an attempt to “simplify” the structure of the estimator, because a smaller number of

components of the regressor now have an important say (THEODORIDIS, 2020). This viewpoint

becomes more clear if one considers nonlinear models where the existence of the norm of the

respective parameter vector in ridge regression forces the model to get rid of the less important

terms in the nonlinear expansion (THEODORIDIS, 2020).

Since nonparametric models have their complexity associated with the number of

samples (both in training and out-of-sample prediction), reducing the amount and their influence

by performing instance selection or set size reduction can decrease the model complexity. A

good example (without a penalty function) is tuning the number of neighbors involved in the

k-NN classifier, which clearly constrains overfitting (VEENMAN; REINDERS, 2005).

There are a lot of techniques that are able to obtain a representative training set with a

lower size compared to the original one and with a similar or even higher classification accuracy

for new incoming data. Depending on the strategy followed by these techniques, they can remove

noisy, redundant, and both kinds of samples. The main advantage indicated in these methods is

the capacity to choose relevant samples without generating new artificial data (GARCIA et al.,

2012).
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In the literature, they are referred as Reduction Techniques (WILSON; MAR-

TINEZ, 2000), Instance Selection (JANKOWSKI; GROCHOWSKI, 2004), or Prototype Selec-

tion (PEKALSKA et al., 2006). Such techniques are widely categorized into three types: con-

densation, edition, and hybrid techniques (JANKOWSKI; GROCHOWSKI, 2004; ANGIULLI,

2007). Condensation techniques aim at retaining the points which are closer to the class bound-

aries since the internal points do not affect the decision boundaries as much as border points.

Edition techniques instead of keeping such border points, they aim at removing them. They re-

move points that are noisy or do not agree with their neighborhood, achieving smoother decision

boundaries. Finally, the hybrid techniques mix both of the previous techniques as an attempt to

maintain or even increase the generalization accuracy in test data (GARCIA et al., 2012).

2.2.2.3 Other model complexity control

Usually, one can control complexity during optimization (training) by imposing a

constraint, often under a regularization penalty, on the norm of the weights, as all the notions

of complexity listed above depend on it. However, apart from the relationship between the

parameters and complexity, the root cause for poor generalization capabilities can arise from

many sources (e.g., too many feature dimensions, model assumptions, parameters, too much

noise, and very little training data).

In the following, we present some strategies for increasing generalization without

including any explicit regularization, neither as an explicit penalty, thus, controlling the model

complexity implicitly:

a) Data augmentation. A larger training set has a smaller overfitting probability,

thus expanding it is a time-saving method, but it varies in different fields. The

key point here is reducing data bias to improve model generalization. Common

strategies involve rotating and scaling images in the object recognition field,

adding random noise to the input data in speech recognition, or replacing words

with their synonyms in natural language processing applications;

b) Early stopping. It is very convenient to sample our model every few iterations

and check how it works with our validation set. Every model that performs better

than all the previous models is saved. From time to time (or other criteria), we

evaluate the no progress, and when the performance decreases, one stops the

learning;
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c) Implicit regularization via gradient descent. A practical regularization effect

of gradient descent can be achieved through the normalized weights, at least for

exponential-type loss functions (POGGIO et al., 2020);

d) Dropout. Simply put, Dropout randomly discards some inputs during the training

process. In this case, the parameters corresponding to the discarded inputs are not

updated. As an integration method, Dropout combines all sub-network results

and obtains sub-networks by randomly dropping inputs (SRIVASTAVA et al.,

2014);

e) Transfer learning. Based on overcoming the isolated learning paradigm and

utilizing knowledge acquired for one task to solve related ones, transfer learning

tries to discover a common structure of the hypothesis spaces shared by the

multiple tasks to transfer knowledge from supervised learning to unsupervised

learning (ANDO; ZHANG, 2005).

2.2.3 Controlling complexity in LSSVMs

With respect to the LSSVM model, one can simply highlight that the model complex-

ity term is with respect to the w in the primal form and with respect to the Lagrangian multipliers

aaa in the dual form since w =
N
Â

i=1
aif(xi). Furthermore, we highlight that by such a manipulation,

enforcing aaa ⇡ 0, not only reduces the complexity during the learning phase, but also in the

prediction since aaa are employed there too (see Equation 2.8).

As highlighted in Mall and Suykens (2015), choosing an appropriate structure of

a learning machine is one of the perplexing problems in the field of machine learning. As the

LSSVM model lacks from sparseness, several works address such a drawback as an attempt to

reduce the model complexity in several aspects (e.g. memory usage to build the linear system,

solving the system –perform training– and the out-of-sample prediction). According to Mall

and Suykens (2015) they can be separated into two groups: (i) reduction methods and (ii)

direct methods. The reduction methods focus on training an usual LSSVM and, then, apply

some pruning strategy, identifying the new support vectors so that a newly trained model can be

derived. The direct method paradigm enforces on the sparsity from the beginning.
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2.2.3.1 Reduction methods for LSSVMs

For reduction methods the reader is referred to following variations: the Pruning

LSSVM (P-LSSVM) (SUYKENS et al., 2000), the Least-Squares Twin Support Vector Machine

(LSTSVM) (KUMAR; GOPAL, 2009), the Two-step sparse LSSVM classifier (IP-LSSVM)

(CARVALHO; BRAGA, 2009), the Coupled Compressive Pruning (CCP-LSSVM, (YANG et al.,

2014)) and the Single and Multi-Objective Genetic Algorithm for Sparse LSSVM (GAS-LSSVM

and MOGAS-LSSVM), (SILVA et al., 2015), among others (GEEBELEN et al., 2012; NETO;

BARRETO, 2013; VIEIRA et al., 2016; DING et al., 2017a; EBUCHI; KITAMURA, 2017;

DING et al., 2017b). In P-LSSVM, after training the usual LSSVM, some support vectors are

eliminated according to the absolute value of their Lagrange multipliers |ai| iteratively complying

with some quality criterion (e.g. validation test error, number of support vectors, etc). Such

elimination sets ai = 0 and the new resulting linear system is solved at each iteration.

In a similar pruning fashion, but based on the Quadratic Programming version of

SVM (QP-SVM) (CORTES; VAPNIK, 1995), the IP-LSSVM is a two-step approach that only

solves two linear systems: the usual LSSVM and a new one with less variables according to

correspondence between the Lagrangian values in QP-SVM and LSSVM, keeping those support

vectors with ai� 0. Also based on the QP-SVM, the Twin Support Vector Machine (TSVM)

(JAYADEVA et al., 2007) computes a plane for each class so that each plane is as close as

possible to the samples belonging to its own class and meantime as far as possible from the

samples belonging to the other class (DING et al., 2017a). In possession of these two nonparallel

(possible) planes, new samples are assigned to one of the classes according to its proximity to

the two nonparallel hyperplanes. The original QP-SVM problem turns into two smaller ones in

such a formulation, thus, resulting in a reducing method.

Later, the least-squares version of TSVM (named LSTSVM) is formulated based

on the solution of two dual quadratic programing problems of smaller size rather than solving a

single dual one. Based on a filtering approach, the Fast Sparse LSSVM (FS-LSSVM) (EBUCHI;

KITAMURA, 2017) and Improved Sparse LSSVM classifiers adopt selection strategies on the

empirical feature space spanned by the mapped samples. By selecting the linearly independent

samples through phase angles (a dissimilarity measure) or block addition (that employs Cholesky

factorization into small subsets), they achieve sparse solutions. Adopting an evolutionary

approach to impose sparseness, the GAS-LSSVM and MOGAS-LSSVM variations employed

a new a priori multi-objective fitness function which incorporates a cost of pruning in both
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formulations. Thus, they are both able to balance between sparsity (in a fixed-size paradigm)

and accuracy, being the Genetic Algorithm set the one that define the model complexity.

2.2.3.2 Direct methods for LSSVMs

As for the direct methods the reader is referred to following variations: the Fast

Sparse Approximation scheme for LSSVM (FSA-LSSVM) (JIAO et al., 2007), the Sparsi-

fied Subsampled Dual LSSVM (SSD-LSSVM) (MALL; SUYKENS, 2015), and the Pivoted

Choleskian of Primal LSSVM (PCP-LSSVM) (ZHOU, 2016), among others (LI et al., 2006;

KARSMAKERS et al., 2011; SANTOS; BARRETO, 2017; SANTOS; BARRETO, 2018). In

FSA-LSSVM, the decision function is built by iteratively adding one basis function from a

kernel-based dictionary until some termination criterion (e-based) is achieved. Inspired on the

subsampled dual LSSVM (SD-LSSVM) (MALL; SUYKENS, 2015), the SSD-LSSVM employs

a fast initialization by embedding the active subset selection method described in Brabanter et

al. (2010) to the LSSVM model solved in the dual formulation. As result, a sparse and low

computational cost solution is achieved. Recently, the PCP-LSSVM was proposed based on the

assumption that some low-rank kernel matrices-based solutions can be equivalent to the primal

ones. The authors explored the Cholesky factorization and its theoretical and experimental results

to attest the PCP-LSSVM is able to achieve sparse solutions.

2.2.3.3 LSSVM formulations summary

Next, we summarize in Table 1 some LSSVM formulations over the Literature

alongside their complexity control strategy.

Table 1 – LSSVM formulations summary and their complexity control strategy.
FORMULATION COMPLEXITY CONTROL STRATEGY

P-LSSVM (SUYKENS et al., 2000) Pruning SVs with Lagragians multipliers close to 0.

FSA-LSSVM (JIAO et al., 2007) Basis function addition at a time with a e-based stop criterion.

IP-LSSVM (CARVALHO; BRAGA, 2009) Keeping SVs with higher absolute Lagrange multipliers.

CCP-LSSVM (YANG et al., 2014) Subset selection via Compressive sampling.

(MO)GAS-LSSVM (SILVA et al., 2015) Subset selection via Genetic Algorithms.

SSD-LSSVM (MALL; SUYKENS, 2015) Active subset selection.

PCP-LSSVM (ZHOU, 2016) Low-rank kernel matrices via Cholesky factorization.

FS-LSSVM (EBUCHI; KITAMURA, 2017) Subset selection via Cholesky factorization.

Source – Own authorship
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2.2.4 Controlling complexity in MLMs

Concerning the MLM model, as a linear model, the complexity term is related to B.

Even though some variants employ the reference point selection (data discard) as the principal

aspect of the MLM learning algorithm, they pretty much embody a lower rank linear system

through such a selection as a manner to also impose some sparsity in both training and speed-up

prediction. Increasing sparsity is a manner to reduce complexity.

However, employing both reduced data set and regularization in MLM is likely to

lead to underfitting since if B acts as a poor transformation, i.e., B can not correctly map both

input and output spaces, the prediction is strongly impaired. Also, note that by employing both

strategies as they are presented, they simply restrict the hypothesis that the learning phase can

find.

With that said, we focus on this hypothesis that the model complexity is mainly

based on the mapping produced by B. Thus, we adopt as the complexity measurement in MLM

the Frobenius norm of B, denoted by k B kF . In the following, we present some literature review

with respect to other MLM variants that employ regularization.

2.2.4.1 Random MLM

The Random MLM (SOUZA JÚNIOR et al., 2015) model is a formulation from

the original MLM model for both regression and classification tasks. Analogously to the RBF

network, such a formulation uses a randomly chosen subset of the learning points as centers, here

called reference points (RPs). In this formulation, the number of reference points, or centers,

K corresponds to a hyperparameter to be optimized based on a specific data set. Since the RPs

are to be a subset of the original data set, the training and predict procedures have to rely on the

approximate solution provided by the ordinary least-squares estimate of B because both D and DDD

have dimensions N⇥K, resulting in:

min
B

JRand(B) =k DB�DDD k2
F

, (2.14)

which yields the following solution:

B̂Rand = (D|D)�1D|DDD. (2.15)



46

2.2.4.2 Rank-MLM

The Rank-MLM (ALENCAR et al., 2015) model is also a formulation of the original

MLM model for Ranking tasks with a regularization parameter (l 2 R+) included in the cost

function. Thus, its main prominent feature is a training procedure which contains a regularized

cost function described as follows:

min
B

JRank(B,l ) =k DB�DDD k2
F

+l k B k2
F

(2.16)

which yields the following solution:

B̂Rank = (D|D+l I)�1D|DDD (2.17)

where I is a N⇥N identity matrix.

2.2.4.3 Weighted Minimal Learning Machine (wMLM)

The Weighted Minimal Learning Machine (wMLM) (GOMES et al., 2015) is a

generalized least-squares fit between distances in the input and output spaces bringing in a

differential weighting of residuals in the regression step of the MLM a way to account for errors

that are not independently and identically distributed with zero mean and constant variance. In

such a model, the loss function is defined as follows:

min
B

JWeighted(B,W) =kW(DB�DDD) k2
F

(2.18)

where W is a symmetric positive definite diagonal matrix with each element Wi,i of its diagonal

representing the weight of each training sample xi. The above formulation yields the following

solution:

B̂Weighted = (D|WD)�1D|W|DDD. (2.19)

2.2.4.4 `1/2-MLM

Deriving out of pruning techniques, the `1/2-MLM (DIAS et al., 2018) is based

on regularization methods, which have been successfully used as feasible approaches to prune

neural networks. The model seeks the solution for the following optimization problem:

min
B

J`1/2(B,l ,a,K) =k DB�DDD k2
F

+l k B k1/2
1/2 (2.20)
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where l 2 R+ is a trade-off parameter balancing estimation quality with diversity, a and K

control the prunning process, being a the pruning factor and K the number of reference points.

