
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS E TECNOLOGIA

DEPARTAMENTO DE COMPUTAÇÃO

PROGRAMA DE MESTRADO E DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

ISMAYLE DE SOUSA SANTOS

TESTDAS: TESTING METHOD FOR DYNAMICALLY ADAPTIVE SYSTEMS

FORTALEZA

2017

ISMAYLE DE SOUSA SANTOS

TESTDAS: TESTING METHOD FOR DYNAMICALLY ADAPTIVE SYSTEMS

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa
de Mestrado e Doutorado em Ciência da
Computação da Universidade Federal do Ceará,
como requisito parcial à obtenção do título de
doutor em Ciência da Computação. Área de
Concentração: Engenharia de Software

Orientadora: Prof. Dra. Rossana Maria
de Castro Andrade

Co-Orientador: Prof. Dr. Pedro de Alcântara
dos Santos Neto

FORTALEZA

2017

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S235t Santos, Ismayle de Sousa.
 TestDAS: Testing Method for Dynamically Adaptive Systems / Ismayle de Sousa Santos. – 2017.
 183 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2017.
 Orientação: Profa. Dra. Rossana Maria de Castro Andrade.
 Coorientação: Prof. Dr. Pedro de Alcântara dos Santos Neto.

 1. Software Testing. 2. Model Checking. 3. Dynamically Adaptive System. 4. Dynamic Software
Product Line. I. Título.
 CDD 005

ISMAYLE DE SOUSA SANTOS

TESTDAS: TESTING METHOD FOR DYNAMICALLY ADAPTIVE SYSTEMS

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa
de Mestrado e Doutorado em Ciência da
Computação da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de doutor em Ciência da Computação.
Área de Concentração: Engenharia de
Software

Aprovada em: 23 de novembro de 2017

BANCA EXAMINADORA

Prof. Dra. Rossana Maria de Castro Andrade (Orientadora)
Universidade Federal do Ceará (UFC)

Prof. Dr. Pedro de Alcântara dos Santos Neto (Co-Orientador)
Universidade Federal do Piauí (UFPI)

Prof. Dr. Guilherme Horta Travassos
Universidade Federal do Rio de Janeiro (UFRJ)

Prof. Dr. Eduardo Santana de Almeida
Universidade Federal da Bahia (UFBA)

Prof. Dr. Lincoln Souza Rocha
Universidade Federal do Ceará (UFC)

I dedicate this thesis to my parents, Ismael e

Cláudia, my parents-in-law, Luiz e Conceição,

and my dear wife, Paulinha.

ACKNOWLEDGEMENTS

Foremost, I would like to thank our God for all good things that have happened. It

was a long journey and without God’s light and peace I have not gotten that far.

I would like to thank my parents, Ismael and Claudia, and my brother, Kádson.

Thank you for all your love and unconditional support. I acknowledge and thank immensely all

effort and immeasurable sacrifice you have made to allow me to be here.

I would also like to thank my sweet wife, Paulinha. You are a little angel that I got

as a gift. Thank you for being such a wonderful person and for your unconditional support

throughout this journey.

I also thank my parents-in-law, Luiz and Conceição, who supported and encouraged

me during all these years. Thank you for sharing this dream with me.

Thanks to my academic and life advisor, Prof. Rossana Andrade and Prof. Pedro

de Alcântara. It was an honor to work with you. I learned a lot over the years. Thank you very

much for all the encouragement, support, teachings, and opportunities. Having you by my side

made all the difference.

I want to give thanks to Prof. Eduardo Santana, Guilherme Travassos, Lincoln Rocha

and Rafael Capilla for generously sharing your time and knowledge.

Thanks to all my friends from the GREat lab. Thanks for the welcome, the fun times

and the support in the difficult moments. You are great!!

And lastly, I thank CAPES and CNPq for the financial support during my years of

research.

“In God we trust, everything else we test”

(Anonymous author)

ABSTRACT

The adaptive behavior of Dynamically Adaptive Systems (DAS), such as Dynamic Software

Product Lines (DSPLs), is typically designed using adaptation rules, which are context-triggered

actions responsible for features activation and deactivation at runtime. This kind of software

should have a correct specification at design time and should be tested to avoid unexpected

behavior such as an undesired product configuration at runtime. The use of context and the large

number of configurations are challenges related to DAS verification and validation. Therefore,

methods and tools supporting these activities are needed to ensure the quality of adaptive systems.

The literature addresses different aspects of DAS testing, but few work deals with changes in the

software features configuration, and they did not focus on the adaptation rules during the adaptive

mechanism testing. Also, there is a lack of formalism to model DAS that allows to reason on

the actions triggered by adaptation rules over the DAS features. The focus on the adaptation

rules is important because they define the adaptation logic and, thus, they are a potential source

of design faults and adaptation failures at runtime. In this thesis, a method called TestDAS is

proposed to address these gaps. It involves the model checking approach to identify faults in the

adaptation rules design, and the generation of tests for validating the adaptive behavior of DAS.

The method is based on a model of the adaptive behavior, called Dynamic Feature Transition

System (DFTS), which specifies the DAS configurations and the context changes. Moreover,

the TestDAS tool is implemented to support the TestDAS use, and a library called CONTroL is

developed to support the test execution. The evaluation of TestDAS is performed using: a mutant

analysis to evaluate the effectiveness of the model checking approach in the identification of

design faults in DAS; a controlled experiment to compare tests generated by TestDAS with tests

specified based on the tester’s experience; and an observational study to assess the feasibility

of using the developed tools during the TestDAS activities. The results of the effectiveness

evaluation show evidence that TestDAS helps in the identification of faults related to adaptation

rules design. The experiment, in turn, provides evidence that TestDAS generates more tests and

provides a better coverage of the DAS adaptive behavior than experience-based testing. Lastly,

the observational study shows that the TestDAS tool and CONTroL can support the DAS testing

and model checking.

Keywords: Software Testing. Model Checking. Dynamically Adaptive System. Dynamic

Software Product Line

RESUMO

O comportamento adaptativo de Sistemas Dinamicamente Adaptáveis (DAS, acrônimo para

Dynamically Adaptive Systems), tais como Linhas de Produto de Software Dinâmicas, é tipica-

mente especificado por meio de regras de adaptação, que definem ações sensíveis ao contexto

responsáveis pela ativação e desativação de features em tempo de execução. Esse tipo de software

tem que ter uma correta especificação em tempo de projeto e deve ser adequadamente testado

para evitar comportamentos não esperados, como configurações de produto não desejadas em

tempo de execução. Nesse cenário, o uso de informações de contexto e o grande número de

configurações possíveis são desafios relacionados a verificação e validação de DAS. Dessa forma,

métodos e ferramentas suportando essas atividades são necessários para garantir a qualidade de

sistemas adaptativos. Na literatura, existem trabalhos abordando diferentes aspectos do teste

de DAS, mas poucos deles lidam com mudanças na configuração de features do software, e

eles não focam nas regras de adaptação durante o teste do mecanismo de adaptação. Além

disso, existe uma carência de formalismos para especificar DAS que permitam raciocinar sobre

as ações disparadas pelas regras de adaptação. O foco nas regras de adaptação é importante,

porque elas definem a lógica de adaptação e, assim, são uma fonte potencial de faltas de design

e de falhas que podem ocorrer em tempo de execução. Sendo assim, nesta tese é proposto

um método de testes de DAS, chamado TestDAS, que envolve tanto uma abordagem de model

checking (verificação de modelos) para identificar faltas de design, quanto a geração de testes

para validar o comportamento adaptativo. Esse método é baseado em um modelo do compor-

tamento adaptativo, chamado de Dynamic Feature Transition System (DFTS), que especifica

as configurações do DAS e as mudanças de contexto. Adicionalmente foram implementadas a

TestDAS tool, para apoiar o uso do TestDAS, e a biblioteca CONTroL, para auxiliar a execução

dos testes. A avaliação do TestDAS, por sua vez, foi feita utilizando: uma análise de mutantes

para avaliar a efetividade da abordagem de model checking na identificação de faltas no DAS;

um experimento controlado para comparar os testes gerados pelo TestDAS e os testes criados

com base na experiência de testadores; e uma prova de conceito para avaliar a viabilidade do uso

das ferramentas desenvolvidas durante as atividades do TestDAS. Os resultados da avaliação

da análise de mutantes indicam evidências de que o TestDAS ajuda na identificação de faltas

de design presentes nas regras de adaptação. O experimento controlado fornece evidências de

que o TestDAS gera mais testes e provê uma melhor cobertura do comportamento adaptativo

de DAS do que o teste baseado na experiência dos testadores. Finalmente, a prova de conceito

confirma que as ferramentas desenvolvidas, TestDAS tool e CONTroL, podem auxiliar no teste e

no model checking de sistemas dinamicamente adaptáveis.

Palavras-chave: Teste de Software. Verificação de Modelos. Sistemas Dinamicamente Adap-

táveis. Linha de Produto de Software Dinâmica

LIST OF FIGURES

Figure 1 – Research Methodology . 23

Figure 2 – A small part of the Mobile Visit Guides DSPL feature model 26

Figure 3 – Systems demanding runtime adaptation . 28

Figure 4 – Strategies (A and B) for Context Variability Modeling 30

Figure 5 – Example of Context-Aware Feature Model 31

Figure 6 – Classical SPL model with MAPE-K model 33

Figure 7 – C-KS for the Mobile Guide DSPL. 35

Figure 8 – Verification Process Overview. 36

Figure 9 – Model Checking Process Overview. 38

Figure 10 – Example of Adaptation Finite-State Machine 46

Figure 11 – Example of Dynamic Feature Net . 50

Figure 12 – Example of Adaptive Featured Transition System 51

Figure 13 – TestDAS Overview . 61

Figure 14 – DFTS of the running example . 67

Figure 15 – Execution of the SPIN with command prompt in Windows 76

Figure 16 – Part of the Car DSPL . 78

Figure 17 – Example of Test Sequence for Property 01 83

Figure 18 – Example of Test Sequence for Property 02 84

Figure 19 – Example of Test Sequence for Property 04 86

Figure 20 – Example of Test Sequence for Property 05 87

Figure 21 – Package Diagram of the TestDAS tool . 92

Figure 22 – Initial Screen of the TestDAS tool . 93

Figure 23 – Model checking screen of the TestDAS tool 94

Figure 24 – Example of Test Sequence generated by TestDAS 95

Figure 25 – Class Diagram of the CONTroL . 97

Figure 26 – Overview of the CONTroL . 99

Figure 27 – Example of code annotated. (A) class VideoFeature; (B) class BatteryContext;

(C) class ContextManager . 100

Figure 28 – Example of report generated by the CONTroL 100

Figure 29 – Example of a passed test case in the report generated by the CONTroL . . . 101

Figure 30 – Example of a failed test case in the report generated by the CONTroL 101

Figure 31 – Example of mutant created from the Mobile Guide 108

Figure 32 – Profile of the students from the experiment 119

Figure 33 – Profile of the professionals from the experiment 120

Figure 34 – Knowledge of the subjects on Software Testing and DSPL concepts 120

Figure 35 – Activities performed in the experiment . 124

Figure 36 – Test coverage and time spent in Tasks conducted with experience-based testing126

Figure 37 – Class diagram for a Context-Aware Feature Model in the TestDAS tool . . . 168

Figure 38 – Feature Model of the Mobile Visit Guide for the experiment task 175

Figure 39 – Feature Model of the Smart Home for the experiment task 176

LIST OF TABLES

Table 1 – Adaptation Rules of the Running Example 27

Table 2 – LTL Temporal Operators Meaning. 38

Table 3 – Feature Relationships and their corresponding logic formula 40

Table 4 – Related Work to DAS Model Checking. 57

Table 5 – Related Work to DAS Testing. 59

Table 6 – Example of Adaptation Test Sequence. 81

Table 7 – Usual relationship among the test criteria 89

Table 8 – System-based mutation operators defined to the adaptation rules 106

Table 9 – Action-based mutation operators defined to the adaptation rules 107

Table 10 – Context-based mutation operators defined to the adaptation rules 107

Table 11 – Higher-order mutation operators defined to the adaptation rules 107

Table 12 – Number of mutants generated . 109

Table 13 – Results of the mutants model checking . 110

Table 14 – List of Alive Mutants (AM) . 112

Table 15 – Experiment Design . 121

Table 16 – Raw experimental data . 125

Table 17 – Subjects’ feedback regarding the Task I (Mobiline) 127

Table 18 – Subjects’ feedback regarding the Task II (SmartHome) 128

Table 19 – Subjects’ answers in the Post-Experiment Form 129

Table 20 – Data set normality test . 130

Table 21 – Comparison between the treatments in Task I 131

Table 22 – Comparison between the treatments in Task II 131

Table 23 – Time spent by the subjects in the tasks with TestDAS tool and CONTroL . . 137