Since there is no closed-form expression to solve Equation 2.20, to perform the

minimization, one must apply the gradient descent algorithm for the following cost function:

J(B) = Tr{(DB�DDD)(DB�DDD)|}+l
K

Â
i=1

K

Â
j=1

|Bi, j|1/2 (2.21)

which produces the following update rule:

B(t+1) = B(t)�h —J(B(t))

k —J(B(t)) kF
(2.22)

where the resulting Jacobian of the loss function —J(B(t)) = 2D|(DDD�DB) + l— k B k1/2
1/2,

h 2 (0,1] and t is the training epoch. Also, the Jacobian associated with the `1/2-regularizer is:

— k B k1/2
1/2=

1
2

2

666664

sign(B1,1)p
|B1,1|

. . .
sign(B1,K)p

|B1,K|
... . . . ...

sign(BK,1)p
|BK,1|

. . .
sign(BK,K)p

|BK,K|

3

777775
. (2.23)

At the end of every training epoch, the authors evaluate the norm of each row of B to identify

which reference points should be removed. The authors were inspired by (FAN et al., 2014) to

adopt an adaptative threshold of g to remove such rows as follows:

g(t) =
a
K

K

Â
k=1
k B(t)

k,⇤ k2, (2.24)

where B(t)
k,⇤ stands for the k-th row of B and a is the pruning factor.

2.2.4.5 RFM-MLM

Again from adopting the same pruning fashion, it arises the Regularized M-FOCUSS

MLM (RMF-MLM) (DIAS et al., 2019). The RMF-MLM relies on a simultaneous sparse

approximation method named regularized M-FOCUSS (COTTER et al., 2005) for the task of

identifying which reference points are not relevant to the MLM’s performance by the following

optimization problem:

min
B

JRFM(B,l , p) =k DB�DDD k2
F

+l
M

Â
m=1
k Bm,⇤ kp

2 (2.25)
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where l 2 R+ is a trade-off parameter balancing estimation quality with diversity measure

minimization, p 2 [0,2] is for defining an `p-norm-like diversity measure, and Bm,⇤ denotes the

m-th row of B. Since RMF-MLM employs the factored-gradient approach of (RAO; KREUTZ-

DELGADO, 1999) to minimize Equation 2.25, the algorithm iteratively updates B using the

following steps:

• W(t+1) = diag
n�

c(t)
m
�1� p

2
o

, with c(t)
m =

⇣ K
Â

k=1

⇣
b(t)

k,m

⌘2⌘ 1
2 .

• Q(t+1) =
⇣

D(t+1)
⌘|

.

• B(t+1) = W(t+1)Q(t+1).

2.2.4.6 MLM formulations summary

Next, similarly to LSSVMs, we summarize in Table 2 some MLM formulations over

the Literature alongside their hyperparameters and cost function.

Table 2 – Some MLM variants’ summarization. Here, we describe their complexity control
strategy.

MLM VARIANT COMPLEXITY CONTROL STRATEGY

FULL MLM None.

Random-MLM Subset selection.

Rank-MLM (ALENCAR et al., 2015) Weight decay.

wMLM (GOMES et al., 2015) Weight decay.

R-MLM (GOMES et al., 2017) Weight decay.

NN-MLM (MESQUITA et al., 2017) Subset selection.

C-MLM (MESQUITA et al., 2017) Subset selection.

Co-MLM (CALDAS et al., 2018) Subset selection.

`1/2-MLM (DIAS et al., 2018) Elimination and subset selection.

EMLM (KARKKAINEN, 2019) Subset selection.

RMF-MLM (DIAS et al., 2019) Weight decay and subset selection.

LW-MLM (FLORENCIO V et al., 2020) Weight decay without subset selection during training.

Clustering + MLM (HAMALAINEN et al., 2020) Subset selection.

Source – Adapted from Florencio V et al. (2020).
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3 REDUCING COMPLEXITY BY INSTANCE SELECTION

Our first attempt to deal with the complexity of learning models was to explore the

instance selection perspective. To do so, we developed a novel Instance Selection algorithm

based on FAST, an image corner detector, and applied it to LSSVMs in a pruning fashion. In

the following, we first present the Instance Selection algorithm, named Class Corner Instance

Selection, and then embed it into the learning phase in LSSVMs.

3.1 CCIS: Class Corner Instance Selection

Our Instance Selection algorithm is mainly based on FAST (ROSTEN; DRUM-

MOND, 2006), an image corner detector. The main idea is to establish a corner in FAST and

then apply the same reasoning as the Instance Selection algorithm. From the risen selection

result, we build the learning algorithm model. However, it turns out that FAST formulation only

deals with image data, i.e., two-dimensional samples uniformly spaced in a grid. To overcome

such a limitation, we extended FAST so that we can apply it to high-dimensional inputs in a

straightforward way.

3.1.1 Features from Accelerated Segment Test

For the sake of simplicity, consider the following description and notation to describe

some operations regarding pixels. In the context of a gray-level image setting, we define an image

III 2 RW⇥H with width W and height H. Then, we use IIIx,y to rescue the intensity of a pixel as the

result of indexing a pair of coordinates (x,y). Finally, we especify the following notation (x,y)2 III

to define a valid pair of coordinates into the image, i.e., (x,y) such that 1 xW ^1 yW .

FAST is a corner detector (Figure 5) in which a Bresenham’s circle of diameter 3.4

pixels is used as test mask for each pixel. The resulting mask set

B(x,y) =

⇢
(i, j) 2 III

���
q

(x� i)2 +(y� j)2 ⇡ 3.4
2p

�
, (3.1)

with 16 pixels (i.e., |B(Ix,y)| = 16) on the discretized circle describing the segment (see Figure 6)

is compared to the value of the nucleus pixel Ix,y. The criterion to classify a nucleus pixel Ix,y as

a corner candidate in FAST is that there must be at least P contiguous pixels (usually P = 12)

on B(Ix,y) which are brighter or darker than a given threshold T . The parameter T controls the

sensitivity of the corner response. Intuitively, this approach discards pixels that are located at
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Figure 5 – Corner detection results in a gray scale image. The detected corners are highlighted in
red asterisks (⇤).

Source – Kahaki et al. (2014).

homogeneous regions and pixels at heterogeneous regions with low variance. We denote the set

of elements of B(Ix,y) which are T brighter or darker than Ix,y by GT (Ix,y), that is

G(x,y) =
�
(i, j) 2 B(x,y)

�� |(IIIx,y� IIIi, j)|� T )
 

. (3.2)

By selecting those pixels that satisfy both criteria defined in Equation 3.2, one obtains

a set of corner candidates denoted by

C? =
�
(x,y) 2 I

��(|G(x,y)|� P)^ contiguous
�
G(x,y)

  
, (3.3)

where contiguous
�

·
 

is a predicate that is true if its argument contains only contiguous pixels

and false otherwise. To check if a given set of pixels is contiguous or not, one should verify if
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Figure 6 – Corner detection in an image patch. The highlighted squares are the pixels used in the
corner detection. The pixel p = (x,y) located at the center of the patch is the one being
tested. The Bresenham’s circle is indicated by the continuous line).

Source – Figure adapted from Rosten and Drummond (2006).

the pixels’ positions with respect to the Bresenham’s circle form an contiguous arc. Such test

can be speeded up by first checking if the pixels located at positions 1,5,9, and 13 are T brighter

or darker than (x,y) so that the whole circle is evaluated.

In possession of C, one obtains the set of corner candidate points. However, a lot of

adjacent pixels are yielded and a filtering step must be employed to remove weak candidates,

i.e., adjacent corner-candidates points with less relevance. For this purpose, a non-maximal

suppression is employed to select the stronger candidates. The common procedure at this step

is to check whenever a candidate to be a real corner (x,y) 2 C has any other adjacent candidate

more relevant than it. The relevance is computed by a relevance function d (·, ·) defined by the

user. If such previous condition is true, i.e., 9(i, j) 2A(x,y) so that d (x,y) < d (i, j), then, this

candidate is not part of the final corner set C?, thus, we discard it. Using the sum of the absolute

difference between the pixels in the segment circle and the nucleus pixel is reported to be a good

choice for relevance function, that is

d (x,y) = Â
(i, j)

�� Ix,y� Ii, j
��,8(i, j) 2 B(x,y). (3.4)

Let A(x,y) be the set of adjacent candidates from a given candidate (x,y), defined
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by

A(x,y) =

⇢
(i, j) 2 C

���
q

(x� i)2 +(y� j)2  3.4
2p

�
, (3.5)

being the set of weak candidates is given by

CWEAK =
n

(x,y) 2 C
��� 9(i, j) 2A(x,y) : d (x,y) < d (i, j)

o
, (3.6)

resulting in the final corner set C? = C \CWEAK.

The pixels in C? are those highlighted in red asterisks (⇤) in Figure 5. An algorithm

summarizing FAST is presented in Algorithm 7.

Algorithm 7 Features from Accelerated Segmented Test

FAST-DETECTOR(Input image I, the contiguous threshold P, corner response threshold T )
⇤ Step 1: Corner-candidate detection.

1 Compute C according to Equation 3.3.
⇤ Step 2: Weak candidate detection.

2 Compute CWEAK according to Equation 3.6.
⇤ Step 3: Weak candidate removal.

3 C? C \CWEAK.
4 return the corner set C?

3.1.2 CCIS formulation

In FAST, all pixels are evaluated as corners or not. However, before such a classifi-

cation, two subsets are derived: the candidate and the actual corner set. Here in CCIS, we use

a similar analogy but for general data points. First, we perform greedy filtering to identify the

input samples that somehow lie in each class’s class-corner regions. Then we select a strong

subset from the filtering result to achieve the class-corner ones.

Since we cannot assume we have equally spaced samples in D as the pixels in an

image grid, nor the samples share neighboring trivially, the idea of getting the Bresenham’s circle

mask does not sound feasible at a glance.

It is also worth mention that finding such a set of neighbors exactly in Bresenham’s

circle is not always possible for real-world data. To overcome such a drawback, we adopt a

different strategy by handling the input samples that lie within a closed ball centered in the query

point x with radius R as a way to emulate the Bresenham’s circle mask. Let us define the R-ball
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neighborhood of a query sample x by

NR(x) =
n

(xi,yi) 2NN K(x)
�� 0 < kxi�xk2  R

o
, (3.7)

where R 2 R+ is the radius of the circle mask.

In possession of the R-ball neighborhood of a query sample x, we perform a FAST-

like test (see Equation 3.3) to select the class-corner samples by eliminating the contiguous

constraint and only take into account the R-ball neighborhood variability. Such a neighborhood

variability is accounted as follows,

G(x) = Â
xi

[y 6= yi], xi 2 NR(x), (3.8)

where [ · ] is the indicator function that it is equal to 1 if its argument is true or 0 otherwise.

Note that, G(·) is a simple counting function that yields the number of neighbors with different

class labels than the query sample x inside the R-ball.

Now, one can classify a given query sample x as a class-corner by simply verifying

its neighboring variability information. From such a classification, one can derive a subset with

only strong class-corner samples as follows,

CCIS(D,P) =
n

(xi,yi) 2D
�� G(xi) > P

o
, (3.9)

where 0 < P < K is a threshold that accounts for the variability in terms of class labels around x.

Such filtering approach works as the same as in FAST with respect to the corner sensitivity, see

Equation 3.3 and Figure 6. Also, since P controls the test’s corner sensitivity, fewer corners are

yielded by increasing P.

3.1.3 Hyperparameter estimate in CCIS

CCIS has three hyperparameters to be tuned: the distance threshold R, the corner

sensitivity threshold P, and the number of nearest neighbors K. We discuss in the following how

to provide default values for them. However, users can tune them according to their taste.

3.1.3.1 Borrowing default values from FAST for K and P

A detailed experiment concerning FAST was carried out in Rosten et al. (2010),

showing that the versions of FAST using P = 12 (75%) or P = 9 (55%) out of 16 pixels in the

Bresenham’s circle were enough. Although such experiments suggested that the performance
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between such FAST versions is different on modern hardware, for memory requirements, we

opt for the one with fewer points to evaluate, i.e., P = 9. Regarding K, we suggest K = 16 as

a manner to emulate the number of pixels in the Bresenham’s test mask. However, one might

follow other strategies, such as the well-known thumb rule of K-NN defined as K =
p

N, and the

one presented in (MALL; SUYKENS, 2015) which scales K = bk⇥
p

Nc with k optimized by

grid search.

3.1.3.2 Estimating the distance threshold R

Since we can not assume that all input samples have the same distance relationship

as the pixels in an image grid, estimating a value for R that CCIS can apply in different domains

is difficult. Thus, to overcome this condition, we propose an automatic manner to estimate a

suitable value for the distance threshold denoted by R̂ based on the input distance relationship in

which is guaranteed at least one neighbor within such a threshold.

The automatic threshold R is given by the maximum value for the minimal distances

of each input to its nearest neighbor:

R̂ = max{d⇤1 ,d⇤2 , . . . ,d⇤N} ,d⇤i = kxi�x jk2, x j 2NN 1(xi). (3.10)

The computation of the distance drives the complexity of estimating R̂. By using a

kd-tree to compute the minimal distances of each input and, then, performing a linear search in

{d⇤1 ,d⇤2 , . . . ,d⇤N}, it results in O(N log(N)). Also, we highlight that, again, any search approach

can be employed with respect to find a feasible value for R̂ as long as it comply with possible

distances on the data set.

3.1.4 Computational complexity of CCIS

The instance selection complexity is mainly driven by computing PS where for each

input sample, we compute the G(·) function. The cost of G(·) is related to finding the K nearest

neighbors for each sample. By adopting a kd-tree indexing the whole data set D, the cost of

building such data structure once is O(N log(N)), while performing a single search is O(log(N)).

As we mentioned, G(·) performs K searches; thus, its cost for a single call is O(K log(N)).

Stated that, the overall cost of finding the class-corner samples is given by building a

kd-tree and performing N calls to G(·), resulting in O(N log(N))+O(NK log(N)). Since K is

fixed in all searches, we can conclude that O(N log(N))+O(NK log(N))⇠O(N log(N)).
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3.2 CC-LSSVM: LSSVM meets Class-corner Instance Selection

In some literature, it is supported that pruning and reduced-set strategies for LSSVM

work quite well (CARVALHO; BRAGA, 2009; BRABANTER et al., 2010; NETO; BARRETO,

2013; YANG et al., 2014). The only limitation is that if an input sample is a SV (column), its

constraint (row) must be in the system since losing that link degrades the final solution.

Instead of solving a full rank system as in Equation 2.5, we adopt a less constrained

model via an overdetermined one. Firstly, we select via CCIS the restrictions and SVs before

producing an overdetermined system.

3.2.1 The CC-LSSVM formulation

In CC-LSSVM, the SV = CCIS(D,0) is the set of support vectors while PS =

CCIS(D,P) represents the constraints in the model with threshold P. Moreover, we kept the link

between the variables and constraints since SV ⇢ PS ⇢D, thus, resulting in a possibly smaller

and less constrained linear system. We present such a system in the following.

We formulate the linear system in CC-LSVM as LLLwww = uuu so that
2

4 0 111|

111 YYY

3

5

| {z }
LLL

2

4 b?

aaa?

3

5

| {z }
www

=

2

4 0

YYYSV

3

5

| {z }
uuu

, (3.11)

where YSV = [y1,y2, . . . ,yM]| is a matrix with labels from SV and

Yi, j =

8
><

>:

K(xi,x j), if xi 6= x j;

K(xi,x j)+ g�1, otherwise.

with xi 2 PS and x j 2 SV and g 2 R+ is the same cost parameter in the original (LS)SVM.

Also, since the linear system in CC-LSVM is possibly less constrained, one can notice that

M = rank(LLL) rank(A) = N, thus resulting in www,uuu 2 RM.

3.2.2 The CC-LSSVM learning algorithm

The CC-LSSVM learning algorith requires the solution of Equation 3.11 produced

by both support vector and constraint selections. Since LLL is not always a full rank matrix, the

CC-LSSVM linear system solution is obtained by the usual least-squares estimate, that is,

ŵww = (LLL|LLL)�1LLL|uuu . (3.12)
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The approximated solution ŵww yields the dual variables aaa? and the bias b? so that out-of-sample

predictions can be computed. The algorithm for CC-LSSVM is given in Algorithm 8.

Algorithm 8 The CC-LSSVM learning algorithm

CC-LSSVM-TRAINING(D,R,P)

1 Compute R according to Equation 3.10.
⇤ Step 1: Support vector and constraint selection.

2 PS CCIS(D,0).
3 SV  CCIS(D,P).

⇤ Step 2: Estimating Lagrangian multipliers and bias.
4 Build the linear system of Equation 3.11 from PS and SV .
5 Estimate ŵ̂ŵw using the usual least-squares.
6 Rescue from ŵ̂ŵw the dual variables aaa? and the bias b?.
7 return SV,aaa?, and b?.

3.2.3 The CC-LSSVM out-of-sample prediction

In possession of the estimated dual variables aaa?, bias b?, and the SVs from SV , one

can build the final predictive model as

ŷ = f (x) = sign

 
M

Â
j=1

a?
j K(x,x j)+b?

!
,x j 2 SV . (3.13)

3.2.4 Computational complexity of CC-LSSVM

As CC-LSSVM consists of two steps: (i) the class-corner support vector selection

and (ii) computing the solution of a less constrained linear system, the overall complexity of

CC-LSSVM is given by the sum of the complexity of these two steps.

The support vector selection complexity is driven by computing CCIS; thus, is

O(N log(N)). On the following, the linear system solution is given by O(|PS||SV|2) since the

system in Equation 3.11 is built from PS and SV . However, neither a sparse solution neither

a less constraint model is always possible according to the problem’s nature. To simplify our

notation, we adopt M as the number of selected SVs for further analysis.

Thus, we have, in fact, two cases: the best (and average) and the worst one. In the

best case, a less constrained model with fewer SVs is achieved, resulting in O(M3). In the

worst-case, a fully constrained model is built, resulting in O(NM2).
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Later, we discuss how M behaves in real-world experiments and how the worst-case

affects the overall model performance, especially via parameter tuning. From the carried out

experiments, we conclude that the overall complexity of CC-LSSVM runs in O(M3) since

O(N log(N))+O(M3)⇠O(M3).

3.3 Experiments and Discussion on CCIS and CC-LSSVM

This section presents the experimental framework followed in this work and the

results collected and discussions on them.

3.3.1 Experiment Setup for CCIS and CC-LSSVM

We carried out three types of experiments to evaluate different aspects of our proposal.

Our goal is to investigate how CC-LSSVM behaves concerning the following aspects: accuracy,

sparseness, support vector selection, and hyperparameter sensitivity. Each of the following

experiments addresses such concerns. Moreover, we performed all experiments using a Macbook

Pro with an Intel Core i5 2.4 GHz, 8 GB of RAM, and running macOS Sierra 10.12.6 with

MATLAB Version 8.3.0.

• The typical black-box assessment on some data sets: Here, we are interested in assess-

ing CC-LSSVM against some state-of-the-art dual LSSVM proposals through accuracy

and sparseness in a typical black-box test fashion on some “toy-size” and large-size data

sets.

• Empirical decision boundary quality assessment: This experiment investigates visually

the quality of solutions produced by the some state-of-the-art dual LSSVM proposals and

CC-LSSVM by empirically evaluating the decision boundaries and, consequently, the

support vector selection.

• Hyperparameter sensitivity: In this experiment, we intend to identify the influence of

hyperparameter tuning concerning the resulting CC-LSSVM model.

3.3.2 Typical black-box assessment for CC-LSSVM

We divided this assessment into two parts.

In the first part, we carried out some simulations on 10 “toy-size” data sets in

which 9 out of 10 are real-world data sets from the University of California at Irvine (UCI)
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Table 3 – Description of the data sets: name, acronym, input dimensionality and number of
training and test samples.

data set ACRONYM #Dim # Tr #Te

Banana BAN 2 4239 1061
Breast Cancer Winscousin BCW 9 550 138
German GER 24 800 200
Haberman’s Survival HAB 3 244 62
Heart HEA 13 216 54
Hepatitis HEP 19 65 15
Ionosphere ION 34 281 70
Pima Indians Diabetes PID 9 614 154
Ripley RIP 2 999 250
Two Moon TMN 2 800 201
Vertebral Column VCP 6 248 62

Source – Oliveira et al. (2018).

Repository (LICHMAN, 2013), while the remaining data set is an artificial one (Two Moon)

generated by the Scikit Learn Library (PEDREGOSA et al., 2011), see Table 3 for a summarized

description of these data sets.

In the second part, we chose some large-size non-linear problems with a fixed

number of SVs #SV and adopted the same hyperparameters as those described in Zhou (2016),

see Table 6. In this experiment, we compared a different version of CC-LSSVM against the

FSA-LSSVM and SSD-LSSVM since other pruning algorithms, such as IP-LSSVM, P-LSSVM,

GA-LSSVM, CP-LSSVM, and CCP-LLSSVM, are unsuitable for large-scale training because

of memory constraints (they require solving a full rank system).

3.3.2.1 CC-LSSVM for Toy-size problems

In this first part, we carried out some simulations on 11 toy-size data sets in which

9 out of 10 are real-world data sets from the University of California at Irvine (UCI) Repos-

itory (LICHMAN, 2013). In contrast, the remaining data set is an artificial one, named Two

Moon, generated by the Scikit Learn Library (PEDREGOSA et al., 2011), see Table 3 for a

summarized description of these data sets. Also, we highlight that we pre-processed all data

sets so that we removed samples containing missing values and normalized features by variation

(standardization).

We compared three LSSVM variations against CC-LSSVM, namely, the Fast Sparse

Approximation scheme for LSSVM (FSA-LSSVM) (JIAO et al., 2007), the Coupled Com-

pressive Pruning for sparse LSSVM (CCP-LSSVM) ((YANG et al., 2014)), and the Sparsified
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Table 4 – LSSVM variants and their hyperparameter configurations.
MODEL DESCRIPTION PARAMETER VALUE

CC-LSSVM Number of neighbors. K = 16.
Variability threshold. P = 9.
Distance threshold. R obtained by (Equation 3.10).

FSA-LSSVM e-insensitive criterion. e = 0.5.
SSD-LSSVM Subset size. b4⇥

p
Nc (i.e., k = 4).

CCP-LSSVM Sampling ratio. M = 0.3N.
Sparse approximation. Orthogonal Matching Pursuit.
Compressive sampling. Random gaussian matrix.

Source – Oliveira et al. (2018).

Subsampled Dual LSSVM (SSD-LSSVM) (MALL; SUYKENS, 2015)). All variations arise

from the dual formulation of LSSVM, and thus, we employ them for comparison since our

proposal C-LSSVM is also based on the same dual formulation. In this comparison, we report

the average accuracy (ACC) and sparseness (SPR)1 over 30 independent realizations. Also, the

hyperparameter setting for each variation, including ours, is presented in Table 4.

Concerning the hyperparameter setup of g and s (RBF kernel parameter), we opti-

mized them via a 10-fold grid search in a usual LSSVM and used the same optimized hyperpa-

rameters for all LSSVM variants. We present the average results for 30 independent realizations

for these 10 toy-size data sets in Table 5.

Furthermore, we carried out the Friedman test, evaluating both ACC and SPR scores

to better distinguish the LSSVM variations. The Friedman test quantifies the consistency of

model results when applied in several data sets according to their performance rankings2. In this

test, the null hypothesis states that there is no statistical difference between all evaluated models.

We graphically represent such comparison through the Critical difference plot as presented in

Demšar (2006). In this plot, the top line is the axis on which each model’s average ranks, while

the connected group of models indicated that they are not significantly different. Moreover, the

critical difference (CD) is presented above the plot and by adopting the significance level of

a = 0.05.

1 The number of non-used training samples as support vectors, i.e., SPR = 1� M
N

2 For each data set, the best performing model getting the rank of 1, the second-best rank 2, and so on.
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As one can see from Figure 7, CC-LSSVM performed the best rank for the accuracy

criteria, thus, showing high generalization performance against other variants. However, CC-

LSSVM performed the last for the sparsity criteria. Such a finding indicates that our class-corner

support vector selection (via CCIS) can balance between a smaller model and a less constrained

one without sacrificing the generalization performance.

Figure 8 – Bar plots showing the original training set D, the number of elements in PS , and the
number of support vectors in SV for CC-LSSVM. We show both the scaled and the
actual sizes for each toy size data set.
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(b) Actual set sizes for D, PS , and SV .

Source – Oliveira et al. (2018).

Next, we present the sparsity aspect of CC-LSSVM in both toy-size and large-size

data sets in Figure 8 and Figure 9, respectively. Each bar plot present the scaled and actual

training set sizes showing how our class-corner selection works.

Regarding the sparsity aspect of CC-LSSVM, we present in Figure 8 bar plots

showing the scaled and actual training set sizes for further analysis. From that, one can see that

in small data sets, CC-LSSVM not always reduce much from the training set D to the prototype

set PS . However, the size of SV is shown to be very small compared to the training set D, i.e.,

M⌧ N. Such a finding suggests that our class-corner selection considers both the model size

and model generalization capability.
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3.3.2.2 CC-LSSVM for large-size data sets

Table 6 – Large-size data set description: input/output dimensionality and number of training/test
samples and required sparsity level.

data set #Dim # Tr #Te #SV
ADULT 123 32561 16281 300 (0.92%)
IJCNN 22 49990 91790 400 (0.80%)
SHUTTLE 9 43500 14500 200 (0.46%)
USPS8 256 7291 2007 200 (2.07%)
VEHICLE 100 78823 19705 400 (0.51%)

Source – Oliveira et al. (2018).

Regarding the second part of this experiment, we assess how the LSSVM variants

behave in large-size settings, reporting the average accuracy of over 20 independent realizations.

We recall we adopted the same hyperparameters and methodology described in Zhou (2016), see

Table 6.

Concerning the LSSVM variations, we only compared our proposal against the

FSA-LSSVM and SSD-LSSVM since other pruning algorithms are unsuitable for large-scale

training due to memory constraints (they require solving the complete linear system in advance).

However, for this experiment, we employed a different version of CC-LSSVM, named Fixed-

sized CC-LSSVM (FCC-LSSVM). We perform a greedy class-corner support vector selection

in a stratification fashion. For that, we extend the local aspect of our proposal, the fixed-radius

near neighbor search, by using stratification and performing greedy class-corner support vector

selection in each disjoint set. The stratification strategy splits the data into J (a hyperparameter)

disjoint subsets with equal class distribution, that is

D =
J[

i=1
Si. (3.14)

For each stratum Si, we carry out the CCIS to select local subsets of class-corner

support vectors and constraints. Once we perform such a process on the strata, we select the

strong samples based on G(·) so that we can combine them and estimate the dual variables and

bias of FCC-LSSVM. For better comprehension, we present the algorithm for FCC-LSSVM in

Algorithm 9.