Table 24 – Subjects’ feedback regarding the TestDAS Tool 138

Table 25 – Subjects’ feedback regarding the CONTroL 138

Table 26 – Papers from this thesis work . 144

Table 27 – TestDAS in comparison to the work related to DAS model checking. 146

Table 28 – TestDAS in comparison to the work related to DAS testing. 146

Table 29 – Summary of mutants . 169

LISTA DE ABREVIATURAS E SIGLAS

C-KS Context Kripke Structure

CAAS Context-Aware Adaptive Software

CONTroL CONtext variability based software Testing Library

DAS Dynamically Adaptive System

DFTS Dynamic Feature Transition System

DSL Domain Specific Language

DSPL Dynamic Software Product Line

JSON JavaScript Object Notation

SBSE Search-Based Software Engineering

SPL Software Product Line

TestDAS Testing method for Dynamic Adaptive System

CONTENTS

1 INTRODUCTION . 18

1.1 Contextualization . 18

1.2 Motivation . 19

1.3 Hypothesis and Research Questions . 21

1.4 Research Goal and Main Contributions 22

1.5 Research Methodology . 23

1.6 Structure of the Thesis . 25

2 BACKGROUND . 26

2.1 Running Example . 26

2.2 Context Awareness in DAS . 27

2.2.1 Context Variability Modelling . 29

2.2.2 Context Variability Management with the DSPL Engineering 31

2.2.3 Context Variation as Kripke Structure . 33

2.3 Software Verification . 35

2.3.1 Model Checking . 36

2.3.2 Feature Model as Propositional Formula 39

2.4 Software Testing . 40

2.4.1 Test Case Design . 41

2.4.2 Challenges for DAS testing . 43

2.5 Conclusion . 44

3 RELATED WORK . 45

3.1 Model Checking for Context Aware Adaptive Software 45

3.2 Model Checking for Dynamic Software Product Lines 49

3.3 Testing Context-Aware Adaptive Systems 52

3.4 Testing Dynamic Software Product Lines 55

3.5 Discussion . 56

3.6 Conclusion . 60

4 TESTDAS AND SUPPORTING TOOLS 61

4.1 TestDAS Overview . 61

4.2 Modeling the DAS Adaptive Behavior 63

4.2.1 Adaptation Interleaving and Effect . 64

4.2.2 Dynamic Feature Transition System . 66

4.3 DAS Model Checking Approach . 68

4.3.1 Mapping DFTS into Promela Code . 68

4.3.2 DAS Behavioral Properties . 72

4.3.3 Feasibility Study . 75

4.3.3.1 Mobile Guide DSPL . 76

4.3.3.2 Car DSPL . 77

4.3.3.3 Discussion . 78

4.4 Testing the DAS Adaptive Behavior . 79

4.4.1 Adaptation Test Sequence . 80

4.4.2 Test Criteria for DAS testing . 81

4.4.3 Interactions among Test Coverage Criteria 88

4.5 Supporting Tools . 90

4.5.1 TestDAS tool . 90

4.5.1.1 Tool Overview . 91

4.5.1.2 Functionality . 93

4.5.1.3 Limitations . 95

4.5.2 CONTroL . 96

4.5.2.1 Library Overview . 97

4.5.2.2 Functionality . 98

4.5.2.3 Limitations . 101

4.6 Conclusion . 102

5 EVALUATION . 103

5.1 Assessment of the Faults Identification Effectiveness 103

5.1.1 Mutants Generation . 104

5.1.2 Mutants Model Checking . 109

5.1.3 Equivalent Mutants and Mutation Score 111

5.1.4 Discussion . 111

5.1.5 Threats to Validity . 114

5.2 Assessment of the Generated Tests . 115

5.2.1 Experiment Definition . 115

5.2.2 Experiment Planning . 117

5.2.2.1 Hypothesis Investigated . 117

5.2.2.2 Experiment Variables . 118

5.2.2.3 Subjects . 118

5.2.2.4 Experiment Design and Instrumentation 121

5.2.3 Experiment Operation . 122

5.2.3.1 Pilot Study . 122

5.2.3.2 Experiment Execution . 124

5.2.4 Data Analysis and Interpretation of Results 125

5.2.4.1 Descriptive Statistics . 125

5.2.4.2 Qualitative Data . 127

5.2.4.3 Hypothesis Testing . 130

5.2.5 Discussion . 131

5.2.6 Threats to Validity . 133

5.3 Assessment of the Supporting Tools . 134

5.3.1 Design and Execution of the Observational Study 135

5.3.2 Results . 137

5.3.3 Discussion . 139

5.3.4 Threats to Validity . 140

5.4 Conclusion . 140

6 CONCLUSION . 142

6.1 Overview . 142

6.2 Main Results . 143

6.3 Revisiting the Research Hypothesis and Related Work 145

6.4 Limitations . 146

6.5 Future Work . 147

BIBLIOGRAPHY . 149

APPENDIX A – Promela Basic Grammar 160

APPENDIX B – Promela Codes Used in the Feasibility Study 162

APPENDIX C – Class Diagram for the Context-Aware Feature Model . . 168

APPENDIX D – List of Generated Mutants 169

APPENDIX E – Experiment Instrumentation 173

APPENDIX F – Instrumentation of the Observational Study 179

APPENDIX G – Other Published Papers During the Thesis Work Period . 181

18

1 INTRODUCTION

This thesis presents a method for testing Dynamically Adaptive System (DAS). Such

method involves a model checking approach and the generation of test cases focused on the

adaptive behavior. Tools are also built to support the use of this method.

The current chapter introduces this thesis and is organized as follows. Section 1.1

describes the research context, whereas Section 1.2 presents the motivation of this work and the

problem addressed. Section 1.3 presents the hypothesis and research questions. Next, Section 1.4

introduces the thesis goals and main contributions. After that, Section 1.5 presents the research

methodology followed during this thesis work. Finally, Section 1.6 presents the organization of

this thesis.

1.1 Contextualization

The concept of Software Product Line (SPL) emerged to mitigate the growing need

of the software industry to maximize the software reuse aiming to obtain, among other things,

better productivity. According to Northrop (2002), from the Software Engineering Institute (SEI),

an SPL is “a set of software-intensive systems that share a common, managed set of features

satisfying the specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way”.

Thus, the SPL engineering is about producing families of similar systems that have

common features that are present in all SPL products and variant features, which do not appear in

all the products of the SPL (BENAVIDES et al., 2010). With the SPL strategy, the industry had

obtained several benefits (NORTHROP; CLEMENTS, 2007; FOGDAL et al., 2016): increased

software quality, reduced cost, decreased time to market and improved productivity. However,

this strategy only deals with the static variability, in which variants are set during the development

cycle (CAPILLA et al., 2014b). So, it cannot cope with the dynamic reconfiguration of context-

aware systems that adapts at runtime such as cyber-physical systems (MUCCINI et al., 2016).

Dynamic Software Product Line (DSPL) can be seen as an extension of the concept

of conventional Software Product Lines (SPLs), enabling the generation of software variants at

runtime (BENCOMO et al., 2012b). Thus, the differential of DSPLs is to be deal with the context

variability that is the variability of the environment in which the system resides (HARTMANN;

TREW, 2008).

19

DSPLs provide a way to build software able to adapt dynamically to fluctuations in

user needs and resource constraints (HALLSTEINSEN et al., 2008). Thus, the DSPL engineering

has been used to provide support for developing of dynamically adaptive systems, because it

copes with both the system variability and the context variability (CAPILLA et al., 2014b). On

the other hand, since a DAS self-adapts according to the context information gathered from

the surrounding environment, it can be considered a DSPL in which variabilities are bound at

runtime (BENCOMO et al., 2008). In this way, each DAS configuration can be considered as a

product of the DAS product line.

The DSPL’s adaptive behavior is typically designed using adaptation rules, which are

context-triggered actions responsible for the software adaptation. Thus, to achieve the software

reconfiguration, DSPLs support the activation and deactivation of system features at runtime

(CAPILLA et al., 2014a).

The context variability and runtime reconfiguration turns the DSPL development and

testing more complex compared with traditional applications. One of the challenges is to test

the adaptations provided by context variability to avoid unexpected behaviors at runtime (e.g., a

product reconfiguration not performed when it should be).

1.2 Motivation

Dynamic systems (e.g., autonomous systems and ubiquitous systems) exploits con-

textual information to adapt at runtime, according to changes in their surrounding environment.

Such dynamic behavior is typically designed using adaptation rules, and many of the perva-

sive and software-intensive systems that use context properties are based on a DSPL approach

(CAPILLA et al., 2014b).

So, to avoid unexpected behavior is important to ensure the correct implementation

of the adaptation rules. Software testing can be performed aiming to identify failures in the

DSPL adaptations. Testing is the process of executing a program with the intent of finding errors

(MYERS et al., 2011). Thus, aiming to test the DSPL adaptive behavior, the tester needs to

assess the adaptation rules effects while running the DAS.

There are studies concerning the test of Adaptive Systems, Software Product Lines

and Dynamic Software Product Lines, as discussed in Chapter 3. These studies address different

aspects of the software testing and can help in the DAS testing activity. However, usually, they

cover the context space but do not focus on the adaptation rules effects. Then, they do not ensure

20

the coverage of some scenarios that can raise failures at runtime such as the interleaving of

adaptation rules or specific sequences of triggered adaptation rules.

Therefore, there is a lack of testing method focused on the actions (i.e., activation and

deactivation of system features) of adaptation rules to validate the DSPL adaptations triggered

by context changes.

In order to support the testing activity, the DSPL feature model, which is enriched

with context information and adaptation rules, can be used as source of information to design

test cases. However, to use the DSPL feature model for testing purpose, it is need to ensure its

correctness to avoid false-negative and false-positive failures.

In the SPL, there are several studies dealing with the consistency checking of feature

models (ZHANG et al., 2011; MARINHO, 2012; MARINHO et al., 2012; LESTA et al., 2015).

The work of Marinho et al. (2012), for instance, uses a formal specification, built based on

First-Order Logic, to verify well-formedness (i.e., the conformance with constraints of the

underlying formal specification) and consistency of feature models against a set of predefined

properties. Despite considering Context-Aware Software Product Lines that have adaptation

rules, the verification proposed by Marinho et al. (2012) do not take into account the context

states where the product is deployed. Furthermore, the DSPL validation requires capabilities for

checking temporal properties of reconfiguration processes (LOCHAU et al., 2015).

For checking temporal properties, the model checking (CLARKE JR. et al., 1999)

is an automated verification technique that has been used in several application domains. In a

nutshell, it requires a model of the system behavior and a property, and systematically checks

whether the given model satisfies this property or not.

Thus, a formalism to model the DSPL adaptive behavior is needed to reason about

the effect of the adaptation rules over the DSPL product configurations. This formalism should

provide answers to questions like: Are all the product configurations in conformance with the

DSPL rules? and Does the interleaving of adaptation rules triggered at the same time have the

expected effect?

To answer this kind of questions, the DSPL behavior model must be under the

adaptation perspective, specifying both context changes and possible product configurations

in response to the effects of the triggered adaptation rules. In the literature, there are studies

proposing a model checking approach for SPL and self-adaptive systems (see Chapter 3), but

only a few work concerning the DSPL behavior (MUSCHEVICI et al., 2010; CORDY et al.,

21

2013; LOCHAU et al., 2015). The latter focuses on modeling the software state (e.g. “ready”)

together with the required context and software configuration, not giving support to verify the

effect of the adaptation rules.

Thus, there is a lack of a formalism for allowing the model checking focused on the

adaptation rules and their effects over the DSPL products. Also, it is worth noting that even if

the DSPL design is correct, its source code can have faults related to the adaptive behavior that

can raise failures at runtime. So, the testing is important to ensure that the adaptive behavior of

the products is correct, according to the DSPL design.

1.3 Hypothesis and Research Questions

In DAS, the adaptation rules specify how the system should adapt according to

context changes. In particular, considering the DSPL engineering, these rules define which

features should be activated and deactivated at runtime. In this case, to verify and validate the

behavior defined by the adaptation rules should be a first-class concern to avoid unexpected

DAS failures at runtime. Thus, this research is conducted to investigate the following research

hypothesis:

Research Hypothesis: A DAS testing method using a model to specify the DAS features configu-

ration based on adaptation rules provides better coverage of the adaptive behavior and supports

the identification of faults in the adaptation rules design.

From this hypothesis, the following Research Questions (RQ) were proposed:

• RQ1 How to model the DAS adaptive behavior to support the identification of behavioral

faults in the adaptation rules? Rationale: This question aims to find out an adequate

formalism to model the dynamic adaptations over context changes allowing to use model

checking to identify design faults. The identification of these faults is important to ensure

that the feature model and its adaptation rules are correctly specified and, thus, they can

be used to support the testing of the adaptive behavior.

• RQ2: Which common behavioral properties related to the DAS adaptation mechanism

should be satisfied? Rationale: This question intends to identify behavioral properties

that can be verified through model checking and whose violations are related to common

faults in the specification of adaptation rules. Besides that, these properties capture the

22

semantics of behavior patterns that need to be tested in DAS.

• RQ3: How to design test cases to achieve a better coverage of the DAS adaptive behavior?

Rationale: Even if the design is correct, the DAS source code can have faults related to

the adaptive behavior that can raise failures at runtime. Thus, this question aims to find

out an approach to DAS testing to assess whether its adaptive behavior occurs as expected

or not.

1.4 Research Goal and Main Contributions

Many studies reported approaches to ensure the quality of Dynamically Adaptive

Systems. However, since these approaches are not focused on the actions triggered by the

adaptation rules, they can miss faults and failures related to the adaptive behavior.

In this sense, the goal of this thesis is to propose a method for testing the DAS

adaptive behavior focused on the effects of the adaptation rules. This method also involves a

model checking approach to support the identification of design faults in the DAS feature model.

The latter is important to ensure a correct feature model that can be used as source of information

to generate tests. Thus, it is the purpose of this thesis to propose a solution to ensure the quality

of the DAS adaptive behavior from the design to the implementation.

The main expected contributions of this work are summarized as follows:

• A method for testing the DAS adaptive behavior, which generates tests based on a set of

coverage criteria proposed. This method provides an approach to model checking the DAS

design. Also, it should includes:

– A model to specify the DAS adaptive behavior based on the features (de)activation

and the context changes. This model is used by the method proposed to support the

DAS model checking and testing;

– A set of behavioral properties that DAS should satisfy. Such properties are proposed

for helping the software engineer in the identification of faults in the DAS design;

• Supporting tools that supports the DAS model checking, as well as the generation and

execution of tests following the method proposed in this thesis;

It is important to mention that is out of the scope of this thesis to address the context

changes during the tests execution, propose a variability modeling technique and propose a

method for testing the DAS functionality.

23

1.5 Research Methodology

The research methodology of this thesis is defined based on objectives presented in

Section 1.4. In a nutshell, this research is organized into three main phases: (i) Conception, in

which the research problem and questions are refined based on literature review; (ii) Development,

in which a solution is proposed to the problem addressed; and (iii) Evaluation, in which the

developed solution is evaluated. Each phase includes a set of activities, as depicted in Figure 1.

Figure 1 – Research Methodology

Source – the author.

In the Conception phase, the first activity is the Literature Review, which com-

prises the search for papers related to DAS model checking and testing. It is worth noting that

this search, as presented in Chapter 3, involves the DSPL domain, as well as the Context-Aware

(Adaptive) Systems and Software Product Line domains. In this activity, a non-systematic review

is performed using online databases like Scopus1, Web of Science2, IEEE Xplorer3 and ACM

DL4. Besides, this review involved the analyses of the secondary studies available in the literature
1 http://scopus.com/
2 https://www.webofknowledge.com/
3 http://ieeexplore.ieee.org
4 http://dl.acm.org/

24

that are related to the investigated topics (NETO et al., 2011; ENGSTRöM; RUNESON, 2011;

WEYNS et al., 2012; BENDUHN et al., 2015; LOPEZ-HERREJON et al., 2015; MATALONGA

et al., 2017).

Still in the Conception phase, the second activity is Define/Review Objective,

which involves the definition of the research hypothesis and questions based on the results of

the literature review. The third activity in this phase is the Secondary Literature Review,

which is performed in the form of a quasi-Systematic Literature Review (qSLR) (TRAVASSOS

et al., 2008) about test case design for context-aware systems testing. This secondary study is an

activity of the CAcTUS project5, and it is performed on the following databases: Scopus6 and

Web of Science7.

In the Development phase, the first activity is the definition of a formalism to specify

the DAS adaptive behavior (Define the Modeling Technique in Figure 1). Then, the ac-

tivities Define Behavioral Properties and Define the Testing Method are performed

at the same time. During the Define Behavioral Properties activity, common behavioral

properties are specified based on the DSPL concepts and behavioral properties of related domains,

like Context-Aware System domain. These properties define expected behavior that should be

satisfied by a DAS. The other activity, in turn, is related to the definition of a method to DAS

testing. This method has two main goals: (i) to support the verification of the defined properties

avoiding that design faults disturb the testing activity; and (ii) to support the DAS testing based

on the behavioral properties.

To assess the initial results of the proposal, the fourth activity in the Development

phase is to Perform a Feasibility Study with focus on the verification using the formalism

defined. In this study, the idea is to use the model proposed to check behavioral properties in a

DSPL, aiming to assess the applicability of this model in the identification of design faults.

Still in the Development phase, the fifth activity is to Improve the Testing

Method considering the results of the feasibility study. Then, the last activity in this phase

is Implement the Supporting Tools, in which a tool and a library are implemented to

support the use of the testing method proposed.

In the Evaluation phase, the first activity is Evaluation with Mutant Analysis.

In this activity, mutant analysis (JIA; HARMAN, 2011) is used to evaluate if the method is
5 http://lens.cos.ufrj.br/cactus/
6 http://scopus.com/
7 https://www.webofknowledge.com/

25

effective to identify design faults in a DSPL. Next, the testing method is evaluated through

a controlled experiment (Controlled Experiment activity). The guideline of Wohlin et al.