As one can see in Table 7, the FCC-LSSVM achieved very similar and stable accuracy

values against other variants. We support that FCC-LSSVM is stable due to the reported standard

deviation scores being too low despite noticing different support vectors at each realization.
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Algorithm 9 The FCC-LSSVM learning algorithm

FCC-LSSVM-TRAINING(D,R,P,J)

1 Initialize both PS {?} and SV  {?}.
⇤ Step 1: Support vector selection.
⇤ Step 1.1: Stratification.

2 Perform stratification on D so that D 
JS

i=1
Si.

⇤ Step 1.2: Local strata selections.
3 for i 1 to J
4 do Compute Ri according to Equation 3.10 using Si.
5 PS PS [ CCIS(Si,0,Ri).
6 SV  SV [ CCIS(Si,P,Ri).

⇤ Step 1.3: Fixed-size selection.
7 Sort descendingly SV using G(·) as the value function.
8 Let SV? be a subset of SV with the first M samples.

⇤ Step 2: Estimating Lagrangian multipliers and bias.
9 Build the linear system of Equation 3.11 using PS and SV?.

10 Estimate ŵ̂ŵw using the usual least-squares.
11 Rescue from ŵ̂ŵw the dual variables aaa? and the bias b?.
12 return SV?,aaa?, and b?.

Table 7 – Performance on some large data sets. For each data set, the best performing models are
in boldface. We recall that all values are the average for 20 independent realizations.

data set FCC-LSSVM FSA-LSSVM SSD-LSSVM

ADULT 0.76 ± 0.00 0.65 ± 0.04 0.76 ± 0.00
IJCNN 0.89 ± 0.00 0.78 ± 0.07 0.93 ± 0.00
SHUTTLE 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
USPS8 0.93 ± 0.00 0.99 ± 0.00 0.93 ± 0.00
VEHICLE 0.84 ± 0.00 0.62 ± 0.04 0.54 ± 0.00

Source – Oliveira et al. (2018).

From the sparsity point-of-view depicted in Figure 9, one can see a dramatical

reduction in each step, especially from D to PS. Again, such a finding enforces that our

class-corner selection can balance between a smaller model and a less constrained one without

sacrificing the model generalization, especially for large-size data sets.

3.3.3 Decision boundary empirical quality assessment for CC-LSSVM

Continuing with the set of experiments, we chose three data sets from the toy

problems 2 R2. Such data sets were select by their features with respect to decision boundary

analysis, i.e., where f (x) = 0. The first one, namely, Two moons (TMN), is a separable problem,
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Figure 9 – Bar plots showing the set sizes for FCC-LSSVM: the training set D, the prototype
vectors’ set PS, and the support vectors’ set SV . We show both the scaled and the
actual sizes for each large-size data set.

ADULT IJCNN1 SHUTTLE USPS8 VEHICLE
0.00

0.50

1.00

N
or

m
al

iz
ed

se
ts

iz
e

#D #PS #SV
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Source – Oliveira et al. (2018).

while the other two, namely, Ripley (RIP) and Banana (BAN), have low and moderate class

overlapping, respectively.

As one can see in Figure 10, all variants produced proper decision boundaries to

separate the data. Such a finding is strong evidence of high generalization in all LSSVM

variants, despite their formulation. The noticeable difference across all LSSVM variants is the

SV selection in which CC-LSSVM and FSA-LSSVM required fewer support vectors, all located

near the decision boundary. In a different direction, SSD-LSSVM found most SVs somehow far

from the decision boundary while required more SVs than CC-LSSVM and FSA-LSSVM. As

for the CCP-LSSVM, although we set its sampling ratio to 30%, its sparse approximation could

not get rid of more SVs, thus resulting in a less sparse solution.

As for the Ripley data set depicted in Figure 11, we highlight that most models

produced satisfactory decision boundaries even though there are a little class overlapping and

some outliers. In this data set, CC-LSSVM and FSA-LSSVM kept most SVs near the boundary

decision; however, CC-LSSVM required less than FSA-LSSVM. Also, SSD-LSSVM attained
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Figure 10 – Two moon data set and the produced decision boundaries by some LSSVM variants.

(a) CC-LSSVM. (b) FSA-LSSVM.

(c) SSD-LSSVM. (d) CCP-LSSVM.

Source – Oliveira et al. (2018).

fewer SVs near the boundary decision while CCP-LSSVM achieved the sparsest solution.

Regarding the Banana data set depicted in Figure 12, one can see that most models

produced similar decision boundaries, except for FSA-LSSVM. Additionally, due to the severe

overlapping between classes right at the top, these models required more SVs in overlapping

regions. In this data set, CC-LSSVM and FSA-LSSVM chose SVs near the boundary decision

while SSD-LSSVM selected SVs far from the decision boundary.

From this empirical analysis, we noticed that CC-LSSVM is sensitive to the degree of

overlap between classes. As the overlapping increases, e.g., Banana, CC-LSSVM selected more

SVs; thus, the sparsity decreases but not as much as the other variants, namely, CCP-LSSVM

and FSA-LSSVM. On the other hand, when it comes to separable problems (e.g., Two moons

and Ripley), CC-LSSVM required fewer SVs than the others.
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Figure 11 – Ripley data set and the produced decision boundaries by some LSSVM variants.

(a) CC-LSSVM. (b) FSA-LSSVM.

(c) SSD-LSSVM. (d) CCP-LSSVM.

Source – Oliveira et al. (2018).

3.3.4 The hyperparameter influence for CC-LSSVM

To investigate the hyperparameter influence, we varied both P and R for the Ripley

data set, see Figure 13. The more both variability threshold and distance threshold increase, the

more the sparsity increases while the accuracy decreases. On the other hand, the more both

variability threshold and distance threshold decreases, the more the accuracy increases while the

sparsity decreases dramatically.

Concerning the SVs selection analysis, we noticed that CCISS imposes sparseness

in both toy-size and large-size data sets. At the same time, it achieved higher or similar accuracy

values, especially for large-size data sets alongside dramatical sparsity results. Thus, we support

that CCISS is more suitable for large-size data sets.
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Figure 12 – Banana data set and the produced decision boundaries by some LSSVM variants.

(a) CC-LSSVM. (b) FSA-LSSVM.

(c) SSD-LSSVM. (d) CCP-LSSVM.

Source – Oliveira et al. (2018).

As one can see in Table 8, CC-LSSVM is a competitive variant since it kept polyno-

mial costs concerning memory, training, and prediction costs. Such a finding is very interesting

because when combined with higher/similar accuracy rates and sparsity against other LSSVM

variants, such a formulation is beneficial for the LSSVM model.

3.4 Concluding remarks for CC-LSSVM

This chapter presented two contributions of this thesis: the Class Corner Instance

Selection and Class-corner Least-Squares Support Vector Machine. In our first contribution, we

mainly extended the definition of a corner in FAST, an image corner detector, and then applied

the same reasoning to support vector selection. At the same time, in the second contribution, we
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Figure 13 – Hyperparameter influence concerning both Accuracy and Sparsity in CC-LSSVM
using Ripley data set. The black point stands for the default values empirically
determined. The variability threshold (y-axis) is P, while the distance threshold
(x-axis) is a factor of R.

•

Default parameters

0.1 0.5 1 2 4

4

6

8

10

12

14

Distance threshold factor for R

Va
ria

bi
lit

y
th

re
sh

ol
d

P

0.890

0.895

0.900

0.905

0.910
Accuracy

(a) Accuracy experiment.

•

Default parameters

0.1 0.5 1 2 4

4

6

8

10

12

14

Distance threshold factor for R

Va
ria

bi
lit

y
th

re
sh

ol
d

P

0.00

0.20

0.40

0.60

0.80

1.00
Sparsity

(b) Sparsity experiment.

Source – Adapted from Oliveira et al. (2018).
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Table 8 – LSSVM variant comparison in terms of memory requirement, training cost, and predic-
tion cost. We recall that N stands for the cardinality of the training set, while M is the
number of support vectors.

MODEL MEMORY TRAINING PREDICTION

LSSVM (DUAL) O(N2) O(N3) O(N)
FSA-LSSVM (JIAO et al., 2007) O(M2) O(M3) O(M)
CCP-LSSVM (YANG et al., 2014) O(N2) O(N3) O(M)
SSD-LSSVM (MALL; SUYKENS, 2015) O(MN) O(M2N) O(M)
CC-LSSVM O(MN) O(M2N) O(M)
FSOCC-LSSVM O(MN) O(M2N) O(M)

Source – Oliveira et al. (2018).

proposed a less constrained model.

We validate both proposals concomitantly through three types of experiments, eval-

uating different aspects: accuracy, sparseness, support vector selection, and hyperparameter

sensitivity. In the first set of experiments, we performed accuracy and sparseness measurements

in a typical black-box evaluation fashion on some toy-size and large-size data sets. Later, in the

second set of experiments, we analyzed the support vector selection as sparseness. After, we per-

formed an empirical decision boundary analysis in which we analyzed the SVs’ localization and

the resulting decision boundaries. Finally, in the third and last set of experiments, we addressed

the hyperparameter influence in the face of the trade-off between sparsity and accuracy.

Regarding the toy-size results, our proposal achieved higher accuracy rates with

moderate, and sometimes similar, sparsity against other LSSVM variations. As for the large data

sets, our proposal accomplished similar or higher accuracy rates against other variants, all with

low variance on large-size data sets. We noticed from the empirical decision boundary analysis

that our proposal achieved less complex decision boundaries due to the SVs’ localization near

the class boundary. Moreover, regarding the hyperparameters (variability threshold and distance

threshold), we noticed a positive correlation between them and sparsity scores alongside their

negative correlation and accuracy.

Finally, after carrying out an analysis regarding the model complexity, we support

that our proposal is a competitive variant since it kept a polynomial cost concerning memory,

training, and prediction costs alongside higher and similar accuracy rates and sparsity scores

compared to other LSSVM variants.
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3.4.1 Shortcomings

Choosing an appropriate value for K and P in K-NN is, for sure, the main drawback

in CISS. Also, one should consider high-dimensional data and the effects of the curse of

dimensionality because the Euclidean distance becomes meaningless as the dimension of the

data increases significantly. For this scenario, we suggest adopting any prior dimensionality

reduction technique to overcome such a drawback.

Also, we highlight that CCIS presents a higher computational cost since it needs all

samples to perform instance selection. However, apart from the additional computation during

the learning phase, such a decremental algorithm results in a model that requires less memory

usage, which is well worth the computational savings during the execution that follows.

3.4.2 Future works

Continuing exploring the image processing domain, we are exploring concepts

related to scale-space filtering to adopt other strategies to identify other class corners/relevant

samples to build instance-based learners. Also, we are investigating manners to deal with the

shortcomings that affect its performance, such as choosing appropriate values for K (especially

for high-dimensional data) and how to adopt an incremental instead of the batch/decremental

one.

Moreover, we intend to tackle some instance-based learners formulations to perform

both tasks, namely, instance selection and parameter learning, during training.
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4 REDUCING COMPLEXITY BY REGULARIZATION

Our second proposal to deal with the complexity of learning models explored the

model regularization perspective. To do so, we built an instance-based regularized system to

impose sparseness not by selection but by using weighted information into the model. Here, we

adopted the MLM framework and derived a novel formulation of it. We named it Lightweight

Minimal Learning Machine (LW-MLM).

The key idea is to assign weights based on instance relevance instead of simply

discarding them as previously done (through selection). We opt for such a pathway because

treating such a process of selecting instances and computing the mapping between distance

matrices as a sparse resolution problem of multiple-response linear systems is an NP-Hard

problem.

For sparse learning strategies, we refer the reader to the following works, namely,

Donoho and Elad (2003), Fuchs (2004), and Tropp (2004) and for some applications related to

image super-resolution (YANG et al., 2010), order preservation (NI et al., 2015), and multitask

learning in image emotion distribution prediction (ZHAO et al., 2017).

4.1 The Lightweight Minimal Learning Machine

To derive LW-MLM, we posed the MLM model under two mains constraints: the

reconstruction constraint – error term – and the model complexity constraint – norm term. The

reconstruction constraint requires consistency between the recovered mapping from the input

to the output spaces. In contrast, the model complexity constraint assumes that the model can

represent such a mapping sparsely in an appropriately chosen overcomplete dictionary and

recover its sparse representation.

4.1.1 LW-MLM Formulation

The LW-MLM formulation has the following learning cost function:

min
B

JLW(B,P) = ||DB�DDD||2
F

+ ||PB||2
F

(4.1)

which yields the following solution (see Appendix A):

B̂LW = (D|D+P|P)�1D|DDD (4.2)
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where P acts as a regularization matrix, weighting the coefficients associated with mapping the

samples.

Although it sounds inappropriate to have a hyperparameter P 2 RN⇥N , it is actually

to fill the gap due to the MLM multiresponse system. In contrast, P can be derived by a

regularization vector p 2 RN by adopting P as a diagonal matrix as shown as follows:

P = diag(p). (4.3)

So, one must establish a feasible way to provide proper weight values for P. Next, we address

some strategies to do it so.

4.1.2 On the selection of P

In this section, we will describe some efforts to produce feasible regularization matri-

ces. In the following, we focus on the vector notation since P can be derived by a regularization

vector p.

4.1.2.1 By the normal random-based one

Related to the compressive sensing described in Yang et al. (2014), we seek to obtain

P by assigning randomly values to its diagonal, letting the other indexes with 0. In this case, p is

defined as pi ⇠N (0,1).