(2014) is used to guide the controlled experiment. The third activity is the Observational

Study that is about a feasibility study of the supporting tools. In both the experiment and

the observational study, online forms (Forms) are used to identify the subject’s profile and

collect their feedback about the performed activities. The data from all three evaluations are

archived in online repositories. The last two activities of the Evaluation phase are Analyze the

Results and Evaluate the Research Hypothesis, in which the results are used to answer

the investigated research hypotheses.

1.6 Structure of the Thesis

This chapter introduced this thesis by describing the motivation and goals of this

work, and the research questions that it aims to answer. Also, this chapter described the research

hypothesis, and presented the research methodology.

Besides this Introduction Chapter, this thesis is organized in the following chapters:

• Chapter 2 (Background) outlines the mains concepts related to this thesis proposal:

context variability, dynamic software product line, model checking and software testing.

This chapter also describes the formalism used throughout this thesis.

• Chapter 3 (Related Work) compares the proposal of this thesis with studies found in the

literature addressing the testing and model checking of SPL, DSPL, and dynamic systems.

• Chapter 4 (TestDAS) presents in details the DAS testing method proposed in this thesis,

as well as the tool implemented.

• Chapter 5 (Evaluation) describes the assessments of the method proposed through ex-

periments focused on the model checking and the test criteria proposed.

• Chapter 6 (Conclusions) summarizes the achieved contributions and discusses some

future research directions.

This thesis also present seven appendices with the following subjects: Appendix A

summarizes the Promela grammar; Appendix B presents the codes used in the feasibility study;

Appendix C describes the class diagram for the context-aware Feature models used as input to

the tool implemented; Appendix D presents the list of generated mutants; Appendix E outlines

the experiment instrumentation; Appendix F describes the instrumentation of the observational

study; and Appendix G presents other published papers during the thesis work period.

26

2 BACKGROUND

This chapter describes the background of this thesis. It presents an overview of

context-awareness in DAS, Software Verification and Software Testing.

The organization of this chapter is as follows. Section 2.1 introduces the running

example that is used throughout this thesis. Section 2.2 defines what is context, and introduces

variability modeling techniques and the DSPL paradigm. Section 2.3 presents the main concepts

related to software verification, focusing on the model checking technique. Section 2.4 introduces

software testing, the testing types, the main test case design techniques, and the challenges related

to DAS testing. Finally, Section 2.5 concludes this chapter.

2.1 Running Example

This section presents the DSPL used as running example along this thesis. The

Mobile Visit Guides is a dynamic SPL for the domain of mobile and context-aware visit guides.

This DSPL is a work product of the MobiLine Project (MARINHO et al., 2013). Figure 2 shows

a small part of the feature model of the Mobile Visit Guides DSPL. The complete model is

available at the MobiLine project site1.

Figure 2 – A small part of the Mobile Visit Guides DSPL feature model

Source – adapted from Marinho et al. (2013).

The feature model depicted in Figure 2 has five features: Mobile Guide, Show

Documents, Text, Image, and Video. In this model, there is one variation point, which is an
1 http://mobiline.great.ufc.br/

27

or-group that can be bound at runtime. This variation point concerns how the information, about

the place where the visitor is, can be displayed. All products of the Mobile Visit Guides DSPL

can display textual information (i.e., all have the feature Text) and, optionally, they can display

images and videos when the features Image and Video are respectively present in the product.

The features Image and Video can be activated (status on) and deactivated (status

off) during the product execution according to both the battery charge level and the power source

connection (context information). In this thesis, these features are called “context-aware features”

because their state depends on the current context. For instance, given that the smartphone is not

connected to a power source; if the battery level is low, then only textual information is available.

Otherwise, if the battery level is normal, then the visitor can only access textual information and

images; and if the battery charge is full, all files (texts, images, and videos) are available. Table 1

summarizes all adaptation rules for the variation point Show Documents.

Table 1 – Adaptation Rules of the Running Example

Rule ID Context Condition Image Video

AR01 isBtLow∧¬hasPwSrc off off
AR02 isBtLow∧hasPwSrc on off
AR03 isBtNormal∧¬hasPwSrc on off
AR04 isBtNormal∧hasPwSrc on on
AR05 isBtFull on on

Source – the author.

2.2 Context Awareness in DAS

There are several definitions of context (BROWN et al., 1997; DEY, 2001; MOSTE-

FAOUI et al., 2004; VIANA et al., 2011). One of the most used is the definition of context

as any information that can be used to characterize the situation of an entity (person, place, or

object) (DEY, 2001). Santos et al. (2017) evolved this definition with the purpose of enhancing

the importance of the relationship between actors and computers:

Context is any piece of information that may be used to characterize the situation
of an entity (logical and physical objects present in the systems environment)
and its relations that are relevant for the actor-computer interaction. (SANTOS
et al., 2017, p. 3)

Thus, given the running example described in Section 2.1, the context information

used by the system to adapt itself are the battery charge level and whether the device is connected

28

or not to a power source.

Several application domains have been used contextual properties to drive dynamic

runtime reconfiguration with little or no human intervention (CAPILLA et al., 2014b). This

reconfiguration, realized by changes in the features of the system, is referred to as runtime

adaptation (BASHARI et al., 2017). Hence, a Dynamically Adaptive System (DAS) is a

software system with enabled runtime adaptation (ALVES et al., 2009).

Figure 3 depicts the main application domains that require a context-aware runtime

adaptation. Self-* systems include, for example, self-healing and self-adaptive systems, which

can modify their behavior and/or structure in response to their goals and their perception of the

environment (LEMOS et al., 2013). Concerning autonomous systems, they should be aware of

its internal state and current external conditions, to detect changing circumstances and adapt

accordingly (DOBSON et al., 2010). Ubiquitous systems and Pervasive Systems are related to

computational services available transparently, anytime and anywhere to the people in such a

way that computer is no longer visible (SPÍNOLA; TRAVASSOS, 2012; ROCHA et al., 2011).

A software ecosystem can be defined as a collection of software projects composing a common

technological platform in which a set of actors interacts (MANIKAS; HANSEN, 2013). The

systems in the Internet of Things (IoT), in turn, allow people and things to be connected anytime,

anyplace, with anything and anyone (VERMESAN et al., 2011).

Figure 3 – Systems demanding runtime adaptation

Source – the author.

With the increasing of the complexity in Dynamically Adaptive Systems, the notion

of “context variability” was introduced by Hartmann and Trew (HARTMANN; TREW, 2008)

for modeling the context variants. Thus, context variability concerns the context-aware software

29

variability (MENS et al., 2016). In this way, The Dynamic Software Product line paradigm has

been identified as a promising approach for developing DAS, because it copes with both the

system variability and the context variability. In fact, a Dynamically Adaptive System itself is

seen as a DSPL 2 (BENCOMO et al., 2008).

The following subsections present more details about the context variability modeling

(Subsection 2.2.1) and the DSPL paradigm (Subsection 2.2.2). Besides that, Subsection 2.2.3

discusses the Context Kripke Structure (C-KS) (ROCHA; ANDRADE, 2012a), which is the

context variation model used in this thesis.

2.2.1 Context Variability Modelling

The variability of a software system can be specified with the notion of features.

Features are the attributes of a system that directly affect end-users (KANG et al., 1990). The

context variability, in turn, is used to model those context features intended to be activated or

deactivated at runtime (CAPILLA et al., 2014b).

A context feature is any feature that represents, uses, or manages data or knowledge

coming from the surrounding context (MENS et al., 2016). On the other hand, non-context

features are chosen based on a static selection of features (MENS et al., 2016). Thus, the

context features represent the variants of context information relevant to the system, while the

non-context features model the software functionality.

The variability modeling of systems with context-aware runtime adaptation involves

modeling both context and non-context features, as well as the dependencies among them. The

model language widely used to manage the system variability is the feature model (KANG

et al., 1990). This model represents through a hierarchical structure a set of features and the

relationship among them. Currently, there are several types of feature model, varying from basic

feature models to extended versions with extra information represented by feature attributes

(BENAVIDES et al., 2010).

Based on the feature model, there are two main approaches, which are depicted

in Figure 4, to model the context. In the strategy A (left side of Figure 4), the feature model

includes a branch in which the engineer models context features separately from non-context

features (CAPILLA et al., 2014b). In the strategy B (right side of Figure 4), the context and

non-context features are modeled under the same model (CAPILLA et al., 2014b). In both
2 In this thesis, DAS and DSPL refer to a software system with context-aware adaptations at runtime

30

modeling strategies, the context variability model is linked to the system feature model. This link

between context features and system features facilitates relating the different context conditions

to an appropriate feature configuration (BASHARI et al., 2017).

Figure 4 – Strategies (A and B) for Context Variability Modeling

Source – adapted from Capilla et al. (2014b).

It is worth noting that each approach has advantages and drawbacks. For instance,

the strategy A is more reusable when the model contains several context features, while the

strategy B simplifies the model and reduces the number of dependencies among context and

non-context features (CAPILLA et al., 2014b).

Figure 5 presents the context-aware feature model (SALLER et al., 2013) for the

running example introduced in Section 2.1. This model follows the strategy A and, thus, it has

two branches: one for the system features (Video, Image, and Text) and another for the context

features (Full, NormalAndCharging, Normal, LowAndCharging, and Low).

Thus, the feature model of Figure 5 specifies that based on the currently active

context features, related to the Battery context, the system is reconfigured by the activation of

a set of system features. For instance, if the context feature Normal is active (i.e., the current

battery charge level is at Normal state), then just the system features Image and Text will be

actives. Note that the feature Text is always active since it is a mandatory feature.

31

Figure 5 – Example of Context-Aware Feature Model

Source – the author.

2.2.2 Context Variability Management with the DSPL Engineering

According to Northrop (2002) a Software Product Line (SPL) “is a set of software-

intensive systems that share a common, managed set of features satisfying the specific needs of a

particular market segment or mission and that are developed from a common set of core assets in

a prescribed way”. Therefore, the SPL strategy allows a systematic and planned reuse, providing

benefits like increased quality and best time-to-market (ALMEIDA et al., 2007)

Several organizations have successfully applied the SPL strategy (SEI, Last Access

in Nov. 2017, 2017). However, in domains like ubiquitous computing and robotic, the software

has become more complex with variation in both requirements and resource constraints (HALL-

STEINSEN et al., 2008). In this scenario, the SPL strategy can not handle the changes in the

environment at runtime, because once the product is generated from the SPL, it could no longer

be changed.

To address this limitation, emerged the Dynamic Software Product Lines (DSPL)

that allow the generation of software variants at runtime (BENCOMO et al., 2012b). In this way,

the DSPL paradigm develops software able to adapt to changes in requirements and resources

32

(HALLSTEINSEN et al., 2008). To allow this dynamic behavior, a DSPL usually has the

following properties (CAPILLA et al., 2014a):

• P1: Runtime Variability Support. A DSPL must support the activation and deactivation of

features and changes in the structural variability that can be managed at runtime;

• P2: Multiple and dynamic binding. In a DSPL, features can be bound several times and at

different binding times (e.g., from deployment to runtime). The binding time is the time at

which one decides to include or exclude a feature from a product (CHAKRAVARTHY et

al., 2008); and

• P3: Context-Awareness. DSPLs must handle context-aware properties that are used as

input data to change the values of system variants dynamically and/or to select new system

options depending on the conditions of the environment.

According to Bencomo et al. (2012a), the DSPL conceptual model is based on the

SPL paradigm and the MAPE-K loop for autonomic computing, as depicted in Figure 6. In the

upper part of this figure is presented the DSPL Domain Engineering (DE), whereas the lower

part depicts the DSPL Application Engineering (AE). The Domain engineering produces the

product line infrastructure consisting of the common architecture, the reusable artifacts, and the

decision model. Such infrastructure is evolved by the MAPE-K loop driven by feedback both

from the deployed product and the application domain evolution. The Application Engineering

builds products for particular contexts represented by the context model.

The MAPE-K model comprises the main tasks of the feedback control loop of

self-adaptive systems (BENCOMO et al., 2012a; BASHARI et al., 2017): (i) Monitoring, for

detecting events which may require adaptation; (ii) Analysis, for analyzing the impact of a

change in the requirements or constraints on the product; (iii) Planning, for deriving a suitable

adaptation to cope with the new situation; and (iv) Executing, for carrying out the adaptation.

The K denotes the Knowledge, which is usually represented by models which are used in the

first four tasks.

Therefore, DSPLs, also known as self-adaptive SPL (CORDY et al., 2013), have been

considered an emergent paradigm to manage the variability at runtime and anytime (CAPILLA

et al., 2014a; BENCOMO et al., 2012b). In this way, there are several studies describing the

application of DSPL in different domains, like robotic (BRUGALI et al., 2015), wind farm

(MURGUZUR et al., 2014) and cloud computing (BARESI; QUINTON, 2015).

33

Figure 6 – Classical SPL model with MAPE-K model

Source – Bencomo et al. (2012a).

2.2.3 Context Variation as Kripke Structure

Context-awareness is the system ability to observe the context changes and adapt its

structure and behavior accordingly. In (self-)adaptive systems, the context characterizes situations

in which the system must adapt to maintain compliance with its functional and performance

specifications.

The context varies dynamically during the system execution. A context state is

a snapshot of a system context in an instant of time t of its execution. Thus, the context

variation can be seen as a sequence of context states over a period. The Context Kripke Structure

34

(Definition 2.2.1), proposed by Rocha and Andrade (2012), models this variation in a formal

manner. The C-KS is a state-based formalism that models the system context variation as a

transition graph in which nodes are context states and edges are transitions that represent changes

in the system context.

Definition 2.2.1 (Context Kripke Structure) A Context Kripke Structure (C-KS) is a 5-tuple

〈S, I,C,L,→〉 where S is a finite set of context states, I ⊆ S is a set of initial context states, C is a

set of atomic context propositions, L : S→ 2C is a label function that maps each context state

to a set of atomic context propositions that are true in that state, and→⊆ S×S is a transition

relation.

In a C-KS, the system context variation is viewed as a sequence of state transitions

(e.g., s0→ s1→ s2 . . .). It is worth noting that C-KS defines context states and transitions without

providing any form of causality. It means that C-KS does not explain why the system is in a

specific state, or why it moves to another one. It collects possible values of different context

variables that can occur in the system executions. Let V = {v1,v2, . . . ,vn} be a set of context

variables that ranges over a finite set D (domain of interpretation). A valuation for V is a function

that associates values in D to each context variable vi ∈V . In this sense, a context state is given

by assigning values for all variables in V (i.e., s : V → D).

An atomic context proposition c ∈C is a piece of context information defined as

a logic proposition. A context proposition typically takes a form v ◦ d, where v ∈ V , d ∈ D,

and ◦ denotes a relational operator (==, ≤, ≥, 6=). The context propositions can be combined

using classical propositional logic operators to describes high-level context information. Every

context state is labeled by an element of 2C (i.e., the powerset of C) that contains all context

propositions that are true in this state (i.e., L(s) ∈ 2C). So, given a valuation, a propositional

formula that is true for this valuation can be written. For example, let s be a valid context state

and L(s) = {c1,c2,c3} a label of s, the propositional formula c1∧ c2∧ c3 that is true in this state

can be derived.