4.1.2.2 By the nonlinear parts of f

Sousa Júnior (2014) presented an instance selection algorithm based on distance

computations and non-parametric hypothesis testing. By analyzing the p-values from the non-

parametric hypothesis test, the algorithm indicates which samples correspond to the most linear

part of the target function f (·). Consequently, one can find the less linear ones.

Firstly, the author assumes that f (·) satisfies the Weierstrass continuity definition1.

Then, the author also assumes the distributions of distance measurements on the input and output

spaces are equal (matches) up to a normalization factor if one considers a neighborhood of f

such that f is linear. Next, one must normalize the measurements to have zero-mean and unit

variance before applying the non-parametric Kolmogorov-Smirnov hypothesis test (KS2Sample)
1 f (x) is continuous at x = x0 if 8e > 0 9 d > 0 such that for every x in the domain of f , |x� x0| < d =)

| f (x)� f (x0)| < e
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(MASSEY, 1951). The null hypothesis in such a test is that normalized measurements are

samples from the same distribution. Then, one builds a ranking criterion based on the resulting

p-values for each measurement and select some instances based on a threshold.

As we are not interested in selecting samples, we simply apply the KS2Sample test

and employ the resulting p-values as regularization vector. Let us denote fk(xi) and yk(yi)

the column vectors that encompass the distance measurements from their argument to its k

neighbors (nearest points). For sake of simplicity, consider in the following description and

notation only the case of fk(xi) since a similar description and notation for yk(yi) can be done

straightforwardly:

fk(x) =
⇥
d(xi1 ,x),d(xi2 ,x), . . . ,d(xiK ,x)

⇤| (4.4)

such that 0 < d(xi1 ,x) · · · d(xiK ,x) · · · d(xiN ,x) 8 xi⇤ 2D , where the indexes i1, i2, . . . , iN

form a permutation of {1, . . . ,N}. Also, consider fk(xi) and yk(yi) the normalized measure-

ments from fk(xi) and yk(yi), respectively. Now, let us define the KS2Sample test result for a

given sample pair (xi,yi) from their normalized distance measurements as:

P(x,y) = KS2Sample(fk(x),yk(y)). (4.5)

Regarding the values, by applying the KS2Sample test result directly, the weights

would behave similarly to the previous strategy when we adopted normal distributed random

weights since the p-values 2 [0,1]. Therefore, to overcome such a situation, we adopted a

transformation to address such a condition by penalizing the samples with p-values below a

given linear threshold t, that is,

KSk
t,l (x,y) =

8
><

>:

P(x,y)+l , if P(x,y) < t,

P(x,y), otherwise.
(4.6)

In possession of such a definition, we derive a pi = KSk
t,l (xi,yi). Also, we support

the Otsu’s method (SEZGIN; SANKUR, 2004) is suitable to find a feasible threshold t from the

{P(xi,yi)}N
i=1.

4.1.3 Speeding up the out-of-sample prediction

The lightweight in LW-MLM is not just related to the regularized values in B (linear

mapping coefficients) but also related to the speedup out-of-sample prediction. Since we employ



74

all samples in the LW-MLM learning algorithm, we believe that LW-MLM learns the whole

known geometric structure, i.e., the domain knowledge is “fully” represented in B. With that in

mind, we truly support that B by itself. Thus, in this setting, LW-MLM can successfully map the

linear structure.

Such an assumption encourages us to discard some components from the out-of-

sample prediction procedure since most RP projections will result in zero error. First, let us

define the discard function k : RN ! RK as

k(a) = (ai1 ,ai2 , . . . ,aiK)|, (4.7)

where i1, i2, . . . , iK, . . . , iN form a random permutation of {1, . . . ,N}. Now, the location of ŷ can

be estimated by minimizing the following objective function:

ŷ = h(x) = argmin
y
k k (Y(y)�F(x)B) k2 . (4.8)

Later, we discuss such a speedup procedure in the experiments while showing the

relationship through varying the number of components and the prediction error associated.

4.2 Tikhonov regularization and Heteroscedasticity in the LW-MLM framework

It is well known that minimization of a sum-of-squares error (SSE) metric corre-

sponds to maximum likelihood estimation of the parameters of a regression model, where the

target data are assumed to be realizations of some deterministic process that has been corrupted by

additive Gaussian noise with constant variance (i.e., a homoscedastic noise process) (CAWLEY

et al., 2004 apud BISHOP et al., 1995). However, it was reported that the noise models in some

real-world applications do satisfy heteroscedasticity (CAWLEY et al., 2004). Heteroscedasticity

is the opposite of homoscedasticity. Heteroscedasticity refers to data for which the variance of

the dependent variable is unequal across the range of independent variables.

Up to this point, the MLM framework had mainly formulations regarding ho-

moscedasticity (see Karkkainen (2019), Dias et al. (2018), Dias et al. (2019)), but wMLM

(GOMES et al., 2015) and Rank-MLM (ALENCAR et al., 2015). The wMLM induces such a

heteroscedastic behavior in the error term directly since it employs weighted least squares (a

specialization of generalized least squares) to find its solution. In short, it goes from the MLM

system in Equation 2.10 to the weighted least-squares seen in Equation 2.18 by penalizing the

norm of the solution B by weighting it with some positive constant l . The authors of wMLM
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proposed two ways of configuring its weights in imbalanced classification and classification with

reject option. On the other hand, Rank-MLM and LW-MLM induce the same heteroscedastic

behavior in the (norm) complexity term to balance the model complexity and generalization.

In summary, Rank-MLM and LW-MLM go from the MLM system in Equation 2.10 the same

Tikhonov regularization strategy, see Equation 2.18 and Equation 4.2, but they differ when

it comes to model flexibility since Rank-MLM can be seen as a particular case of LW-MLM

(P = l I).

Moreover, the regularization terms can be understood to be encoding priors on the

parameters. This is particularly beneficial and adds more flexibility to the model since the choice

of prior is one of the most critical parts of the Bayesian inference workflow. In contrast, most

models have often fallen back on vague priors, such as standard Gaussians.

4.2.1 LW-MLM Algorithms for training and out-of-sample procedures

For sake of simplicity, consider the following Algorithm 10 and Algorithm 11 to

describe the training and prediction procedures in LW-MLM, respectively.

Algorithm 10 Training procedure in LW-MLM.

LW-MLM-TRAINING(D,P)

⇤ Here, P is given by one of the strategies presented in subsection 4.1.2.
1 Compute both distance pairwise matrices D and DDD from D, respectively.
2 Compute B̂ = (D|D+P|P)�1D|DDD.
3 return B̂.

Algorithm 11 Prediction procedure in LW-MLM.

LW-MLM-PREDICT(x?, B̂)

⇤ Here, k(·) randomly selects some components from its argument.
1 Project x? to the output space by computing F(x?) B̂.
2 Compute ŷ = arg min

y
k k

�
Y(y)�F(x?) B̂

�
k2.

3 return ŷ.
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4.3 Experiments and Discussion for LW-MLM

This section presents the experimental framework followed in this chapter, together

with the results collected and discussions on them.

4.3.1 Experiment Setup

We carried out some experiments to evaluate different aspects of LW-MLM. Our

goal is to investigate how LW-MLM behaves concerning the following aspects: the prediction

error, the goodness-of-fit of estimated vs. measured values (without being scaled by the output

scale), the model complexity (via norm of matrix B), the influence of the RPs number in the

out-of-sample prediction and, finally, the prediction error in high dimensional feature spaces.

The following experiments address such concerns:

a) Typical black-box assessment: Here, we assess LW-MLM against some vari-

ants of MLM, analyzing the prediction error and the goodness-of-fit of estimated

vs. measured values in a typical black-box test fashion on some data sets;

b) Visual qualitative analysis: In this experiment, we examine the importance

of regularization by analyzing the level of complexity (via smoothness) of the

estimated function while we identify the difference between LW-MLM and the

other formulations empirically;

c) The relevance of RPs in the prediction step: This experiment examines the

influence of the number of RPs during out-of-sample prediction in the resulting

LW-MLM model;

d) The prediction error in high dimensional feature: Here, we conclude our

experiments by analyzing how LW-MLM deals with high dimension data sets,

i.e., x 2 RD s.t. D from ⇡ 100 up to 4000.

4.3.2 Typical black-box assessment

This assessment has two perspectives for analysis purposes: the first is related to the

RMSE, while the second is related to the R2. In both experiments, we used real-world benchmark

data sets from UCI data sets (LICHMAN, 2013) and the Luis Torgo collection (TORGO, 2005).

data set name, acronym, number of training samples (#Tr), number of testing samples (#Te)

and input dimensionality (#Dim) about the aforementioned data sets are presented in Table 9.
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Also, we highlight we pre-processed all data sets so that we removed samples containing missing

values, and we normalized all features by variation (standardization).

Table 9 – Data set descriptions for black-box assessment.
data set ACRONYM # DIM # TR # TE

Abalone ABA 8 3000 1177
AutoMPG MPG 7 350 42
Boston housing BTH 13 400 106
concrete CON 8 700 330
cpu_act CPU 12 5000 3192
delta ailerons DAI 5 5000 2129
delta elevators DEL 6 6000 3517
kinematics KIN 8 4500 3692
motor_UPDRS MUP 20 3000 2875
puma8NH 8NH 8 4500 3692
stock STO 9 600 350
total_UPDRS TUP 20 3000 2875
winequality_red WRE 11 1000 599
winequality_white WWH 11 3500 1398

Source – Florencio V et al. (2020).

We assessed LW-MLM’s performance alongside three other MLM variants. The

first one, named Full-MLM (FL-MLM), employs all the training set as Reference Points. The

second variant is the Random-MLM, in which it randomly selects K reference points from the

training data. Finally, the third variant is the Rank-MLM adds up a regularization term to its cost

function (ALENCAR et al., 2015).

Also, we investigate how LW-MLM behaves regarding adopting three different

mechanisms of generating P. For that, we derived three other versions of LW-MLM, namely,

LW-MLM-1, LW-MLM-2, and LW-MLM-3. LW-MLM-1. LW-MLM-1 employs a diagonal

matrix with random values from a normal distribution with zero mean and unit variance. In

contrast, LW-MLM-2 and LW-MLM-3 both employ a diagonal matrix with values assigned via

the KS-2-Sample-Test described in Equation 4.6, but adopting different linearity thresholds as

described in Table 10.

We also employed a combination of the k-fold cross-validation and holdout methods

in the experiments. The holdout method with the training and testing division used by Zhao et al.

(2012) was employed to estimate the performance metrics. For Random-MLM and Rank-MLM,

we choose the hyperparameters by grid search combined with 5-fold cross-validation yielding

the best combinations with higher R2 values from 30 independent runs. See Table 10 for the
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hyperparameter value space employed for each model.

Table 10 – MLM variants and their hyperparameters configurations.
MODEL DESCRIPTION HYPERPARAMETER VALUE

Full-MLM K: Number of RPs. K = N.

Random-MLM K: Number of RPs chosen randomly
from a range through grid search and
cross-validation.

K 2 {b0.05⇥ i⇥Nc}10
i=1

Rank-MLM K: Number of RPs chosen randomly
from a range through grid search and
cross-validation

K 2 {b0.05⇥ i⇥Nc}10
i=1

C : Regularization parameter optimized
by grid search and cross-validation.

C 2 {2�4,2�3, . . . ,21,22}.

LW-MLM-1 P: Diagonal matrix with random values
from a normal distribution with zero
mean and unit variance.

Pi, j =

(
N (0,1), if i = j
0, otherwise

.

LW-MLM-2 P: Diagonal matrix with values as-
signed via the KS-2-Sample-Test de-
scribed in Equation 4.6.

Pi, j =

(
KSk

0(xi,yi), if i = j
0, otherwise

.

k: Number of nearest points to compute
distance.

k = log10(5⇥N).

LW-MLM-3 P: Diagonal matrix with values as-
signed via the KS-2-Sample-Test de-
scribed in Equation 4.6.

Pi, j =

(
KSk

t (xi,yi), if i = j
0, otherwise

.

k: Number of nearest points to compute
distance.

k = log10(5⇥N).

t: Linearity threshold. t = OT SU k(X,Y).

Source – Florencio V et al. (2020).

Regarding the statistical analysis of the results, we carried out the Friedman test to

assess all performance metrics, namely, the RMSE, the R2, and the norm of matrix B to better

distinguish the comparison of the MLM models over 30 independent realizations. To do it so,

we graphically represent such a comparison through the Critical Difference (CD) plot as the one

presented in Demšar (2006).

4.3.2.1 Prediction error as performance measurement

As one can see in Table 11, we reported the RMSE metrics regarding the black-box

experiments for all data sets and models. In such an experiment, after performing the Friedman

test, we noticed that all models are equivalent since all are connected, see the CD plot in Figure 14.



79

Table 11 – Black-box experiment results for RMSE. We recall that the variants which are
not joined by a bold line can be regarded as different in the CD plot bellow.

data sets FULL-MLM RANDOM-MLM RANK-MLM LW-MLM-1 LW-MLM-2 LW-MLM-3

ABA 2.24 ± 0.07 2.14 ± 0.06 2.12 ± 0.06 2.13 ± 0.06 2.22 ± 0.07 2.22 ± 0.07
MPG 2.64 ± 0.53 2.69 ± 0.50 2.62 ± 0.49 2.61 ± 0.47 2.57 ± 0.48 2.58 ± 0.48
BTH 3.11 ± 0.48 3.47 ± 0.60 3.57 ± 0.57 3.54 ± 0.52 3.31 ± 0.50 3.80 ± 0.49
CON 5.76 ± 0.53 6.40 ± 0.46 7.25 ± 0.38 7.21 ± 0.38 7.37 ± 0.41 7.94 ± 0.35
CPU 2.81 ± 0.06 2.86 ± 0.07 2.94 ± 0.07 2.91 ± 0.06 2.81 ± 0.06 2.81 ± 0.06
DAI 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤
DEL 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤
KIN 0.08 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.09 ± 0.00 0.10 ± 0.00 0.11 ± 0.00
MUP 2.11 ± 0.06 2.34 ± 0.06 2.68 ± 0.05 2.65 ± 0.05 2.49 ± 0.06 2.52 ± 0.06
8NH 3.41 ± 0.04 3.36 ± 0.04 3.33 ± 0.04 3.33 ± 0.04 3.32 ± 0.03 3.37 ± 0.04
STO 0.66 ± 0.04 0.74 ± 0.04 0.83 ± 0.05 0.83 ± 0.05 0.79 ± 0.04 0.85 ± 0.05
TUP 2.85 ± 0.08 3.17 ± 0.07 3.68 ± 0.06 3.66 ± 0.07 3.48 ± 0.07 3.97 ± 0.07
WRE 0.61 ± 0.02 0.62 ± 0.02 0.62 ± 0.01 0.62 ± 0.02 0.61 ± 0.02 0.61 ± 0.02
WWH 0.61 ± 0.02 0.65 ± 0.01 0.67 ± 0.01 0.67 ± 0.01 0.61 ± 0.02 0.61 ± 0.02

⇤ The values are not exactly zero but rather too small.

Source – Florencio V et al. (2020).

Figure 14 – Critical Difference plots regarding RMSE for black-box ex-
periments.

2 3 4 5
CD

Full−MLM
LW−MLM−2

Random−MLM

LW−MLM−1
LW−MLM−3
Rank−MLM

Source – Florencio V et al. (2020).

Table 12 – Black-box experiment results for R2. Again, we recall that the variants which are
not joined by a bold line can be regarded as different in the CD plot bellow.

data sets FULL-MLM RANDOM-MLM RANK-MLM LW-MLM-1 LW-MLM-2 LW-MLM-3

ABA 0.53 ± 0.02 0.57 ± 0.02 0.58 ± 0.02 0.57 ± 0.02 0.54 ± 0.02 0.54 ± 0.02
MPG 0.89 ± 0.05 0.88 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04 0.89 ± 0.04
BTH 0.88 ± 0.04 0.85 ± 0.05 0.85 ± 0.05 0.85 ± 0.05 0.87 ± 0.04 0.83 ± 0.05
CON 0.88 ± 0.02 0.85 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.81 ± 0.02 0.78 ± 0.02
CPU 0.98 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.98 ± 0.00
DAI 0.68 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.71 ± 0.01 0.69 ± 0.01 0.69 ± 0.01
DEL 0.59 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.64 ± 0.01 0.59 ± 0.01 0.59 ± 0.01
KIN 0.90 ± 0.00 0.89 ± 0.00 0.88 ± 0.00 0.88 ± 0.00 0.87 ± 0.00 0.83 ± 0.01
MUP 0.93 ± 0.00 0.92 ± 0.00 0.89 ± 0.00 0.90 ± 0.00 0.91 ± 0.00 0.91 ± 0.01
8NH 0.63 ± 0.01 0.64 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.65 ± 0.01 0.64 ± 0.01
STO 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.98 ± 0.00
TUP 0.93 ± 0.00 0.91 ± 0.00 0.88 ± 0.01 0.89 ± 0.01 0.90 ± 0.00 0.87 ± 0.01
WRE 0.44 ± 0.03 0.40 ± 0.03 0.40 ± 0.03 0.41 ± 0.03 0.44 ± 0.03 0.44 ± 0.03
WWH 0.53 ± 0.02 0.47 ± 0.02 0.43 ± 0.02 0.43 ± 0.02 0.53 ± 0.02 0.53 ± 0.02

Source – Florencio V et al. (2020).

Such a finding is very interesting because it shows that such a new formulation did not sacrifice

the generalization performance.
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Figure 15 – Critical Difference plots regarding R2 for black-box experi-
ments.

3 4 5
CD

Full−MLM
Random−MLM
LW−MLM−2

Rank−MLM
LW−MLM−1
LW−MLM−3

Source – Florencio V et al. (2020).

Table 13 – Black-box experiment results for NORM. The matrix B norm value is scaled
between 0 and 1 for each data set. Once again, we recall that the variants which
are not joined by a bold line can be regarded as different in the CD plot bellow.

data sets FULL-MLM RANDOM-MLM RANK-MLM LW-MLM-1 LW-MLM-2 LW-MLM-3

ABA 1.00 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 0.07 ± 0.00 0.84 ± 0.02 0.84 ± 0.02
MPG 1.00 ± 0.00 0.28 ± 0.12 0.07 ± 0.01 0.14 ± 0.02 0.24 ± 0.02 0.24 ± 0.03
BTH 1.00 ± 0.00 0.49 ± 0.06 0.20 ± 0.02 0.32 ± 0.04 0.36 ± 0.02 0.14 ± 0.08
CON 1.00 ± 0.00 0.33 ± 0.32 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤ 0.00 ± 0.0⇤
CPU 1.00 ± 0.00 0.43 ± 0.02 0.03 ± 0.00 0.11 ± 0.01 0.82 ± 0.01 0.82 ± 0.01
DAI 1.00 ± 0.00 0.04 ± 0.02 0.02 ± 0.01 0.10 ± 0.01 0.92 ± 0.01 0.92 ± 0.01
DEL 1.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.09 ± 0.00 0.96 ± 0.02 0.96 ± 0.02
KIN 1.00 ± 0.00 0.53 ± 0.01 0.31 ± 0.00 0.45 ± 0.01 0.31 ± 0.01 0.12 ± 0.00
MUP 1.00 ± 0.00 0.59 ± 0.02 0.23 ± 0.00 0.44 ± 0.01 0.51 ± 0.02 0.50 ± 0.02
8NH 1.00 ± 0.00 0.23 ± 0.06 0.15 ± 0.02 0.32 ± 0.01 0.21 ± 0.01 0.07 ± 0.00
STO 1.00 ± 0.00 0.51 ± 0.02 0.13 ± 0.00 0.26 ± 0.01 0.29 ± 0.02 0.15 ± 0.01
TUP 1.00 ± 0.00 0.60 ± 0.02 0.23 ± 0.00 0.45 ± 0.02 0.45 ± 0.01 0.20 ± 0.00
WRE 1.00 ± 0.00 0.43 ± 0.10 0.09 ± 0.02 0.20 ± 0.02 0.96 ± 0.03 0.96 ± 0.03
WWH 1.00 ± 0.00 0.47 ± 0.02 0.07 ± 0.00 0.19 ± 0.01 0.99 ± 0.02 0.99 ± 0.02
⇤ The values are not exactly zero but rather too small, specially after the scaling.

Source – Florencio V et al. (2020).

4.3.2.2 Goodness-of-fit as performance measurement

Another good way to compare the regressors is the coefficient of determination R2

since it does not scale according to the output order of magnitude. Table 12 shows these results

for all models. As one can see, the results are very similar, and, again, all models can be regarded

as equivalents since all are connected, see Figure 15.

4.3.2.3 The norm as performance measurement

Lastly, Table 13 shows the norm of matrix B. The values were scaled between 0 and

1 by subtracting 1 from division by the k B kF of Full-MLM (that is NORM(x) = 1�xk B kF�1

) since it acts as an upper bound2 because in other models either D and/or DDD are not squared

matrices nor they present any regularization factor.

From that, it is possible to conclude that LW-MLM reduces the model complexity,
2 k B kF=k D�1DDD kF�k D�1 kFk DDD kF .
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Figure 16 – Critical Difference plots regarding NORM for black-box experi-
ments.
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Source – Florencio V et al. (2020).

achieving feasible results without sacrificing the model generalization, especially when analyzing

the overall results from other metrics, see Figure 16.

4.3.3 Visual qualitative analysis

In this experiments, we chose three data sets from the regression problems f : R!R,

two artificial and a real-world one. Such data sets were select by their features concerning the

learned function. The first two data sets, namely, Artificial I and Artificial II, are regression

problems generated by known functions. The first function has a uniform error, while the second

is a very distinct non-linear function, both with 200 samples. The third function is a real-world

data set called by mcycle containing 133 samples from a simulated motorcycle accident used to

test crash helmets (SILVERMAN, 1985). We summarize such data sets in the following:

a) Artificial I. yi = i⇥ sin(1.5⇥ xi)+u, s.t. u⇠ U(0.250,0.500), i = 1, . . . ,200;

b) Artificial II. yi =
•
Â

j=1,3,5,...

sin( j⇥ xi)

j
+u, s.t. u⇠U(0.025,0.050), i = 1, . . . ,200;

c) Mcycle. 133 observations from a simulated motorcycle accident, used to test

crash helmets (SILVERMAN, 1985).

As for the hyperparameters to produce such visualizations, we performed a grid

search with cross-validation to determine them. Moreover, for visualization purposes, we kept

the RPs with the same color as the training samples.

As one can see in Figure 17, one can notice that all models produced feasible

estimated functions. However, the ones that somewhat employed regularization, namely, Rank-

MLM and LW-MLM, were the ones with proper results and less over-fitting. Such an analysis is

critical because if we only use RMSE or R2 scores to assess such models, we would not easily

identify the over-fitted models. An interesting fact regarding Random-MLM is that the random

selection of RPs somewhat caused less complex results, acting as a regularization factor in the

model.
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Figure 17 – Artificial data set I.
(a) Full-MLM. (b) Random-MLM. (c) Rank-MLM.

(d) LW-MLM 1. (e) LW-MLM 2. (f) LW-MLM 3.

Source – Florencio V et al. (2020).

Figure 18 – Artificial data set II.
(a) Full-MLM (b) Random-MLM. (c) Rank-MLM

(d) LW-MLM 1. (e) LW-MLM 2. (f) LW-MLM 3.

Source – Florencio V et al. (2020).
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Figure 19 – Mcycle data set.
(a) Full-MLM. (b) Random-MLM. (c) Rank-MLM.

(d) LW-MLM 1. (e) LW-MLM 2. (f) LW-MLM 3.

Source – Florencio V et al. (2020).

As for the second artificial data set, presented in Figure 18, one can notice that the

regularization variants, namely, Rank-MLM and LW-MLM, impaired the model performance,

especially near the “wave” patterns. However, they kept the overall behavior of the learned

functions.

Finally, regarding the Mcycle data set depicted Figure 19, one can notice a case

where both regularization and overfit add up difficulties regarding the learning process. Both

Full-MLM and Random-MLM presented aspects of overfitting because of the heteroscedasticity

scenario. Thus, adopting all (Full-MLM) or some (Random-MLM) RPs is not enough, indicating

the need for regularization.

Concerning the regularized variants, namely, Rank-MLM and LW-MLM, one can

notice smoother functions. However, the homoscedasticity behavior embedded into Rank-MLM

did not achieve a proper fit in contrast to LW-MLM variants. From such a finding, we truly

support that such a regularization approach alongside the heteroscedasticity is beneficial to the

model.
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4.3.4 The relevance of RPs during out-of-sample prediction

As one of the pillars in LW-MLM is the lightweight pillar, which we support that it

learns the whole known geometric structure of the data itself, thus, encouraging us to discard

some RPs in the out-of-sample prediction. In this experiment, we analyze how such a discard

influences the error in LW-MLM.

Additionally, since we are focusing on regression tasks whose output 2 R, we need

at least two RPs due to the multilateration setting in MLM. Thus, we vary the quantity of RPs

from 2 points and, then, we increase it by a step of multiples of 5% of the actual data set size to

examine how the model behaves regarding the RMSE.

In each plot, see Figures 20 and 21, we show the RMSE for 30 independent runs

(green points) and the connected (blue) ones represent the average for the 30 runs. Also, we

highlight that according to the quantity of RPs, one can see LW-MLM acting as Random-MLM

or even Rank-MLM for values between 5% and 50%. When it reaches 100%, one can consider

LW-MLM as Full-MLM but taking into account some regularization.

4.3.5 LW-MLM performance at high dimension data sets

This experiment evaluates how LW-MLM deals with some high dimension data sets

in comparison with other regressors. Here, the primary goal is to verify how the high dimension

affects the error. We pretty much performed the same typical black-box assessment presented in

subsection 4.3.2 on three data sets in four settings (The residential data set has two outputs; thus,

we split it into two sets), see Table 14. However, we did employ some other regressors from the

literature, namely, the k-Nearest Neighbor Regressor (kNN), the Random Forest (RF), and the

Support Vector Regressor (SVR).

Table 14 – High dimension data set descriptions.
data set ACRONYM # DIM # TR # TE

Residential (output: Sales price) RS 105 297 75
Residential (output: Construction price) RC 105 297 75
Communities Crime CC 147 1772 443
Riboflavin RB 4088 50 21

Source – Florencio V et al. (2020).

As one can see in Table 16, we reported the RMSE and R2 metrics regarding the

black-box experiments for all data sets presented in Table 14. In such an experiment, we
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Figure 20 – RMSE for ABA, MPG, BHT, CON, CPI, DAI, and DEL data sets.
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Figure 21 – RMSE for KIN, MUP, 8NH, STO, TUP, WRE, and WWH data sets.
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Table 15 – Hyperparameters’ space in the high dimension data set experiment.
MODEL DESCRIPTION HYPERPARAMETER SPACE

RF d: the maximum depth of the tree. d 2 {10,30,80,100}.
f : Max features. f 2 {2,3}
l: Minimum number of leaf node samples. l 2 {3,4,5}
s: Number of minimum samples to split. s 2 {8,10,12}
n: Number of trees in the forest. n 2 {100,200,300}

SVR C: Regularization parameter. C 2 {10i}3
i=0

s : RBF kernel coefficient. s 2 {10i}2
i=�2

kNN k: Number of nearest neighbors to compute
distance.

k 2 {3,5,9,13,15,25,40}.