Given the running example (see Section 2.1), let V = {pwConnection, btStatus}

be a set of context variables, and D(pwConnection) = {0,1} and D(btStatus) = {1,2,3,4}

its respective domain of interpretation. Figure 7 presents the C-KS representing the context vari-

ation for the Mobile Guide DSPL products. The set of context states is S = {s0,s1,s2,s3,s4,s5},

the set of initial states is I = {s0}, the → is given by {(s0,s1), (s1,s1), (s1,s0), (s0,s2),

35

(s2,s3), (s3,s2), (s3,s1), (s2,s4), (s4,s5), (s5,s4), (s5,s3)}, the set of atomic context propo-

sition is C = {isBtLow,isBtNormal, isBtFull,hasPwSrc}, where isBtLow ≡ btStatus

== 1, isBtNormal ≡ 2 ≤ btStatus ≥ 3, isBtFull ≡ btStatus == 4, and hasPwSrc ≡

pwConnection== 1. The context states labels are L(s0) = {isBtFull}, L(s1) = {isBtFull,

hasPwSrc}, L(s2) = {isBtNormal}, L(s3) = {isBtNormal, hasPwSrc}, L(s4) = {isBtLow},

and L(s5) = {isBtLow, hasPwScr}.

Figure 7 – C-KS for the Mobile Guide DSPL.

Source – the author.

Thus, the C-KS transitions in Figure 7 define the relationships among the context

states. For instance, given a context state with a battery charge level full and without a power

source (isBtFull); once the battery charge level is a variable affected by physical law (battery

level usually decreasing), the model of Figure 7 specifies two possibilities to the next state: (1)

the power source is connected (isBtFull,hasPwSrc); or (2) the battery charge level changes

from full to normal (isBtNormal).

2.3 Software Verification

Verification is the process of evaluating a system to determine whether the products

of a given development phase satisfy the conditions imposed at the start of that phase (IEEE,

2012). Thus, it is an important activity to assess the software during its life cycle.

Figure 8 depicts an overview of the Software Verification process. The basis for

the verification is the system specification, from which are derived the properties that should

be validated. For instance, a property could be never to reach a deadlock scenario, in which no

process can be made. Thus, the system verification is used to establish that the design or product

36

under consideration possesses the defined properties (BAIER; KATOEN, 2008). A bug (defect)

is found when the system does not fulfill one of the properties verified. Otherwise, the system is

considered to be “correct”.

Figure 8 – Verification Process Overview.

Source – Baier e Katoen (2008)

There are different techniques for software verification. For instance, one can use

Inspection, which is an examination of the item against applicable documentation to confirm

compliance with requirements (IEEE, 2012). Another technique is Model Checking, which is

well-known for automatic verification of system designs (DIMOVSKI et al., 2016; CORDY

et al., 2012). The latter is a model-based verification technique, since it is based on models

describing the possible system behavior in a mathematically precise and unambiguous manner

(BAIER; KATOEN, 2008).

Subsection 2.3.1 presents more details about the model checking technique, which is

used by the testing method proposed in this thesis to automatically identify faults in the DAS

adaptive behavior model. Next, Subsection 2.3.2 presents an approach to compute a feature

model from a propositional formula, which is used by the method proposed to define behavioral

properties that should be verified in DAS.

2.3.1 Model Checking

Model checking is a formal method employed in the automatic verification of

finite state concurrent systems (CLARKE JR. et al., 1999). Formal methods, in a nutshell,

can be considered as “the applied mathematics for modeling and analyzing Information and

37

Communication Technology systems” (BAIER; KATOEN, 2008, p. 7). In the model checking

approach, the system behavior is modeled using some formalism based on states and transitions

(e.g., Kripke Structure (BIERE et al., 1999)) and the system properties are specified using

temporal logic (e.g., Linear Temporal Logic (BAIER; KATOEN, 2008)). The intended behavioral

property verification is given by an exhaustive enumeration (implicit or explicit) of all reachable

system states derived from the system model.

The model checking process can be divided into three main activities (CLARKE JR.

et al., 1999): (i) modeling – where the system model is built using a proper notation/language

provided by the underlying model checker tool; (ii) specification – where the system properties

are defined using a temporal logic supported by the model checker; and (iii) verification – where

the properties are automatically checked against the system model by the underlying model

checker tool.

Figure 9 presents an overview of the model checking approach. The first steps are

the system modeling describing how it behaves and the definition of the properties that should

be validated. During the verification, the model checker tool examines the system states to

check whether they satisfy the desired property. If the property is not violated by the model, the

model checker indicates that the property is satisfied. Otherwise, if a state is encountered that

violates the property under consideration, the model checker provides a counterexample. This

counterexample describes an execution path that leads from the initial system state to a state that

violates the property being verified (BAIER; KATOEN, 2008). Then, by using a simulator the

user can simulate the violating scenario to locate the error source.

In mathematical logic, temporal logic is a formalism based on a system of rules and

symbolism for representing, and reasoning about, the notion of time (CLARKE JR. et al., 1999).

This kind of logic has temporal operators that allow expressing the notion of past and future.

Typically, the temporal logic formulae are interpreted over Kripke Structures. For instance,

given a Kripke Structure K and a temporal logic formula ϕ , a general formulation of a model

checking problem consists in verifying if ϕ is satisfied (|=) in the K structure (i.e., K |= ϕ).

This thesis uses Linear Temporal Logic (BAIER; KATOEN, 2008) to express behav-

ioral properties over the DAS adaptive behavior model. This temporal logic was chosen due to

its increasing popularity (BARTOCCI; LIó, 2016; OUAKNINE; WORRELL, 2008). Also, it is

the logic supported by the SPIN, which is a well-know model checker tool (BAIER; KATOEN,

2008) and that is used in this work during the DAS model checking, as presented in Chapter 4.

38

Figure 9 – Model Checking Process Overview.

Source – Baier e Katoen (2008)

LTL is a linear-time temporal logic that makes it possible express properties over

system states. The LTL formulae are built on top of atomic propositions using propositional

operators (¬, ∧, ∨,→, and↔) and temporal operators (© - next, ♦ - eventually, and � - always).

The LTL formulae are interpreted over execution paths of Kripke Structure. Let φ be an LTL

formula, the intuition for the meaning of the LTL temporal operators is given in Table 2. More

details about LTL can be found in (CLARKE JR. et al., 1999; BAIER; KATOEN, 2008).

Table 2 – LTL Temporal Operators Meaning.

Operator Meaning

©φ “φ is true in the next state of the path.”
♦φ “eventually, φ is true in some state in the path.”
�φ “always, φ is true in all states in the path.”

Source – the author.

Also, it is worth noting that the model checking has several benefits described as

follows (BAIER; KATOEN, 2008): (i) it is a general verification approach that is applicable to a

wide range of applications; (ii) it supports partial verification since it allows to check properties

individually; (iii) it is not vulnerable to the likelihood that an error is exposed; (iv) it provides

diagnostic information in case of a property violation to support the identification of the defect

source; and (v) it does not need a high degree of user interaction nor a high degree of expertise.

39

2.3.2 Feature Model as Propositional Formula

This section describes the Czarnecki and Wasowski’s approach to map feature

diagrams into propositional logic formulas (CZARNECKI; WASOWSKI, 2007). To better

understand this approach, it is important to know some basic concepts about SPL feature models.

A feature model represents all products of SPL in terms of features. In the feature

model, the features are presented hierarchically, and the basic rules are (BENAVIDES et al.,

2010): (i) the root feature is included in all products; and (ii) a child feature can only be included

in a product if its parent feature was included.

Besides that, usually a feature model allows the following relationships among

features (BENAVIDES et al., 2010): (i) Mandatory, a child feature has a mandatory relationship

with its parent when the child is included in all products in which its parent feature appears;

(ii) Optional, a child feature has an optional relationship with its parent when the child can be

optionally included in all products in which its parent feature appears; (iii) Alternative (Xor), a

set of child features has an alternative relationship with its parent when only one child feature can

be selected when its parent feature appears; (iv) Or, a set of child features has an or-relationship

with its parent when one or more of them can be included in the products in which its parent

feature appears.

A feature model can also contain cross-tree constraints specified by require and

exclude relationship between features (BENAVIDES et al., 2010). If a feature A exclude a feature

B, then both features cannot be included in the same product. If a feature A requires a feature B,

then there is a dependence relationship where if the feature A is included in a product, then the

feature B would also be included.

Czarnecki and Wasowski (2007) discuss the semantics of feature diagrams and their

relation to logic. They show that is possible to describe all configurations of a feature model by a

propositional formula defined over a set of Boolean variables (atomic propositions), where each

variable corresponds to a feature. Aiming to do that, Czarnecki and Wasowski (2007) propose to

represent a feature model as a conjunction of (i) implications from all subnodes to their parents,

(ii) additional implications from parents to all their mandatory features, (iii) implications from

parents to groups, and (iv) any additional constraints (e.g., require relationship) represented as

propositional formula. Table 3 summarizes the logic formulae correspondents to the relationships

among a parent feature p and its subfeatures f1, . . . , fk. For simplicity, henceforth, this thesis

uses the notation (i) fpf(FM) to refer to propositional formula of a feature model FM; and (ii)

40

afp(FM) = { f0, . . . , fn} to refer to a set of all atomic feature propositions, which represent the

features of FM.

Table 3 – Feature Relationships and their corresponding logic formula

Feature Model Relation Type Logic Representation

child-parent
∧k

i=1(fi→ p)
mandatory

∧k
i=1(p→ fi)

or-group p→ (
∨k

i=1 fi)

xor-group p→ (
∨k

i=1 fi)

Source – adapted from Czarnecki e Wasowski (2007).

Following the Czarnecki and Wasowski’s approach (CZARNECKI; WASOWSKI,

2007), the fpf(MobileGuideFM) from the running example (see Section 2.1) is given by a

conjunction of formulas related to the relation child-parent (2.1) and the mandatory features

(2.2):

((...→MobileGuide)∧ (Video→ ShowDocuments)∧ (Image→ ShowDocuments)∧ (Text→ ShowDocuments))∧ (2.1)

((MobileGuide→ ...)∧ (ShowDocuments→ Text)) (2.2)

Therefore, any assignment of Boolean values to all features (afp(MobileGuideFM)=

{MobileGuide, . . . ,ShowDocuments,Text, Image,Video}) that makes the propositional formula

satisfied represents a valid product configuration of the Mobile Guide feature model, otherwise,

it represents an invalid configuration. For instance, if the feature Show Documents is included

(ShowDocuments = >) and the feature Text is not (Text = ⊥), the configuration resulting is

invalid, because these assignments make the formula fpf(MobileGuideFM) unsatisfied since

(ShowDocuments→ Text) =⊥.

2.4 Software Testing

Software Testing can be defined as the “dynamic verification of a program’s behavior

on a finite set of test cases, suitably selected from the usually infinite executions domain, against

the expected behavior” (BOURQUE; FAIRLEY, 2014). This definition is interesting because

it highlights that exhaustive testing is unlikely. Some rationales for this are: (i) the domain of

possible inputs of a program is too large; (ii) it may not be feasible to simulate all possible

system environment conditions; and (iii) the high cost of this activity, which could exceed 50

percent of the total cost of the software development (MYERS et al., 2011).

41

Tests can be conducted in stages or levels (BOURQUE; FAIRLEY, 2014): unit,

integration, and systems. The unit testing verifies the functioning in isolation of software

elements that are separately testable, while integration testing validates the interactions among

software components. At the level of system, the focus of this thesis, the testing activity is

concerned with the behavior of an entire system.

Concerning the testing objective, the tests can be classified into different types. The

functional testing, for instance, verifies if the software is developed according to the functional

requirements established (MYERS et al., 2011). This kind of testing is the focus of this thesis

work, since it deals with the testing of the DAS adaptations. There are several other testing types

such as performance and usability testing. The performance testing is specifically geared to

verify that the software is in accordance with the specified performance requirements, such as

capacity and response time (BOURQUE; FAIRLEY, 2014). The usability testing determines

how well the final user can interact with the system (MYERS et al., 2011). More details about

the testing types can be found in Bourque e Fairley (2014).

Other concepts important in software testing are error, fault, defect, and failure. An

error is a human action that produces an incorrect result (IEEE, 2010). A fault is a manifestation

of an error in software (IEEE, 2010). Defect is an imperfection or deficiency in a work product

where that work product does not meet its requirements or specifications and needs to be either

repaired or replaced (IEEE, 2010). A failure, in turn, is an event in which a system or system

component does not perform a required function within specified limits (IEEE, 2010). Thus, the

testing can reveal failures, which may be caused by a fault (a subtype of defect).

Subsection 2.4.1 presents the main test case design techniques according to the

ISO/IEC 29199-4 (IEEE, 2015). Next, Subsection 2.4.2 summarizes the challenges faced during

the DAS testing.

2.4.1 Test Case Design

The ISO/IEC 29119-4 (IEEE, 2015) describes a series of techniques that have wide

acceptance in the software testing industry. It also classifies them for three types of tests based

on the source of information used to design test cases: (i) specification-based testing (“black-

box testing”), where requirements, specifications or user needs are used as the main source of

information to design test cases; (ii) structure-based testing (“white-box testing”), where the

test item structure (e.g., source code) is used as information source; and (iii) experience-based

42

testing, where the tester’s knowledge and experience are used as primary information source. It

is worth noting that these classes of test design techniques are complementary (IEEE, 2015).

The use of a test design techniques is important because it helps to specify test cases

with a higher probability of finding defects. According to the ISO/IEC/IEEE 29119-4 (IEEE,

2015), a test case design technique provides guidance on the derivation of:

• A test condition that is a testable aspect of a test item, such as a function, transaction,

feature, quality attribute or structural element identified as a basis for testing;

• Test coverage items that are attributes of each test condition that can be covered during

testing. From a single test condition may be extracted one or more test coverage items; and

• A test case that is a set of preconditions, inputs and expected results, developed to

determine whether or not the covered part of the test item has been implemented correctly.

It has to be derived to exercise the test coverage items.

For instance, the Boundary-Value Analysis is a test case technique in which test cases

are chosen on near the boundaries of the input domain of variables (BOURQUE; FAIRLEY,

2014). In this technique, the test conditions are the boundaries, while the test coverage items

are the values on the boundary and an incremental distance outside the boundary (IEEE, 2015).

Given a system that receives as input values from 1 to 10; these two values are the test conditions,

while the test conditions items are the set {0,1,10,11}.

Based on the test cases and the test coverage items, it is possible to measure the test

coverage through the Formula 2.3. In this case, N is the number of test coverage items covered by

executed test cases, while T is the total number of test coverage items identified. For example, to

measure the coverage of the Boundary Value Analysis (IEEE, 2015), N is the number of distinct

boundary values covered, and T is the total number of boundary values.

Coverage =
N

T
∗100 (2.3)

It is worth to highlight that the peculiarities of the application under test impact the

test case designing activity. In context-aware software systems, the context information is a new

kind of input affecting the application behavior (WANG et al., 2007) and, therefore, should be

taken into account to design a test case.

43

2.4.2 Challenges for DAS testing

The main characteristic of Dynamically Adaptive Software is that it can adapt at

runtime according to the context information (GUEDES et al., 2015). Both the use of context

information and the reconfiguration of the software while running bring several challenges to the

software testing activity.