Source – Florencio V et al. (2020).

Table 16 – Black-box experiment results for RMSE and R2 in high dimension data sets.
FULL-MLM RF kNN SVR LW-MLM-1 LW-MLM-2 LW-MLM-3

R
M

SE

RS 318.89 736.70 396.97 575.75 378.09 378.35 381.64
RC 47.34 84.26 89.38 39.46 52.44 51.82 53.20
CC 871.78 1558.03 1859.21 1243.90 985.36 935.71 989.50
RB 0.59 0.83 0.80 0.74 0.59 0.59 0.59

R
2

RS 0.93 0.61 0.53 0.77 0.90 0.90 0.90
RC 0.92 0.73 0.70 0.94 0.90 0.90 0.90
CC 0.90 0.66 0.51 0.78 0.88 0.89 0.88
RB 0.67 0.15 0.18 0.32 0.67 0.67 0.67

Source – Florencio V et al. (2020).

noticed that models that rely on regular distance computations, namely, kNN and Random Forest,

performed worse in these high dimensional data sets. Simultaneously, the LW-MLM variants

mirrored the best models in both RMSE and R2, achieving similar results. Such a finding is

exciting because it shows that such a new formulation can also deal with high dimension data

sets.

4.3.6 Computational complexity analysis of MLM variants from the experiments

To simplify our notation, we adopt M as the number of RPs used in the out-of-sample

prediction, while N is the number of samples in the data set. Since we employ all data set into the

training step, the memory used is in the order of O(N) for both D and P, and the linear system

solution is given by O(N3) which is pretty much the same as the Full-MLM. However, the out-

of-sample prediction step has less cost because fewer RPs are employed (see subsection 4.3.4),

thus, resulting in O(M) where M is the number of RPs used in the out-of-sample prediction.
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Furthermore, it is worth mentioning that we neglected the cost of building P and the optimization

process since they are asymptotically smaller than the system resolution.

Table 17 – MLM variant comparison in terms of memory requirement, training cost, and out-of-
sample prediction cost. We recall that N stands for the cardinality of the training set,
while M is the number of RPs (N �M).

MODEL MEMORY TRAINING PREDICTION

Full-MLM O(N2) O(N3) O(N)
Random-MLM O(NM) O(NM2) O(M)
Rank-MLM O(NM) O(NM2) O(M)
LW-MLM O(N2) O(N3) O(M)

Source – Florencio V et al. (2020).

As one can see in Table 17, LW-MLM is a competitive variant since it kept poly-

nomial costs concerning memory, training, and prediction costs. Although LW-MLM has a

similar cost to the Full-MLM during training, it dramatically reduced out-of-sample prediction

cost, staying similar to the other variants. Such finding is exciting because when combined with

higher/similar error rates, RPs quantity, and norm scores against other MLM variants, it suggests

that such a formulation is beneficial for the MLM model.

4.4 Concluding remarks on LW-MLM

This Chapter presented a novel formulation for the MLM model based on a regular-

ization matrix named Lightweight Minimal Learning Machine (LW-MLM). We mainly extend

the definition of the cost function in the original version of MLM and then embed a speeded-up

procedure into the out-of-sample prediction.

We validate LW-MLM through four types of experiments, evaluating different as-

pects: prediction error, the goodness-of-fit of estimated vs. measured values, the model complex-

ity (via norm of matrix B), the influence of the RPs number in the out-of-sample predict, and,

finally, the performance in high dimensional data sets.

In the first set of experiments, we assessed LW-MLM and some MLM variants

through the prediction error and the goodness-of-fit of estimated vs. measured values in a

typical black-box test fashion on some data sets. In this typical black-box assessment, LW-MLM

achieved similar or higher accuracy rates against other variants, all with low variance and seen

as statistically equivalent.

Next, in the second set of experiments, we visually assessed the MLM variants on
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three regression problems. From such an empirical analysis, we support that some problems can

take advantage of the regularization approach due to such a formulation in LW-MLM. At the

same time, other models do not perform precisely.

In the third set of experiments, in which we addressed the relevance of RPs during

prediction, we highlighted the stability property of LW-MLM concerning such a selection even

when fewer points are employed. Through the results, we noticed the lightweight aspect in LW-

MLM is beneficial for the MLM model since it kept it a competitive variant with a polynomial

cost concerning memory, training. Additionally, it dramatically reduced out-of-sample prediction

cost while staying similar to the other variants regarding the error prediction.

Finally, we investigated how LW-MLM deals with high-dimensional data sets in the

last set of experiments. LW-MLM variants mirrored the best models, in both RMSE and R2,

achieving similar results to some State-of-the-art models.

4.4.1 Shortcomings

Since we do not discard any sample during training, the memory and training cost

might be prohibitive for some problems, as shown in Table 17, they are O(N2) and O(N3),

respectively. Also, we again have to deal with the effects of the curse of dimensionality because

the distance matrices, namely, D and DDD, have meaningless distances as the dimension of the data

increases significantly.

4.4.2 Future works

Nowadays, we are exploring other formulations for LW-MLM as a means to improve

the current approach. Also, we are investigating manners to deal with the shortcomings that

affect its performance, such as the choice of appropriate values for P, especially for large data

sets, and metric learning strategies during training as well.
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5 REDUCING COMPLEXITY BY CLASS-CORNER NEARNESS

Our first attempt to deal with learning models’ complexity was to explore the instance

selection perspective through CCIS. Later, we introduced the Lightweight framework for MLM,

reducing model complexity and speeding up the out-of-sample prediction.

This chapter introduces the class-corner concept (via CCIS) to derive a novel LW-

MLM variant. We name such a derivation that embodies CCIS into LW-MLM as the Class-Corner

Lightweight Minimal Leaning Machine (CCLW-MLM). To achieve a Lightweight fashion for

MLM, we present a way to produce P via CCIS by regularizing samples’ closeness concerning

the class corners. Such a proposition results in a model in which the class-corner samples will

have higher regularization costs, while those far from the corners will be less penalized.

5.1 Measuring class-corner nearness

Given a datset D and a class-corner set PS, such that PS ⇢D, we then define the

Nearest Class-Corner Distance NCD(·) of a given sample x as:

NCD(x) = min
n

||x�x j||2
o

,8x j 2 PS. (5.1)

Next, we derive a distance factor, named class-corner nearness, as a regularization

cost for each sample concerning the closest class-corner. To do so, we must define the maximum

cost by class-corner nearness as the maximum distance of a query sample to the class-corners for

all samples available, that is,

z = max
n

NCD(xi)
o

,8xi 2D, (5.2)

because it acts as an upper bound so that finally, we derive the cost by class-corner nearness of a

given sample x as:

V(x) = z �NCD(x). (5.3)

The reasoning behind such a proposition results in the class-corner samples will have

higher regularization costs, while it penalizes less the samples far from the corners.

5.2 Class-Corner-Nearness-Aware Minimal Learning Machines

To derive a LW-MLM variant, we explore the suitability of employing the above-

mentioned class-corner nearness to produce P for LW-MLMs. We name such a derivation as the
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Class-Corner Lightweight Minimal Leaning Machine (CCLW-MLM) and in the following,

we present how the learning and out-of-sample prediction works.

5.2.1 Learning algorithm and out-of-sample prediction for CCLW-MLM

Both learning algorithms and out-of-sample prediction in CCLW-MLM follow the

same framework presented in LW-MLM. However, the MLM model takes advantage of the

known output space, i.e., the already known labels, in classification tasks. Therefore, one can

simply avoid the multilateration procedure during prediction by merely replacing it by directly

applying the known labels into the cost function. Firstly, let us define Y? as the set with known

labels (encoded in One-Hot-Encoding) such that

Y? =
n

y(i)
oC

i=1
, such that y(i) =

⇥
[i = 1], [i = 2], . . . , [i = C]

⇤
(5.4)

then, we rewrite the out-of-sample prediction as:

h(x) = argmin
y(i)2Y?

k Y
⇣

y(i)
⌘
�F(x)B k2 . (5.5)

We present the learning algorithm for CCLW-MLM in Algorithm 12:

Algorithm 12 The CCLW-MLM learning algorithm

CCLW-MLM-TRAINING(D)

⇤ Step 1: Computing the class-corners.
1 PS CCIS(D,0).

⇤ Step 2: Computing the class-corner nearness cost.
2 N |D|.
3 z  max

n
NCD(xi)

o
,8xi 2D.

4 p Zeros(1,N).
5 pi z �NCD(xi).
6 P diag(p).

⇤ Step 3: Estimating the system solution.
7 return LW-MLM-TRAINING(D,P).

5.3 Experiments and Discussion for CCLW-MLM

This section presents the experimental framework followed in this work, together

with the results collected and discussions on them.
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5.3.1 Experiment Setup for CCLW-MLM

We carried out two types of experiments to evaluate different aspects of our proposal.

Our goal is to investigate how CCLW-MLM behaves with respect to the following aspects:

accuracy and sparseness1. Each of the following experiments addresses such concerns. Moreover,

we highlight all experiments were performed using a Mac Mini with an 3.6 GHz Intel Core i3

Quad-Core, 8 GB of RAM, and running macOS Catalina 10.15.6 with Python 3.7.3.

a) The typical black-box assessment on some data sets: Here, we are interested

in assessing CCLW-MLM against some of the state-of-the-art MLM variants that

employ regularization through accuracy and sparseness in a typical black-box

test fashion on the same toy-size data sets presented in subsection 3.3.2.

b) Empirical decision boundary quality assessment: This experiment investi-

gates visually the quality of solutions produced by the MLM variants that employ

regularization by empirically evaluating the decision boundaries.

5.3.2 Typical black-box assessment for CCLW-MLM

Here, we employ the same data sets from Table 3 and compared CCLW-MLM against

the Full-MLM, Rank-MLM, and Random-MLM. All variations but Random-MLM arise from

regularized strategies into the model formulation that have a unique solution. Thus, we employ

them for comparison since our proposal is also based on a similar formulation. In this comparison,

we report the average accuracy (ACC) and sparseness via ||B||F over 30 independent realizations.

The hyperparameter setting for each variation, including ours, is presented in Table 18. We report

the average results for 30 independent realizations for these 10 toy-size data sets in Table 19.

Also, to better distinguish the MLM variations comparison, we carried out the Friedman test

evaluating both ACC and ||B||F scores and showed the results graphically through the Critical

difference plot adopting the significance level of a = 0.05 in Figure 22.

As one can see in Table 19, we noticed that all models scored very close values

regarding the ACC, while the most stand out result was the one related to the ||B||F , in which

Rank-MLM and CCLW-MLM outperformed the others. Such a finding is exciting because it

shows that such a new formulation did not sacrifice the generalization performance.

With respect to the Critical difference plots depicted in Figure 22, one can see that
1 Again, we adopted the scaled between 0 and 1 by subtracting 1 from division by the k B kF of Full-MLM (that

is NORM(x) = 1� xk B kF�1 ) since it acts as an upper bound.
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Table 18 – MLM variants and their hyperparameters configurations.
MODEL DESCRIPTION HYPERPARAMETER SPACE

Full-MLM None. None.

Random-MLM K: Number of RPs chosen ran-
domly from a range through
grid search and random cross-
validation.

k ⇠ U(0.05,0.5) so that K = bk⇥Nc.

Rank-MLM C : Regularization parameter op-
timized by grid search and cross-
validation.

log(C)⇠ U(log(1e�3), log(1e2)).

CCLW-MLM P: Diagonal matrix with random
values from the complements of
their closeness to the corners in
PS .

See Algorithm 12.

Source – Own authorship.

regarding the accuracy all models are seen as equivalents. However, we highlight that the

regularized variants, Rank-MLM and CCLW-MLM, appear to be in the best rank. From such a

finding, we support that model regularization is indeed advantageous for MLM. On the other

hand, when analyzing the norm rank, we see a different perspective. There, we noticed two

groups of equivalence: one with Full-MLM, Random-MLM, and Rank-MLM; and the second

with only Rank-MLM and CCLW-MLM.

With respect to the Critical difference plots depicted in Figure 22, one find two

interesintg findinds. Regarding the accuracy ranking, we noticed two groups of equivalence: one

with Full-MLM, Random-MLM, and Rank-MLM; and the second with only Rank-MLM and

CCLW-MLM. From such a finding, we support that model regularization is indeed advantageous

for MLM since they are placed in best ranks alongside the Random-MLM (low rank system).

On the other hand, when analyzing the norm ranking, all models are seen as equiva-

lents

5.3.3 Empirical decision boundary quality assessment for CCLW-MLM

Here, in this set of experiments, we repeated the same assessment in subsection 3.3.3

with respect to decision boundary analysis, i.e., where f (x) = 0, in three data sets. The first one,

namely, Two moon (TMN), is a separable problem, while the other two, namely, Ripley (RIP),

and Banana (BAN), have low data and moderate class overlapping, respectively.