As depicted in Section 1.5, aiming to investigate the testing for context-aware

applications, it was performed a quasi-Systematic Literature Review (qSLR) about the test case

design for this kind of system. From the initial set of 833 primary studies, this qSLR identified

just 17 studies regard the design of test cases for context-aware systems. From these 17 studies,

it was possible to identify testing challenges, as well as test design techniques and existing test

criteria (discussed in Section 3.3) for context-aware systems. The details of this secondary study

are described in (SANTOS et al., 2017).

In addition, other systematic reviews have presented the challenges of testing Context-

Aware Systems (MATALONGA et al., 2017) and Adaptive Systems (SIQUEIRA et al., 2016).

Based on these studies and the performed secondary study (SANTOS et al., 2017), the main

challenges for DAS testing are depicted as follows:

• To deal with the exponential growth of system configurations that should be tested. Since

the adaptive systems change over time and the number of configurations is huge (MATA-

LONGA et al., 2017; SANTOS et al., 2017), one challenge is scope appropriately a test

suite (SIQUEIRA et al., 2016);

• To design test cases for dealing with the uncertainty of contextual data. Examples of

uncertainties are unexpected power drain and physical damages into the sensors (SANTOS

et al., 2017). Adaptive systems should adapt correctly even in unpredictable situations. In

this case, a major difficulty is to define the test cases to cover unforeseen configurations

and that have never been tested in advance (SIQUEIRA et al., 2016);

• To identify incorrect configurations defined at runtime. The dynamicity of adaptive systems

may lead it to unpredictable configurations. Thus, the challenge is to dynamically define

test cases to avoid incorrect settings of the system at runtime (SIQUEIRA et al., 2016);

• To anticipate all the relevant context changes and when they could impact the behavior

of adaptive systems. The environment may change continuously (SANTOS et al., 2017;

MATALONGA et al., 2017) and then it can affect the system behavior at any time. So,

this challenge concerns the need of anticipating context changes and building a test set that

44

properly encompasses all relevant context variables with representative values (SIQUEIRA

et al., 2016);

• To automatically generate test cases for a changing environment. Since adaptive systems

change their structure continuously at runtime, it is hard to generate automatically test cases

for them (SIQUEIRA et al., 2016). Besides, it is unlikely the definition of a test oracle for

all possible combination of values that can stimulate the adaptation (MATALONGA et al.,

2017).

• To deal with the variation of context during the testing. A context variation should be

allowed unrestraint when executing the test item (MATALONGA et al., 2017). Thus, this

challenge is about to design test cases, allowing changes in the expected output according

to the current context (SANTOS et al., 2017).

2.5 Conclusion

This chapter introduced the running example that is used throughout this work. Next,

it described the main concepts related to the topics involved in this thesis work, which are

Context Awareness, Software Verification, and Software Testing.

With regards to Context Awareness, this chapter first introduced the definition of

context, highlighting its importance for different application domains. After that, it was presented

how to model context variability and how DSPLs use the context information to generate software

variants at runtime. Also, a context variation model that specifies the behavior of the context

states was presented since it is used by the testing method proposed in this thesis.

The Software Verification was addressed by introducing the verification process and

an overview of the model checking technique. Furthermore, it was depicted how the feature

model can be represented by a propositional logic formula. The latter is important to support the

use of the model checking with DSPL/SPL feature models.

This chapter also introduced the main concepts of software testing, as well as the

testing levels, types of tests and some test case design techniques. Besides that, it was presented

a set of challenges related to the testing of adaptive systems. Among them, there are the

combinatory explosion of the system’s context and the uncertainty of contextual data.

The next chapter presents the related work to this thesis. Several studies concerning

the DAS testing and model checking were identified, and based on a comparison of them, Chapter

3 describes the gaps in the literature that motivated this thesis work.

45

3 RELATED WORK

This chapter brings details about the literature review conducted by searching for

studies concerning model checking or testing in DSPLs and Context-Aware Adaptive Software

(CAAS).

The following sections present the studies found in the literature. Section 3.1 presents

the studies related to model checking for CAAS. Section 3.2 discusses the studies concerning

the model checking in the DSPL domain. Section 3.3 presents the related work to CAAS testing.

Section 3.4 describes the studies related to DSPL testing. Section 3.5 presents a discussion of

these papers. Finally, Section 3.6 concludes this chapter.

3.1 Model Checking for Context Aware Adaptive Software

In the literature, there are several studies (SAMA et al., 2008; SAMA et al., 2010;

LIU et al., 2013; XU et al., 2012; XU et al., 2013; DJOUDI et al., 2016; ARCAINI et al., 2017)

proposing approaches for model checking of Context Aware Adaptive Software.

Sama et al. (2008)(2010) propose a finite-state model of adaptive behavior, called

Adaptation Finite-State Machine (A-FSM), which supports the detection of faults that introduces

unwanted adaptations or unexpected states. Figure 10 presents the A-FSM of the Phone Adapter

(SAMA et al., 2010), which is an application that uses contextual information to adapt the

phone’s configuration profile to one of the nine predefined profiles. In this case, each A-FSM

state represents an execution state (e.g., Home, Driving) of the CAAS, while the transitions

represent the satisfaction of the adaptation rules predicates. For instance, one rule of the Phone

Adapter states that if the phone is in the Outdoor profile and the formula “GPS.isValid()

AND GPS.speed()>5” is true, then the profile should be changed to Jogging. Thus, this rule

is active in the state Outdoor, and its execution is represented by the transition (label with

ActivateJogging) from this state to the state Jogging that indicates the satisfaction of the formula

before mentioned.

To support the faults identification, Sama et al. (2008) define a set of adaptation

faults patterns: (i) Determinism: For each state in the A-FSM and each possible assignment of

values to context variables, there is at most one rule that can be triggered; (ii) State Liveness:

For each state in the A-FSM, if the state contains any active rules, then at least one of the active

rules has a satisfiable predicate; (iii) Rule Liveness: For each state in the A-FSM and each one of

46

its active rules, there is at least one assignment of values to propositional context variables that

satisfies the predicate of the rule; (iv) Stability: The state of an A-FSM is not dependent on the

length of time a propositional context variable holds its value; and (v) Reachability: It should be

possible to reach every state from the initial state. Moreover, other three fault patterns related to

the asynchronous updating of context information are presented, and for each fault pattern the

authors describe algorithms to check it by analyzing the A-FSM.

Figure 10 – Example of Adaptation Finite-State Machine

Source – Sama et al. (2010).

Liu et al. (2013) propose an approach and a tool, called AFChecker, to improve

the precision of the A-FSM fault detection. In their approach, two models (a domain model

and an environment model) are derived through deterministic and probabilistic constraints. To

identify deterministic constraints, the authors use the concept of propositional atom p(x) as a

function that produces a truth value (i.e., true or false) by evaluating its context variable x (e.g.,

slowDriving(GPS.speed) = true if GPS.speed < 50km/h). Thus, the deterministic constraints are

inferred by analyzing propositional atoms in pairs to derive internal correlations. For instance,

if two atoms p(x) and p′(y) cannot both be true at same time, AFChecker infers the constraint

¬p(x)∨¬p′(y).

The probabilistic constraints, in turn, are extracted from static analyses of the dynami-

cally collected environmental information. In this analysis, their approach infers the correlation’s

probability and organize all probabilistic constraints in a weighted directed graph where: (i) each

propositional atom p(x) is mapped to two vertices, one vertex representing the positive truth

47

value assignment of p(x) and other vertex representing the negative truth value assignment of

p(x); and (ii) the edges are associated with a likely correlation between the vertices. For example,

an edge starting from the vertex where the atom p(x) is true and ending at the vertex where the

p(y) is true, indicates that if p(x) is evaluated to be true, then p(y) is likely to be evaluated to

be true. The likely correlation is the edge weight. Therefore, based on the inferred constraints,

the Liu et al.’s approach prunes false positives (i.e., faults that cannot happen in practice) using

deterministic constraints and ranking any remaining faults using probabilistic constraints.

Xu et al. (2012)(2013) state that the A-FSM (SAMA et al., 2008) suffers expressive-

ness due to the use of a propositional logic based language. Thus, they propose an Adaptation

Model (AM) that offers increased expressive power to model complex rules, which are adaptation

rules based on the first-order logic that contains universal and existential quantifiers. An AM is a

finite-state machine that contains a set of states S and a set of transitions that are the adaptation

rules. In this model, a context variable can be mapped to either a single context value or a set of

context values (for complex rules).

Furthermore, Xu et al. (2013) take into account variable dependency and physical

constraints that enforce specific relationships among contexts (e.g., two context variables that

cannot both take true assignment at the same time) to avoid false positive (i.e., unreal faults).

To support the faults identification, these authors propose an algorithm based on the AM model

to detect two types of fault in context-aware adaptive applications: non-determinism fault and

instability fault. The non-determinism fault violates the property that for each state in an AM and

each possible value assignment to context variables at that state, there is at most one active rule

that can be triggered. The instability fault violates the property that an AM state is not dependent

on the context update rate or rule execution speed.

Djoudi et al. (2016) combine model-driven techniques with formal methods to

define a framework for context-aware systems specification and verification. The model-driven

technique is used to identify context-aware systems concepts, their interrelation and specify

the corresponding component-based meta-model. Formal methods, in turn, are used for formal

specification and verification using the model checking technique. To support the association

of formal semantic to the identified concepts of CAAS, the authors proposed a domain specific

language called CTXs-Maude (for ConTeXt-aware Systems using Maude). Thus, this language

allows to specify context entities and the adaptive behavior.

With regards to the verification process, Djoudi et al. (2016) use Maude LTL model

48

checker (EKER et al., 2004) to ensure system safety and consistency by verifying the context-

aware system. Therefore, the software engineer can specify properties to be checked against the

model created. In their paper, a set of properties, expressing safety and liveness requirements,

are verified using Maude model checker. The authors also developed the CTXstool that enables

software engineer to graphically model, specify, and verify context-aware systems.

Arcaini et al. (2017) present a framework for formal modeling and analyzing CAAS

with focus on distributed self-adaptive systems, which have a decentralized adaptation control.

They define a formalism called self-adaptive Abstract State Machines (ASM) to specify the

decentralized adaptation control by using MAPE-K loops. A self-adaptive ASM consists of a set

of running agents divided into managing ones to control and perform the adaptation logic, and

managed ones to perform the functional logic. Thus, the authors formalize a MAPE-K control

loop in terms of actions of distributed managing agents.

In the verification process, the framework of Arcaini et al. (2017) supports the

verification of system-independent properties (metaproperties) and requirement verification

properties. In both cases, they use the model checker AsmetaSMV (ARCAINI et al., 2010). The

metaproperties checked are: (i) knowledge locations are not in conflict; (ii) all rules involved in

MAPE-K loops are executed; and (iii) the knowledge is minimal (e.g., it does not contain locations

that are unnecessary). Therefore, these properties verify that the knowledge has been updated

correctly and that the subsequent steps of the MAPE-K loop have been triggered correctly.

Therefore, it is possible to note that the system models used by the existing ap-

proaches are specified by meaning of a formalism based on states and transitions. Some of these

models are focused on a specific type of adaptive system. For instance, the State Machine Model

(LOCHAU et al., 2015) supports the checking of properties over the DSPL staged reconfiguration

processes with complex binding time constraints. On the other hand, the Abstract State Machine

(ARCAINI et al., 2017) is intended for distributed self-adaptive systems. Also, some proposals

(SAMA et al., 2008; SAMA et al., 2010; XU et al., 2012; XU et al., 2013; LIU et al., 2013)

implement tools and propose models that only allow to check a predefined set of properties. This

way, they are limited regarding the properties that can be verified, since they do not allow the

user to check specific systems requirements.

49

3.2 Model Checking for Dynamic Software Product Lines

There are several papers that propose behavioral models for supporting the verifi-

cation in the SPL domain (MUSCHEVICI et al., 2010; CLASSEN et al., 2010; CLASSEN et

al., 2013; CORDY et al., 2012; VARSHOSAZ; KHOSRAVI, 2013; DIMOVSKI et al., 2016).

In a nutshell, these studies model the possible SPL products, annotating the transitions with

information about the required features. So, the models proposed for SPL consider that a given

configuration is chosen and fixed through the whole execution of the system (CORDY et al.,

2013).

In the DSPL scenario, however, there are different product configurations that are

triggered according to context changes. Therefore, behavioral models for SPL fail to check

properties of the DSPL adaptive behavior. To address this gap, some authors have proposed

specific models to DSPLs. In the following paragraphs, the studies related to model checking

in the DSPL domain (MUSCHEVICI et al., 2010; CORDY et al., 2013; MUSCHEVICI et al.,

2015; LOCHAU et al., 2015) are discussed.

Muschevici et al. (2010) propose Dynamic Feature Petri Nets (DFPN), or Dynamic

Feature Nets (DFN) for short (MUSCHEVICI et al., 2015), extending the Feature Petri Nets

(FPN) to capture the dynamic reconfiguration of products. In this approach, beyond the applica-

tion conditions from the FPN, they associate to each transition an update expression that describes

how the feature selection evolves after the transition. Thus, if the feature is dropped, this action

globally disables all transitions whose application condition depends on the dropped feature.

Figure 11 depicts a DFN for a coffee machine DSPL. In this model, the update expression “Milk

off” and the application condition “Milk” are associated to the disconnect transition. Then, by

firing disconnect, the feature Milk is dropped and the transitions whose application condition

depends on the Milk feature are disabled, that is, add milk, refill milk and serve coffee w/milk.

Muschevici et al. (2010) also propose an analysis method for DSPL modeled as

Dynamic Feature Nets by representing all possible traces in a relaxed variable reachability graph.

In this graph, each node have a state of the DFN and a feature selection associated with it. For

checking DFNs, one can use a traditional model checker as SPIN (HOLZMANN, 2003) or

mCRL2 (GROOTE et al., 2007). Furthermore, according to the authors, this graph can be seen

as a Featured Transition System (FTS) (CLASSEN et al., 2010), and then, it can also be checked

using dedicated FTS model checkers.

50

Figure 11 – Example of Dynamic Feature Net

Source – Muschevici et al. (2015).

Cordy et al. (2013) propose Adaptive Featured Transition Systems (A-FTS), an

extension of FTS (CLASSEN et al., 2010) for modelling DSPLs. A-FTS model the evolution of

both the environment and the adaptive system. In this approach, the capability of the software to

execute a transition depends on both its features (system features) and those of the environment

(environment features). An environment feature is a Boolean characteristic of the environment

that may change over time and that the software has the ability to perceive. In A-FTS, a

state is called macrostate and refers to the state of the system itself, its configuration and the

environment state. Figure 12 presents an A-FTS for an adaptive routing protocol. This system

has one adaptable feature called encryption, and one environment feature called safe that may or

may not be enabled. The macrostate (ready; /0; {safe}), for instance, means that the system is in

the ready state, has not the feature encryption enabled and executes in a safe environment. The

next state depends on the action executed (e.g., receive()), how the environment evolves and how

the system decides to reconfigure itself.

Additionally, Cordy et al. (2013) formally define the concepts of environment strategy

and reconfiguration strategy, which determine how the context evolves and how the systems

reacts, respectively. It is important to highlight that according to Cordy et al. (2013) the A-FTS

is “just a fundamental model, which is used by the tools but is difficult to manage by humans”.

The authors also defined and implemented a model checking technique that allows to verify the

transition systems against temporal properties. For supporting A-FSM checking, the authors also

propose a property language, called AdaCTL, to describe requirements on adaptive systems.

51

Figure 12 – Example of Adaptive Featured Transition System

Source – Cordy et al. (2013).

Lochau et al. (2015) present an approach for modeling and verifying validity prop-

erties of staged reconfiguration processes, which imposes a prioritization among configuration

decisions, with complex binding time constraints. For this, the authors extend feature models

with binding time information to capture the semantics of staged reconfiguration processes, and

present a semantic representation of DSPL staged reconfiguration behaviors. This representation

is the basis of a state machine model and it integrates binding times constraints.

Then, Lochau et al. (2015) propose to use both the constraint-solving and model-

checking approaches for the DSPL validation. For supporting model checking, the representation

created is further translated into Promela to serve as input for the model checker SPIN (HOLZ-

MANN, 2003). In this way, their proposal can automatically verify validity properties with focus

in the binding time constraints on a DSPL specification. The following properties are checked

by the proposal of Lochau et al. (2015): (i) Proper initialization, which is related to the notion

of feature model satisfiability to staged configurations; (ii) Reachability, in which every state

of the reconfiguration automaton is supposed to be reachable during the life cycle of a DSPL

variant; (iii) Progress, which enhances the notion of core features to staged reconfigurations; and

(iv) Liveness, which requires that from every configuration reachable, every other state within

the reconfiguration automaton always remains eventually reachable from the current state.

Therefore, it is possible to note that some of the models identified for DSPL mode

checking focus only on the execution states (“ready”, “wait”), such as the DFN (MUSCHEVICI

et al., 2010; MUSCHEVICI et al., 2015). Other models also specify the environment states,

like the A-FTS (CORDY et al., 2013) that uses macrostates to specify the system state, features

52

configuration and environment state. Moreover, despite the importance of adaptation fault

patterns to support the software engineer in the identification of design faults, most of the

studies related to DSPL model checking (CORDY et al., 2013; MUSCHEVICI et al., 2010;

MUSCHEVICI et al., 2015) do not discuss about the identification of adaptation fault patterns.

3.3 Testing Context-Aware Adaptive Systems

As presented in Chapter 2, the coverage of tests cases is measured by testing coverage

criteria. Thus, the use of a test cases design technique and test coverage criteria is important to

achieve a good test suite.

In the literature, there is work (GRIEBE; GRUHN, 2014; AMALFITANO et al.,

2013) related to Context-Aware Adaptive Systems testing that use the coverage criteria applied

commonly to the traditional (i.e., non-context-aware) application testing. For instance, Griebe and

Gruhn (2014) propose a model-based approach to improve the context-aware mobile application

testing. In their approach, first the system models (i.e. UML Activity Diagrams) are enriched

with context information. Then, these models are transformed into Petri Nets. From the Petri

Nets representation, a system testing model is generated and it is used the all-transition-coverage

criterion (IEEE, 2015) to generate the tests. Amalfitano et al. (2013), in turn, present approaches

based on the definition of reusable event patterns for the manual and automatic generation of test

cases for mobile application testing. These authors measure the resulting code coverage in terms

of lines of code (LOCs) and methods.

Other studies (WANG et al., 2007; WANG; CHAN, 2009; WANG et al., 2014;

MUNOZ, 2010; MICSKEI et al., 2012; YU et al., 2014) deal with the context information in the

test cases design by proposing new test coverage criteria. Also, some studies (RODRIGUES

et al., 2016; QIN et al., 2016) discuss testing strategies to cope with context information, but

without defining test coverage criteria. The following paragraphs presents these studies.

Wang et al. (2007) propose a white-box testing approach to improve the test suite

of a context-aware application. This approach has the following steps: 1) it identifies key

program points (context-aware program points), represented with a control flow graph, where

context information can effectively affect the application’s behavior; 2) it generates potential

variants for each existing test case exploring the execution of different context sequences based

on the generated control flow graph; and 3) it attempts to dynamically direct the application

execution towards the generated context sequence. The outputs are Drivers (sequence of nodes

53

that are be used to drive the test execution) and the enhancement of an existing test suite for

a context-aware application. To guide the tests generation, the authors also propose three test

criteria to expose all types of contexts under execution (WANG et al., 2007): Context-Adequacy,

Switch-to-Context-Adequacy, and Switch-With-Preempted-Capp-Adequacy.

Wang and Chan (2009) define a metric named context diversity to capture the context

changes inherent in a context stream. For example, the context diversity for the sequences

“meeting room, present report” and “home, watch football” is two, after summing up the changes

in the location (where “meeting room” is different from “home”) and activity (where “present

report” is different from “watch football”). Based on this measure, Wang et al. (2014) show

how to select test cases with higher, lower, and more evenly distributed context diversity for

constructing test suites that are adequate with respect to the data-flow testing criteria (IEEE,

2015).

Munoz (2010) presents a combinatorial testing technique named Multidimensional

Covering Arrays (MDCA) for self-adaptive systems that make decisions based on past condi-

tions. This technique selects the combinations (combinatorial selection) of the environmental

property values that constitute each environmental condition, and the interactions among en-

vironmental conditions that represent the temporality. Regarding the temporality, it is related

to the (intra-variation) interactions among the values of a single reasoning variable (i. e., the

possible transitions of context values over time). For instance, given a variable Speed with two

possible values “slow” and “fast”, the set of 2-transitions is: {(slow,slow); (slow,fast); (fast,fast);

(fast,slow)}.

Micskei et al. (2012) present an approach that uses context modeling and scenarios,

in the form of extended UML 2 Sequence Diagrams, to capture the context and requirements of

the system, and automatically to generate test data and test oracle. The testing is carried out in

an interactive simulator environment and concentrated on the system-level behavior. Micskei et

al. (2012) suggest the following coverage measures: (i) Context related coverage metrics, which

measure what part of the context model has been covered during testing and what combinations of

initial context fragments from different requirements were covered; (ii) Scenario related metrics

that measure coverage on the scenarios (e.g., whether all scenarios have been triggered); and

(iii) Robustness related metrics, which measure the thoroughness of the generation of extreme

contexts by considering the coverage of violated constraints and potential boundary values from

the context model.

54

Yu et al. (2014) propose a model-based testing approach that uses Bigraphical

Reactive Systems to model the behavior of context-aware applications. A bigraph consists of two

graphs: a place graph that captures notions of locality or containment, and a link hypergraph that

models connectivity or associations. In their proposal, the bigraphical model-based testing uses

the middleware and environment models as input in order to generate test cases. The authors also

propose pattern-flow testing criteria that are similar to the data-flow testing criteria (IEEE, 2015),

and define all-uses and all-def coverage, but in terms of bigraphical structures defined and used in

the reaction rules. In another paper (YU et al., 2016), the authors propose a backward-derivation

testing approach to trace back the event sequences from a fault or undesired state by reversing

the relevant reaction rules.

Rodrigues et al. (2016) propose an approach, called CATS Design, to design func-

tional test cases for context-aware software systems. The goal of the CATS Design is to enable

the development of test suites, including test cases which consider the variation of context during

the test design and execution. This approach is based on the concept of Thresholds that is a

disturbance capable of changing the system identity (RODRIGUES et al., 2016). The main

activities of this approach are: (i) Context Variables Identification, which intend to find the

context variables in the requirements and by tacit knowledge; (ii) Thresholds Identification,

where the tester should use the requirements documentation together with the collected context

variables to reproduce the system in a conceptual model and an analytical model, and, then, to

identify the thresholds; (iii) Test Suite Generation, where the tester uses the created models to

specify test cases.

Qin et al. (2016) propose an approach called SIT (Sample-based Interactive Testing)

for testing self-adaptive applications. This approach involves: (i) an interactive application

model, which captures the characteristics of interactions between a CAAS and its environment;

and (ii) a test generation technique, which uses adaptive sampling and measures the similarity of

execution traces to systematically explore the CAAS’s input space. Therefore, the SIT explores

the input space through systematic sampling and returns a set of sequences of value assignments

to the CAAS’ input parameters to exercise different application behaviors. It is worth noting that

in order to apply the sampling technique, the target of the authors are self-adaptive applications

whose input parameters take real numbers as values from sensors.

Therefore, it is possible to observe that some studies (AMALFITANO et al., 2013;

GRIEBE; GRUHN, 2014; QIN et al., 2016) do not define test coverage criteria based on

55

the context covered. On the other hand, some studies (WANG et al., 2007; MUNOZ, 2010;

MICSKEI et al., 2012; WANG; CHAN, 2009; WANG et al., 2014; YU et al., 2014; YU et al.,

2016; RODRIGUES et al., 2016) handle the context-awareness by defining test coverage criteria

based on context information.

3.4 Testing Dynamic Software Product Lines

Aiming to support the testing of Software Product Lines, there are several studies in

the literature. Most of these work (JOHANSEN et al., 2012; HASLINGER et al., 2013; KOWAL

et al., 2013; LOPEZ-HERREJON et al., 2013; LOPEZ-HERREJON et al., 2014; LAMANCHA

et al., 2015) propose solutions based on the combinatorial testing and focus on finding the set of

products that should be used to represent the SPL in the testing scenario.

Johansen et al. (2012) propose a specialized algorithm, called ICPL, for generating

covering arrays from large feature models. Haslinger et al. (2013) apply a set of rules exploring

the feature model knowledge to reduce the test combinations that have to be covered. Kowal

et al. (2013) propose an approach to reduce the combinatorial test set by explicitly modeling

information about shared resources and communication in feature models, and, then, indicating

the more likely feature interactions. Lopez-Herrejon et al. (2013) propose an algorithm for

solving the multi-objective problem of minimizing the number of test products and maximizing

the pairwise coverage. In another work (LOPEZ-HERREJON et al., 2014), they study the

application to SPL pairwise testing of four classical multi-objective evolutionary algorithms.

Lamancha et al. (2015) present a greedy algorithm, called PROW (Pairwise with constRaints,

Order and Weight) that handles constraints and prioritization for pairwise coverage.

In the DSPL domain, however, just a few work (CAFEO et al., 2011; PüSCHEL et

al., 2012; HäNSEL; GIESE, 2017) were found. A possible reason to the lower number of papers

focused explicitly on DSPL testing is the fact that the testing approaches of adaptive systems can

be applied for testing DSPLs, since both have as main characteristic the context-aware adaptive

behavior. The related work to DSPL testing are presented in the following paragraphs.

Cafeo et al. (2011) address the runtime testing for DSPLs by presenting an approach

for inferring test results during the software execution. In their proposal, first, a representative

subset of configurations should be tested in details before the DSPL is deployed. Next, once the

DSPL has been deployed, the existing test results are used to approximate the test results for new

untested configurations. For this purpose, their approach determines which tested configuration

56

is most similar to the untested one, and then, it infers the quality of the untested configuration

based on the test results previously conducted for the similar one. This similarity among the

DSPL configurations is based on the configurations structure defined in call graphs.

Püschel et al. (2012) present an approach applying Model Based Testing (MBT)

and Dynamic Feature Petri Nets (DFPN) (MUSCHEVICI et al., 2010) to define a test model

from which an extensive test suite can be derived. This test model is based on DFPNs enriched

with a parallel branch derived from the information given in the context rules. By combining

the test model, context rules, and the feature model, a generator derives one test suite for each

application configuration. In order to generate the test suite, the approach from Püschel et al.

(2012) generates a complete simulation of the combined DFPN, consisting of the test model

and the context branch to derive all possible traces (i.e., sequences of DFPN’s states), each one

corresponding to a specific test case.

Hänsel e Giese (2017) propose an approach based on online and offline testing for

DSPLs. They propose to make use of monitoring results from multiple instances of systems

derived from a DSPL at runtime. Then, these observations and applied configurations are

employed to estimate an up-to-date operational profile. After that, additional offline tests are

incrementally run according to the estimated profile to ensure that the most relevant parts of

the environment observation and configuration space are properly covered by systematic tests.

Then, online testing is done at runtime to ensure that these observations and configurations are

also properly covered by random tests. It is worth noting that to execute the tests, their proposal

requires a facility called test center that also has the purpose of periodically collect the system

status based on the current configuration and environment observation.

Therefore, it is possible to note that the found studies (CAFEO et al., 2011; PüSCHEL

et al., 2012; HäNSEL; GIESE, 2017) focused on the DSPL testing do not define test coverage

criteria based on the context covered. Also, two of the identified papers (CAFEO et al., 2011;

HäNSEL; GIESE, 2017) propose solutions to address the DSPL testing at runtime.

3.5 Discussion

In the literature, there are several studies dealing with the model checking of Dy-

namically Adaptive Systems. Some of them (SAMA et al., 2010; LIU et al., 2013; XU et al.,

2013; DJOUDI et al., 2016; ARCAINI et al., 2017) deal with Context-Aware Adaptive Software

developed without the Software Product Line Engineering. Other studies (CORDY et al., 2013;

57

MUSCHEVICI et al., 2010; MUSCHEVICI et al., 2015; LOCHAU et al., 2015) focus on DAS

developed using the DSPL Engineering.

As discussed in Section 2.3, the model checking technique is based on three activities:

system modeling, properties specification, and properties verification by using a model checker

tool. In this way, Table 4 summarizes the found papers according to the following criteria: (i)

System Model - The formalism used to model the system behavior; (ii) Tool - The model checker

tool used to verify the behavioral properties; (iii) Fault Patterns - Whether the paper present

properties to check adaptation fault patterns, which means that any DAS satisfy these properties;

and (iv) User-Defined - Whether the paper proposal allows to check properties defined by the

software engineer to verify adaptation goals related to the system requirements.

Table 4 – Related Work to DAS Model Checking.

Reference System Model Tool Properties Checked
Fault Patterns User-Defined

(SAMA et al., 2008) Adaptation Finite State Machine Prototype Yes No(SAMA et al., 2010)
(XU et al., 2012) Adaptation Model Prototype Yes No(XU et al., 2013)
(LIU et al., 2013) Adaptation Finite State Machine AFChecker Yes No
(CORDY et al., 2013) Adaptive Featured Transition

Systems
Prototype No Yes

(MUSCHEVICI et
al., 2010) Dynamic Feature Nets SPIN or mCRL2 No Yes

(MUSCHEVICI et
al., 2015)
(LOCHAU et al.,
2015)

State machine model SPIN Yes Yes

(DJOUDI et al.,
2016)

Defined by component modules
based on CTXs-Maude grammar

Maude model
checker

No Yes

(ARCAINI et al.,
2017)

Self-adaptive Abstract State Ma-
chine

AsmetaSMV Yes Yes

Source – the author.

Most of the models identified for the DAS behavior focus only on the execution states

(“ready”, “wait”), such as the A-FSM (SAMA et al., 2010) and the DFN (MUSCHEVICI et al.,

2015). Some of them also model the environment states, like the A-FTS (CORDY et al., 2013)

that uses macrostates to specify the system state, features configuration and environment state.

However, none of the identified formalisms supports the modeling of the active system features

and context features according to the adaptation rules that can be triggered. This modeling

is important because it can support the reasoning over the effect of the adaptation rules (i.e.,

58

activation/deactivation of system features) according to context changes.

Only three proposals (MUSCHEVICI et al., 2010; MUSCHEVICI et al., 2015;

LOCHAU et al., 2015; DJOUDI et al., 2016) support the use of model checkers already

known by practitioners. By using an existing model checker that is already commonly used

by practitioners, their proposals can benefit from the present (and future) optimizations of this

checker. Also, only the model proposed by Lochau et al. (2015) supports the use of a known

model checker, and the checking of properties related to fault patterns, as well as user-defined

properties. Their proposal, however, is focused on staged DSPL reconfiguration processes with

complex binding time constraints.