In Figure 23, one can see all variants produced proper decision boundaries able to
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Table 19 – Black-box experiment results for ACC and NORM using FULL-MLM, Random-MLM,
Rank-MLM, and CCLW-MLM.

data set FULL-MLM Random-MLM Rank-MLM CCLW-MLM
ACC ACC NORM ACC NORM ACC NORM

BAN 0.88 ± 0.00 0.89 ± 0.00 0.86 ± 0.00 0.90 ± 0.00 0.99 ± 0.00 0.90 ± 0.00 0.99 ± 0.00
BCW 0.97 ± 0.00 0.97 ± 0.01 0.77 ± 0.00 0.97 ± 0.00 0.05 ± 0.00 0.96 ± 0.00 0.92 ± 0.00
GER 0.74 ± 0.00 0.74 ± 0.01 0.82 ± 0.00 0.74 ± 0.00 0.43 ± 0.00 0.74 ± 0.00 0.87 ± 0.00
HAB 0.74 ± 0.00 0.74 ± 0.01 0.93 ± 0.00 0.76 ± 0.00 0.99 ± 0.00 0.75 ± 0.00 0.97 ± 0.00
HEA 0.82 ± 0.00 0.82 ± 0.01 0.74 ± 0.00 0.81 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.72 ± 0.00
ION 0.91 ± 0.00 0.88 ± 0.03 0.56 ± 0.00 0.91 ± 0.00 0.30 ± 0.00 0.90 ± 0.00 0.76 ± 0.00
PID 0.72 ± 0.00 0.74 ± 0.01 0.73 ± 0.00 0.74 ± 0.00 0.78 ± 0.00 0.76 ± 0.00 0.94 ± 0.00
RIP 0.88 ± 0.00 0.89 ± 0.00 0.91 ± 0.00 0.89 ± 0.00 0.99 ± 0.00 0.89 ± 0.00 0.99 ± 0.00
TMN 1.00 ± 0.00 0.96 ± 0.03 0.00 ± 0.00 1.00 ± 0.00 0.40 ± 0.00 1.00 ± 0.00 0.47 ± 0.00
VCP 0.79 ± 0.00 0.82 ± 0.02 0.75 ± 0.00 0.83 ± 0.00 0.68 ± 0.00 0.83 ± 0.00 0.91 ± 0.00
The values regarding the standard deviation are not zero, but very small ones.

Source – Own authorship.

Figure 22 – Critical difference plots with respect to the accuracy rankings (a) and the sparsity
rankings (b) from Table 5. We recall that those variants which are not joined by a
bold line can be regarded as different.

1 2 3 4

CD

CCLW−MLM
Rank−MLM

Random−MLM
Full−MLM

(a) Accuracy rankings.

2 3

CD

Random−MLM
Full−MLM

CCLW−MLM
Rank−MLM

(b) NORM rankings.

Source – Own authorship.

separate the data. Perhaps, the most prominent feature from this setting is the decision boundary

in CCLW-MLM, where we can see that it is very close to the samples. However, as shown in

Table 19, CCLW-MLM achieved maximum accuracy, i.e., (100%) for this data set.

Regarding the Ripley data set depicted in Figure 24, we highlight that, again, all

MLM variants produced satisfactory decision boundaries even though there is a little class

overlapping and presence of some outliers in the data. However, the most notable trait from such

a data set is all other MLM variants tried to include the left upper part from the bottom set, but

CCLW-MLM.
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Figure 23 – Results for Two Moon data set.

(a) Two Moon for Full-MLM. (b) Two Moon for Random-MLM.

(c) Two Moon for Rank-MLM. (d) Two Moon for CCLW-MLM.

Source – Own authorship.

Also, from a hyperparameter optimization perspective, we noticed that due to the

hyperparameter space in Rank-MLM, sometimes the Rank-MLM chooses to select C ⇡ 0 to

achieve better results regarding accuracy. In this setting, the Rank-MLM behaves similarly to

Full-MLM.

As for the final data set, Banana, depicted in Figure 25, one can see that the models

produced similar decision boundaries. Additionally, due to the severe overlapping between

classes right at the top, one can notice that some overfitting occurred in most models. However,

CCLW-MLM has shown the less complex decision boundary among all.

From such an empirical analysis, we noticed that CCLW-MLM is the one MLM

variant that achieved less elaborate decision boundaries. Also, as the overlapping between classes

increases, see Ripley and Banana (Figures 25 and 24), CCLW-MLM has shown its good ability

for generalization. Finally, when it comes to problems that require a less complex decision

boundary (as the Two Moon, depicted in Figure 23), the CCLW-MLM resulting model decision
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Figure 24 – Results for Ripley data set.

(a) Ripley for Full-MLM. (b) Ripley for Random-MLM.

(c) Ripley for Rank-MLM. (d) Ripley for CCLW-MLM.

Source – Own authorship.

boundary might be too fit for the data, but still achieving good generalization performance.

Moreover, another perspective realized previously in Figure 19 and now in Figures 24

and 25 when analyzing the results from LW-MLM and Rank-MLM suggests that regularized

solutions, achieved through similar constrained hypothesis spaces, provide suitable fits to some

functions. Even though both LW-MLM and Rank-MLM using the same regularization strategy,

LW-MLM is more flexible than Rank-MLM. Such a finding is because Rank-MLM can be seen

as a particular case of LW-MLM when adopting P = l I.

5.4 Concluding remarks on CCLW-MLM

In this chapter, we revisited the Lightweight Minimal Leaning Machine and formu-

lated a variant for classification tasks by employing CCIS. We named it Class-Corner Lightweight

Minimal Leaning Machine (CCLW-MLM). A key point in CCLW-MLM is that regularization

arises from cost by class-corner nearness, a concept we defined before having the final model.
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Figure 25 – Results for Banana data set.

(a) Banana for Full-MLM. (b) Banana for Random-MLM.

(c) Banana for Rank-MLM. (d) Banana for CCLW-MLM.

Source – Own authorship.

After we carried out some experiments, we noticed such a new formulation did not sacrifice the

generalization performance while keeping higher sparsity scores (less complexity), achieving

higher ranks than other variants that also employ some regularization. Thus, becoming a desirable

formulation to deal with classification tasks.

5.4.1 Shortcomings

The class-corner nearness measure highly relies upon distance computations. Once

again, we recall the effects of the curse of dimensionality because the Euclidean distance becomes

meaningless as the dimension of the data increases significantly. Also, because we do not discard

any sample during training, the memory and training cost might be prohibitive for some problems.

Thus, some other strategies regarding instance selection might take place in the formulation.
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5.4.2 Future work

As future work, we are focusing on employing the class-corner nearness measure into

other distance-based classifiers and investigating the aspects of dealing with low-rank systems in

LW-MLM.
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6 CONCLUDING REMARKS

The contribution presented in this thesis is four-part and investigated the model

complexity reduction in two Instance-based learners, namely: The Least-Squares Support vector

machine and the Minimal Learning Machine.

The common idea behind all the solutions is to reduce the complexity in Instance-

based learners from instance selection, treating it as a regularization task. Thus, excluding our

first contribution, an instance selection algorithm itself, we modified the design of such LSSVM

and MLM algorithms to embed such a complexity reduction.

Chapter 3 presented the first well-succeded attempt to reduce the LSSVM complexity

by selecting class-corner data points. Based on FAST, an image processing algorithm for corner

detection, this thesis’s first contribution is formulated and named Class Corner Instance Selection

(CCIS). It deals with the instance selection problem by choosing data points near the boundary of

classes. From that, we extend a pruned and reduced set LSSVM model, after named CC-LSSVM.

In Chapter 4, we dealt with reducing complexity in MLMs after applying regulariza-

tion. Such a formulation derived our third contribution, named Lightweight Minimal Learning

Machine, which took advantage of such a strategy to learn in a restricted hypothesis space and

generate a faster model for predicting regression tasks.

Chapter 5 revisited the LW-MLM and formulated this thesis’s final contribution

by combining CCIS to LW-MLM. We named it Class-Corner Lightweight Minimal Leaning

Machine because it deals with classification tasks straightforwardly.

We carried out some experiments to evaluate each contribution’s different aspects,

investigating how they behave concerning the following aspects: the prediction error, the

goodness-of-fit of estimated vs. measured values, the model complexity, the influence of the

parameters, and the learned models’ empirical visual analysis.

Even though our contributions strongly rely on distance computations, thus being

suffering from the Dimensionality curse, they consistently outperformed the other models in

artificial and real-world scenarios. This thesis’s apparent unfolding is to directly apply metric

learning methods to derive more algorithms with consistent hypotheses.
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APPENDIX A – SOLUTION OF LIGHTWEIGHT MLM LINEAR SYSTEM

Firstly, we rewrite Equation 4.1 as

∂
∂B

J (B) =
∂

∂B
k DB�DDD k2

F
+ k PB k2

F
=

∂
∂B
k DB�DDD k2

F
+

∂
∂B
k PB k2

F
. (A.1)

By employing the following properties taken from the Matrix Cookbook (PETERSEN et al.,

2008):

a) Properties n�103 and n�104:
∂

∂X
Tr{AX|} =

∂
∂X

Tr{X|A} = A;

b) Property n�108:
∂

∂X
Tr{X|BX} = BX+B|X;

c) Property n�115 :
∂

∂X
k X k2

F
=

∂
∂X

Tr
�

XXH =
∂

∂X
Tr
�

XHX
 

= 2X.

where XH is the transposed and complex conjugated matrix (Hermitian) of X, one obtains:

∂
∂B

J (B) =
∂

∂B
Tr{(DB�DDD)|(DB�DDD)}+

∂
∂B

Tr{(PB)|PB} . (A.2)

=
∂

∂B
Tr{B|D|DB�B|D|DDD�DDD|DB+DDD|DDD}+

∂
∂B

Tr{B|P|PB} . (A.3)

As ∂ (·) and Tr{·} are linear operators, we rewrite the above equation as follows:

∂
∂B

J (B) =
∂

∂B
Tr{B|D|DB}� ∂

∂B
Tr{B|D|DDD}� ∂

∂B
Tr{DDD|DB}+

∂
∂B

Tr{B|P|PB} . (A.4)

= D|DB+(D|D)|B�D|DDD� (DDD|D)| +P|PB+(P|P)|B. (A.5)

Since D,DDD, and P are symmetric, we express
∂

∂B
J (B) as follows:

∂
∂B

J (B) = 2D|DB�2D|DDD+2P|PB. (A.6)

Finally, by setting
∂

∂B
J (B) = 0 to achieve the optimum solution, one obtains:

B̂ = (D|D+P|P)�1D|DDD. (A.7)


	Title page
	Acknowledgements
	Abstract
	Resumo
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Objectives
	Publications
	Document organization
	Statement of authorship

	Theoretical background
	Instance-based learning
	The Nearest Neighbor Classifier
	Least-Squares Support Vector Machine Classifiers
	Minimal Learning Machine

	Model Complexity in Machine Learning
	Model performance vs. Model complexity
	Controlling complexity
	Model complexity in parametric models
	Model complexity in nonparametric models
	Other model complexity control

	Controlling complexity in LSSVMs
	Reduction methods for LSSVMs
	Direct methods for LSSVMs
	LSSVM formulations summary

	Controlling complexity in MLMs
	Random MLM
	Rank-MLM
	Weighted Minimal Learning Machine (wMLM)
	l1/2-MLM
	RFM-MLM
	MLM formulations summary



	Reducing complexity by instance selection
	CCIS: Class Corner Instance Selection
	Features from Accelerated Segment Test
	CCIS formulation
	Hyperparameter estimate in CCIS
	Borrowing default values from FAST for K and P
	Estimating the distance threshold R

	Computational complexity of CCIS

	CC-LSSVM: LSSVM meets Class-corner Instance Selection
	The CC-LSSVM formulation
	The CC-LSSVM learning algorithm
	The CC-LSSVM out-of-sample prediction
	Computational complexity of CC-LSSVM

	Experiments and Discussion on CCIS and CC-LSSVM
	Experiment Setup for CCIS and CC-LSSVM
	Typical black-box assessment for CC-LSSVM
	CC-LSSVM for Toy-size problems
	CC-LSSVM for large-size data sets

	Decision boundary empirical quality assessment for CC-LSSVM
	The hyperparameter influence for CC-LSSVM

	Concluding remarks for CC-LSSVM
	Shortcomings
	Future works


	Reducing complexity by regularization
	The Lightweight Minimal Learning Machine
	LW-MLM Formulation
	On the selection of P
	By the normal random-based one
	By the nonlinear parts of f

	Speeding up the out-of-sample prediction

	Tikhonov regularization and Heteroscedasticity in the LW-MLM framework
	LW-MLM Algorithms for training and out-of-sample procedures

	Experiments and Discussion for LW-MLM
	Experiment Setup
	Typical black-box assessment
	Prediction error as performance measurement
	Goodness-of-fit as performance measurement
	The norm as performance measurement

	Visual qualitative analysis
	The relevance of RPs during out-of-sample prediction
	LW-MLM performance at high dimension data sets
	Computational complexity analysis of MLM variants from the experiments

	Concluding remarks on LW-MLM
	Shortcomings
	Future works


	Reducing complexity by class-corner nearness
	Measuring class-corner nearness
	Class-Corner-Nearness-Aware Minimal Learning Machines
	Learning algorithm and out-of-sample prediction for CCLW-MLM

	Experiments and Discussion for CCLW-MLM
	Experiment Setup for CCLW-MLM
	Typical black-box assessment for CCLW-MLM
	Empirical decision boundary quality assessment for CCLW-MLM

	Concluding remarks on CCLW-MLM
	Shortcomings
	Future work


	Concluding remarks
	REFERENCES
	Solution of Lightweight MLM Linear System