Therefore, there is a lack of a formalism that represents the effects of adaptation

rules in the DAS configuration, allowing the checking of properties related to the adaptation

rules and the (de)activation of features. Furthermore, there is a lack of DAS model checking

approaches that allow using existing model checkers, and the verification of properties defined

by the user and related to fault patterns.

With regards to the DAS testing, there are several studies in the literature addressing

different aspects of the Context Aware Adaptive Software testing. Table 5 present these papers

according to the following criteria: (i) Test Technique - How the test cases are generated; (ii)

Test Type - Whether the test strategy is black-box (i.e., based on the requirements) or white-box

(i.e., based on the source code); and (iii) Context-Based Coverage - Whether the proposal uses or

defines test criteria that taken into account the context to measure the tests coverage.

Five of the found studies use model-based testing. The models used by these

techniques to specify the context-aware behavior with testing purpose are: (i) Bigraphical

Reaction System model from Yu et al. (2014)(2016); (ii) UML Activity Diagrams enriched with

context information from Griebe and Gruhn (2014); (iii) extended UML 2 Sequence Diagrams

from Micskei et al. (2012); (iv) Dynamic Feature Petris Nets from Püschel et al. (2012); and (v)

Conceptual model and analytical model from Rodrigues et al. (2016).

Regarding the test criteria used, the found papers apply different strategies. Some

studies (WANG et al., 2007; MUNOZ, 2010; MICSKEI et al., 2012; WANG; CHAN, 2009;

WANG et al., 2014; YU et al., 2014; YU et al., 2016; RODRIGUES et al., 2016) define test

coverage criteria based on context information. For instance, Wang and Chan (2009)(2014)

propose the metric context diversity to measure how many changes in contextual values of

individual test cases. On the other hand, other studies (CAFEO et al., 2011; PüSCHEL et al.,

59

2012; AMALFITANO et al., 2013; GRIEBE; GRUHN, 2014; QIN et al., 2016; HäNSEL; GIESE,

2017) do not define test coverage criteria based on the context covered. Cafeo et al. (2011),

for example, infer the test results of an untested configuration based on similar configurations.

Also, Griebe and Gruhn (2014) and Amalfitano et al. (2013) use data-flow criteria (IEEE, 2015)

and coverage of lines of codes, which are applied commonly to traditional application testing

(ELBERZHAGER et al., 2012; SHAHID et al., 2011).

Table 5 – Related Work to DAS Testing.

Reference Test Technique Test Type Context-Based Coverage

(WANG et al., 2007) Context-aware program points White-Box Yes
(MUNOZ, 2010) Combinatorial Testing Black-box Yes
(CAFEO et al., 2011) Inferring Test Results White-Box No
(PüSCHEL et al., 2012) DFPN-based testing Black-Box No
(MICSKEI et al., 2012) Context models and extended UML

Sequence Diagrams
Black-box Yes

(AMALFITANO et al.,
2013)

Reusable event patterns Black-box No

(GRIEBE; GRUHN, 2014) UML Activity Diagrams enriched
with context

Black-box No

(WANG; CHAN, 2009) Context diversity measure Black-Box Yes(WANG et al., 2014)
(YU et al., 2014) Bigraphical Reactive Systems Black-Box Yes(YU et al., 2016)
(RODRIGUES et al., 2016) CATS Design Black-box Yes
(QIN et al., 2016) Sampling-based interactive testing White-Box No
(HäNSEL; GIESE, 2017) Online and Offline Testing Black-Box No

Source – the author.

Thus, most of the testing approaches deal with black-box testing, whose advantage

is that they do not depend on the DAS source code. However, only some of them (MUNOZ,

2010; MICSKEI et al., 2012; WANG; CHAN, 2009; WANG et al., 2014; YU et al., 2014; YU et

al., 2016) also proposed context-based testing coverage criteria. In particular, even measuring

the context coverage, these criteria do not ensure the coverage of the adaptation rules effects.

For example, they do not ensure the coverage of the DAS configurations resulting from the

adaptation rules interleaving or the (de)activation of the DAS features by the adaptation rules.

Therefore, there is a lack of black-box approaches to guide the DAS testing that take into account

the coverage of the adaptation rules actions.

60

3.6 Conclusion

In this chapter, the related work to model checking and testing Dynamically Adaptive

Software were presented. In particular, this chapter discussed 11 studies related to DAS model

checking and 14 one related to DAS testing.

With regards to the DAS model checking, in the literature there are different proposals

of formalism allowing the verification of properties over the adaptive behavior. Some of them

also depict adaptation fault patterns that can help the software engineer to identify faults in the

DAS adaptive behavior. Furthermore, the existing work usually propose proprietary algorithms

to verify a fixed set of properties, and just a few work present a formalism that can be used with

model checkers tools widely used by practitioners.

Concerning the DAS testing, most of the proposals deals with the black-box testing

allowing to test the DAS without analyzing its source code. There are studies extending UML

Activity Diagram or Sequence Diagrams with context information, and other proposing new

test models. Some of the existing proposals use testing coverage criteria applied to traditional

application testing. Thus, these approaches do not take into account the context itself in the

test coverage measure. On the other hand, there are studies that define new testing coverage

criteria that use the context coverage. Nevertheless, there is a lack of verification and validation

approaches that focus on the DAS adaptation rules. Since the existing approaches are not focused

on these rules and the (de)activation of features, they do not ensure the coverage of scenarios that

could raise failures at runtime, such as the interleaving of adaptation rules or specific sequences

of triggered adaptation rules.

The next chapter presents the proposal of this thesis for supporting the testing of

dynamically adaptive software through the generation of test sequences based on the context

and adaptation rules. These sequences are created from a model of the DAS adaptive behavior,

which not only supports the tests generation, but also allows to verify behavioral properties on

the DAS design.

61

4 TESTDAS AND SUPPORTING TOOLS

This chapter introduces a method, called Testing method for Dynamic Adaptive

System (TestDAS), for supporting the testing of the DAS adaptive behavior. In a nutshell, this

method receives as input the DAS feature model with adaptation rules, and a context variation

model. Then, it provides an approach to DAS model checking and generates a set of tests for

validating the DAS adaptive behavior.

More details about TestDAS are presented in the following sections that are organized

as follows. Section 4.1 presents the overview of the TestDAS activities. Section 4.2 describes the

formalism proposed to specify the DAS adaptive behavior. Section 4.3 presents the DAS model

checking approach. Section 4.4 describes the TestDAS activities concerning the generation of

test cases. Section 4.5 presents the tools implemented to support the TestDAS use. Finally,

Section 4.6 concludes this chapter.

4.1 TestDAS Overview

Figure 13 presents the activities of the TestDAS method and the roles involved (i.e.,

Tester and Software Engineer) in performing these activities.

Figure 13 – TestDAS Overview

Source – the author.

62

The role of the Software Engineer in TestDAS is to verify whether the DAS design

is correct (i.e., it does not contain design faults). The correctness of the DAS design (i.e., its

feature model and adaptation rules) is important, because it is used in TestDAS to guide the tests

generation.

In the first activity of TestDAS, the Software Engineer should specify the DAS

adaptive behavior using the Dynamic Feature Transition System (DFTS), which is the formalism

proposed in this thesis to support the validation of the DAS adaptive behavior. The DFTS models

the changes of the DAS configurations according to context changes and the triggered adaptation

rules. Thus, such model describes the snapshots of context and system features in a given instant

of time. This model is presented in Section 4.2.

In the scope of this work1, the DFTS is created using Promela, which is the language

of the SPIN2 model checker tool. In this way, it is possible to use SPIN (HOLZMANN, 2003),

which is the most well-known LTL model checker (BAIER; KATOEN, 2008), to verify behavioral

properties. Details about how to create a DAS behavior model using DFTS and Promela are

depicted in Section 4.3.

After that, the Software Engineer should specify and verify behavioral properties

against the DFTS using the SPIN tool. To support this activity, a set of five general properties

are presented in Section 4.3. These properties can be used to help in the identification of design

faults in any DAS, since they are related to adaptation fault patterns. Besides that, the Software

Engineer can specify and check domain-specific properties from the application requirements.

If any of the properties checked are violated, then the DAS has design faults in the

adaptive behavior specification (e.g, adaptation rules with conflicting actions). Therefore, the

Software Engineer should fix these faults in the DAS design. It is worth noting that this thesis

considers the DAS design as its feature model, context model, and adaptation rules. After the

“Fix the DAS design” activity, the Software Engineer should update the DFTS created and verify

again the properties.

Once the DAS design is correct with regards the checked properties, the tests genera-

tion activities can be started. At this moment, the behavioral properties checked during the DAS

design verification are used to guide the tests generation.

Then, by using TestDAS, the Tester generates the tests to achieve the required test
1 Since DFTS is a formalism to specify the DAS behavior, it can be defined using other languages and, thus, it is

possible to use other model checker tools
2 http://spinroot.com/spin/whatispin.html

63

coverage. To do this, the first task is to select the test coverage criteria that define the required

coverage. Section 4.4 proposes a set of five test coverage criteria that are defined based on

behavioral properties presented in Section 4.3.2. The choice of the test criteria is based on the

needs and the application under testing.

The Tester also defines the percentage of the required coverage (vary from 0 to

100%) for each criterion chosen. This percentage can be used to prioritize some criterion or to

avoid a huge mass of tests that can require an unfeasible execution time.

After that, the Tester must generate test cases to satisfy the selected test criteria.

These test cases are created in TestDAS as “adaptation test sequences” and they explore different

adaptation sequences of DAS. Some algorithms for the test sequences generation are presented

in Section 4.4.

Next, the tests are executed and the results are analyzed to evaluate whether the tests

coverage is enough or more tests are needed. If no more tests are required, then the testing of

the DAS adaptive behavior is concluded; otherwise, new test sequences can be generated by

selecting other test coverage criteria.

A supporting tool, called TestDAS tool, is implemented to automatize the application

of the TestDAS method to generate the test sequences. Also, a library called CONtext variabil-

ity based software Testing Library (CONTroL) is implemented to support the test sequences

execution. Details about these tools are depicted in Section 4.5.

4.2 Modeling the DAS Adaptive Behavior

In this section, the model proposed in this work to capture the adaptive behavior of

a Dynamically Adaptive System is presented. The main idea of this model is to describe the

possible configurations of the system and context. For this purpose, this model uses as input the

DAS feature model with its adaptation rules, and a context variation model, which specifies the

behavior of the context over time. The latter is a Context Kripke Structure (C-KS), presented in

Section 2.2.3, which presents the context behavior through context states and their transitions.

One important characteristic of DAS is that one or more adaptation rules can be

triggered at runtime in response to the current context state. Thus, this section starts by discussing,

in Subsection 4.2.1, the interleaving nature of adaptation rules and how to formalize it. After

that, the Dynamic Feature Transition System (DFTS) is introduced in Subsection 4.2.2 as the

proposed formalism to model the DAS adaptive behavior.

64

4.2.1 Adaptation Interleaving and Effect

The adaptation rules are context-triggered actions responsible for the activation and

deactivation of features in the DAS feature model. Thus, this work defines an adaptation rule as

presented in the Definition 4.2.1.

Definition 4.2.1 (Adaptation Rule) Let afp(FM) = { f0, ..., fn} be the set of features of the

feature model FM. An adaptation rule is a tuple 〈ω,α(F)〉 where ω is a context guard condition

and α ∈ {act,deact} is an atomic action that simultaneously changes the value of features

in F ⊆ afp(FM). If α = act then the features in F are activated (i.e., assigns the truth value

true). Otherwise, if α = deact then the features in F are deactivated (i.e., assigns the truth

value false).

For instance, given the running example (see Section 2.1), the afp(MobileGuideFM)

is the set {MobileGuide, ...,ShowDocuments,Text, Image,Video}. In this case, the rule AR01

from Table 1 can be represented by the tuple 〈isBtLow∧¬hasPwSrc,deact(Image,Video)〉,

which means that both features Image and Video are deactivated when the battery charge level is

low (isBtLow) and there is not a power source (¬hasPwSrc).

Besides that, depending on the current context at runtime, more than one adaptation

rule can be triggered simultaneously. In this work, the “ready to run” rules are called active adap-

tation rules. Thus, in the parallel execution of active adaptation rules, actions of independent

adaptation rule are merged, or interleaved, with actions from other rules. Hence, adaptation rules

concurrency is represented by the non-deterministic choice between actions of simultaneously

acting adaptation rules. The notion of adaptation interleaving caused by the parallel execution of

a set of active adaptation rules is formally given in Definition 4.2.2.

Definition 4.2.2 (Adaptation Interleaving) Let R be a set of active adaptation rules of a DSPL

in a given context state, and A = {α(F) | 〈ω,α(F)〉 ∈ R} be the set of all actions from the

active adaptation rules. The interleaving of all active adaptation rules is given by the function

ari(R) = {α1(F1)α2(F2) . . . α|R|(F|R|) | αi(Fi) ∈ A∧αi(Fi) 6= α j(Fj), i 6= j}, which generates

all sequences of actions whose size is |R|.

In Definition 4.2.2, the sequences of actions derived from the function ari(R)

correspond to all possible parallel executions of a given set R of active adaptation rules. For

instance, given the running example (see Section 2.1), if there is an additional rule AR06, which

65

specifies that without an earphone connected, the feature Video should be deactivated. Then,

when the context is battery charge level full and earphone disconnected, both adaptation rules

AR05 and AR06 are triggered at the same time. Therefore, the result of the function ari(R) is

the set {act(Image,Video),deact(Video);deact(Video),act(Image,Video)}, which describes

the possible adaptation sequences.

Another important aspect in the DAS reconfiguration process is the effect of the

adaptation rules. Definition 4.2.3 introduces the concept of Adaptation Effect that refers to the

impact of a set R of active adaptation rules over a product configuration E. The adaptation effect

is the set of all product configurations resulting from the execution of each sequence of actions

derived from the interleaving of all rules in R. For instance, given the running example (see

Section 2.1), if the initial configuration E has both Image and Video activated, and only the

rule AR01 is active, then effect(R,E) = {MobileGuide,ShowDocuments,Text}, which is the

configuration resulting from the adaptation actions (i.e., {deact(Video),deact(Image)}) of the

rule AR01.

Definition 4.2.3 (Adaptation Effect) Given a set R of active adaptation rules and a product

configuration E, the adaptation effect is given by the function effect(R,E)= {Φ(β (1),E) | β (1)=

α1(F1) ∧ β ∈ ari(R)}, which generates a set of all possible features configuration derived from

the adaptation rules interleaving.

Φ(αi(Fi),E) =



αi = act, i = |R| E ∪Fi

αi = deact, i = |R| E \Fi

αi = act, i < |R| Φ(αi+1(Fi+1),E ∪Fi)

αi = deact, i < |R| Φ(αi+1(Fi+1),E \Fi)

It is worth noting that the function effect does not specify the impact, in reason

of the cross-tree constraints, of the inclusion/exclusion of a context-aware feature over the non

context-aware features. For instance, lets suppose that, in the running example, the triggered rule

in a given instant of time is the AR05 represented by the tuple 〈isBtFull,act(Video, Image)〉.

If there is, in the Mobile Visit Guides, a feature named Sound and the cross-tree rule “Video

requires Sound”, then the activation of the feature Video at runtime enforce the activation of

the feature Sound. In this scenario, given an initial configuration E, the function effect of

the Definition 4.2.3 returns E ∪{Video, Image}. However, the expected result considering the

cross-tree constraint should be E ∪{Video, Image,Sound}.

66

Therefore, the function effect is generic, because of the focus only on the adaptive

behavior guided by the context-aware features, not describing, for example, the activation of

non-context-aware features from cross-tree rules. By focusing only on the context-aware features,

this function separates the concern of configurations triggered by the context changes from the

changes enforced by the cross-tree rules. On the other hand, the function effect cannot capture

the actual behavior of the DSPL being analyzed. For achieving this, the stakeholders can include

policies of feature inclusion/exclusion in the function effect according to the DAS analyzed.

4.2.2 Dynamic Feature Transition System

This section introduces the Dynamic Feature Transition System (DFTS), which

is a formalism to specify the DAS adaptive behavior focused on the system configuration

status and the context changes. This model is derived from a Context Kripke Structure (C-KS)

(ROCHA; ANDRADE, 2012a) and a DAS feature model with its adaptation rules. As presented

in Section 2.2.3, the main concern of the C-KS is the modeling of the context variation (ROCHA;

ANDRADE, 2012b) by specifying the relationship among context information (e.g., it can

indicate two context situations that cannot be true at the same time). Therefore, the advantage

of using C-KS as input to create a DFTS is twofold: (i) it makes possible to reduce the number

of possible paths (context states) to explore; and (ii) it allows the verification in more realist

scenarios, avoiding the identification of false positives faults.

Definition 4.2.4 presents the DFTS concept. A DFTS has two atomic proposition

types: context propositions (PC) and feature propositions (PF). The propositions in PC come

from a C-KS, and they represent the context. The propositions in PF represent all features in the

feature model FM of the DSPL.

Definition 4.2.4 (DFTS) Given a Context Kripke Structure CKS = 〈S, I,C,L,→〉 and a DSPL

with a feature model FM, a set R of adaptation rules, and a set E of initial product configurations,

a Dynamic Feature Transition System (DFTS) is given by a tuple 〈S′, I′,P,L′,→′〉 where:

• S′ is the set of configuration states

• I′ ⊆ S′ is the set of initial configuration states defined by the rule

e∈E s∈ I A={〈ω,α(F)〉∈R |L(s) |=ω}
CS={F ′∪L(s) |F ′∈ e f f ect(A,e)} I′= I′∪CS

• P = PC]PF is the set of atomic propositions that is partitioned into context and feature

propositions with PC =C and PF = afp(FM)

67

• L′ is the labeling function such that L′ : S′→′ 2P. For sake of simplicity, this work also

uses the notation L′PF
to refer to the L′ function over the feature propositions, and L′PC

to

refer to the L′ function over the context propositions;

• →′⊆ (S′×Pc×S′) is the transition relation defined by a set of transitions rules T, where T

= {〈s0,cs,ω : α(F),s1〉|S0,S1 ∈ S′, cs∈C, 〈ω,α(F)〉 ∈R,L′(s1) = L(cs)∪e f f ect(α(F),

L′PF
(s0)}. Therefore, the DFTS transitions are labeled with the set of context proposi-

tions CP ∈ PC, where the truth value true of the context propositions in CP satisfy the

propositional formula derived from the context state cs (see Section 2.2.3).

It is worth noting that, in a DSPL, a feature can be activated by a user intervention.

This intervention can be treated as a context proposition, and, therefore, DFTS can also cope

with the (de)activation of features by user interventions.

Given the Mobile Guide DSPL (see Section 2.1) and its initial configuration, where

only the features “Video” (V) and “Image” (I) are not activated, Figure 14 presents the corre-

sponding DFTS.

Figure 14 – DFTS of the running example

Source – the author.

In the initial state of this DFTS, both features “Video” and “Image” are activated

since the initial context (isBtFull, as depicted in Figure 7) triggers their activation (see Table

1). From this initial state, there is an arrow labeled with the context isBtNormal (label N) that

68

connects this state with another state where the feature “Video” is deactivated. Thus, this arrow

represents the adaptation in which the context isBtNormal triggers the rule AR03 (Table 1) that

deactivates the feature “Video”.

In summary, in DFTS, the states depict the active context and system features, while

the arrows represent the adaptation (reconfigurations) among these states. In this way, DFTS

reflects the effects of the adaptation rules over the DAS features. The DFTS in Figure 14 specifies

the behavior of the Mobile Guide DSPL through the reconfigurations among six different system

states, where the current state is defined by the current context.

4.3 DAS Model Checking Approach

As presented in Figure 13, some activities of the TestDAS method concern the model

checking of the DAS design to avoid faults that can disturb the test results. A model checking

approach involves three main activities (CLARKE JR. et al., 1999): system modeling, properties

specification, and verification. TestDAS defines these activities as follows:

• Modeling. The software engineer models the DAS adaptive behavior by using the DFTS

(see Section 4.2). This modeling is made with the Promela language to allow the model

checking with the SPIN checker tool;

• Specification. The software engineer specifies properties over the adaptation mechanism

logic to be checked against the DFTS; and

• Verification. By using the SPIN model checker tool, the software engineer must check the

defined properties over the DFTS to identify faults in the DAS adaptive behavior.

Subsection 4.3.1 presents how to specify the DAS adaptive behavior using the

Promela language and the DFTS formalism. After that, Subsection 4.3.2 introduces five prop-

erties that can be used to identify design faults in any DAS, since they are independent of the

application domain. Then, Subsection 4.3.3 describes a feasibility study, in which the proposed

model checking approach is used to identify faults in two dynamic adaptive systems.

4.3.1 Mapping DFTS into Promela Code

The mapping from the DFTS concepts to a Promela code has twofold advantages: (i)

by using the Promela, which is the specification language of the SPIN, the software engineer can

specify other properties to be checked beyond the five properties defined in Section 4.3.2; and

69

(ii) the verification takes the advantages provided by SPIN, which has been widely accepted by

the community and already apply partial order reduction techniques to optimize the verification

process (HOLZMANN, 2003).

Promela programs consist of processes specifying behavior, and message channels

and variables defining the environment in which the processes run (HOLZMANN, 2003).

Therefore, to specify the DSPL behavior with Promela, the features and context propositions

should be defined as variables, the messages that invoke the adaptation actions (feature activation

and deactivation) should be specified with message channels, and the environment changes

and adaptation rules should be defined as processes. Thus, the process of mapping DFTS into

Promela is defined as follows:

• Step 1: Define the DFTS feature propositions (set PF) as Boolean variables;

• Step 2: Define the DFTS context propositions (set PC) as variables whose type depends on

the kind of context information. For instance, a context information could be a Boolean

variable or an Integer variable, in which the values can define different context status;

• Step 3: For each context-aware feature, define a process to be the actuator in charge of its

adaptation. In other words, it is the process that will activate or deactivate the features by

changing the values of their corresponding Boolean variables;

• Step 4: Define a process to manage the context changes. This process represents the

context variation model, i. e., the Context-Kripke Structure presented in Section 2.2.3;

• Step 5: Define a process to trigger the adaptation rules after context changes. This process

has the role of controller since it monitors the current context and triggers the adaptation

rules;

• Step 6: Define a process for each adaptation rule that triggers its adaptation actions if the

context guard condition of the rule is satisfied. Since each adaptation rule is modeled by a

different process, this modeling allows the interleaving among the adaptation rules; and

• Step 7: Define a channel with the messages ctxChanged, adapted and done to be used

as flags to keep the communication among the process synchronously. These messages

indicate when the context changes in the environment, the adaptation process is finished and

the verification of the context guard conditions of the adaptation rule is done, respectively.

Besides that, two more messages should be specified for each feature: one to require its

activation and another to require its deactivation.

Code 1 presents part of the Promela code created to the DFTS representing the

70

adaptive behavior of the Mobile Visit Guides described in Section 2.1. The main elements of the

Promela grammar are described in Appendix A.

Code 1 – Part of the Promela code for the running example

1

2 a c t i v e p r o c t y p e V i d e o A c t u a t o r () {
3 do
4 : : a t om ic { buss ? videoOn −> v i d e o = t r u e }
5 : : a t om ic { buss ? v i d e o O f f −> v i d e o = f a l s e }
6 od
7 }
8 a c t i v e p r o c t y p e Contex tManager () {
9 b a t t e r y = 3 ; hasPwSrc = f a l s e ;

10 buss ! c txChanged ; bus s ? a d a p t e d
11 do
12 : : (b a t t e r y == 1 && hasPwSrc == f a l s e) −>
13 hasPwSrc = t r u e ; bus s ! c txChanged ; bus s ? a d a p t e d
14 : : (b a t t e r y == 1 && hasPwSrc == t r u e) −>
15 b a t t e r y = b a t t e r y + 1 ; bus s ! c txChanged ; bus s ? a d a p t e d
16 : : (b a t t e r y == 2 && hasPwSrc == f a l s e) −>
17 b a t t e r y = b a t t e r y − 1 ; bus s ! c txChanged ; bus s ? a d a p t e d
18 : : (b a t t e r y == 2 && hasPwSrc == t r u e) −>
19 b a t t e r y = b a t t e r y + 1 ; bus s ! c txChanged ; bus s ? a d a p t e d
20 : : (b a t t e r y == 3 && hasPwSrc == f a l s e) −>
21 b a t t e r y = b a t t e r y − 1 ; bus s ! c txChanged ; bus s ? a d a p t e d
22 : : (b a t t e r y == 3 && hasPwSrc == t r u e) −>
23 hasPwSrc = f a l s e ; bus s ! c txChanged ; bus s ? a d a p t e d ; b r e a k
24 od
25 }
26 a c t i v e p r o c t y p e C o n t r o l l e r () {
27 do
28 : : bus s ? c txChanged −> run AR01 () ; run AR02 () ;
29 run AR03 () ; run AR04 () ; run AR05 () ;
30 numA = 0 ;
31 do
32 : : (numA != 5) −> buss ? done ; numA = numA + 1 ;
33 : : e l s e −> b r e a k
34 od
35 buss ! a d a p t e d
36 od
37 }
38 p r o c t y p e AR01 () {
39 i f
40 : : (b a t t e r y == 1 && hasPwSrc == f a l s e) −>
41 buss ! imageOff ; bus s ! v i d e o O f f ; bus s ! done

71

42 : : e l s e −> buss ! done
43 f i
44 }

In Code 1, the features Image and Video are represented by two Boolean variables

named “image” and “video”, respectively. Thus, if the value of these variable is true, it means

that the corresponding feature is activated. The context proposition battery is specified as an

Integer variable to refer to the different levels of battery charge (1 = isBtLow, 2 = isBtNormal

and 3 = isBtFull). Besides that, the context proposition hasPwSrc is modeled through a

Boolean variable indicating whether there is or not a connection to a power source. It is worth

noting that in Promela, the value of a variable or the status of a message channel can only be

viewed and changed by the processes, which are defined in a proctype declaration.

The process VideoActuator (line 2) represents the actuator in charge of the adaptation

of the feature Video. If it receives the message videoOn, for instance, it activates the feature

Video by changing the value of the variable video to true (line 4). The keyword atomic in the

Promela language indicates that the statements sequence should be executed as one indivisible

unit, i.e., non-interleaved with other processes. Thus, the use of this keyword in lines 4-5 ensures

that the adaptation effect will be instantaneous.

Furthermore, in order to keep only atomic reconfigurations, it was used the syn-

chronous message exchange among the involved processes. To this end, the message channel,

named “buss”, is defined with size zero creating a rendezvous port that can pass single byte

messages, but cannot store messages. For example, the statement buss!videoOff (line 41) sends

the message videoOff to the channel buss. Only after this message is retrieved by a process

(buss?videoOff in line 5), the channel buss is available again to pass another message.

The process ContextManager has a loop defined by the repetition construct do-od

to monitor and simulate the context changes based on the Context Kripke Structure of the

Mobile Guide (see Section 2.2.3). When the context changes, this process sends the message

ctxChanged, which is received by the process Controller. Once the process Controller receives

this message, it invokes all the adaptation rules processes (e.g., run AR01(), line 28) and waits for

the end of their executions that is signalized by the message done. After all adaptation rule pro-

cesses have checked their context guard condition, the Controller sends the message adapted

(line 35), which indicates that no more adaptations are required, to the process ContextManager.

After that, the process ContextManager backs to monitor the context status and simulates new

72

context changes.

The process AR01 (line 38) implements the rule AR01 from Table 1, by requiring the

deactivation of both features Image and Video when the rule’s context guard (e.g., battery==

1 &&hasPwSrc== f alse) is satisfied. Thus, if the AR01 condition guard is true (line 40), it

triggers the adaptation actions and sends the message done. Otherwise, it just sends the message

done to indicate that its evaluation was finished.

4.3.2 DAS Behavioral Properties

In the model checking, the behavioral properties specify conditions that the system

model should satisfy. The violation of these properties reveals then faults in the system design.

In the TestDAS, the identification of faults through the model checking is driven over the DFTS,

which models the DAS adaptive behavior. In this case, although each DAS can have its properties

to identify domain-specific faults, this kind of system share common adaptation faults patterns.

For instance, given that more than one adaptation rule of the DAS can be triggered

at the same time, it is important to check the behavior of the system after the adaptation rule

interleaving since the effect of one adaptation rule can cancel the effect of another rule. Besides

that, the activation and deactivation of DAS features at runtime should always generate valid

configurations, which are those that satisfy the rules of the DAS feature model.

Moreover, the adaptation rules that are never triggered should be identified, because

this can indicate, for example, an error in the definition of the rules context guard conditions.

It is also important to verify if the context-aware features are activated and deactivated. A

context-aware feature that is never activated can indicate, for example, the lack of some rule to

activate it at runtime. On the other hand, a context-aware feature that is never deactivated can

indicate that it should be mandatory or that it is missing some rule to deactivate it.

Thus, to help software engineers in the DAS model checking process, this work

defines a set of behavioral properties using Linear Temporal Logic (LTL) (BAIER; KATOEN,

2008) that should be satisfied. These properties capture the semantics of behavior patterns that

need to be verified in any DAS design. They were defined based on the DSPL characteristics

(CAPILLA et al., 2014a), anomalies detected in SPLs (BENAVIDES et al., 2010) and proprieties

checked in context-aware applications (SAMA et al., 2010). The properties defined in this work

are described as follows:

Property 01: Configuration Correctness. This property specifies that the system

73

configuration in each state of the Dynamic Feature Transition System should be in conformance

with the DAS feature model. The violation of this property shows invalid product configurations.

This fault is called invalid configuration fault. Given a DSPL feature model FM and the

function fpf presented in Section 3.1, Formula 4.1 specifies this property by stating that the

propositional formula of the feature model should always be satisfied.

�fpf(FM) (4.1)

In the running example, presented in Section 2.1, if the adaptation rule AR01

was designed to deactivate the feature Text, then this would violated the fpf(Mobile Guide)

described in Section 2.3.2. This invalid configuration fault would happens because Text is a

mandatory feature and, thus, a system configuration with the feature Text deactivated is not a

valid configuration.

Property 02: Rule Liveness. This property, defined based on the Sama et al.’s work

(SAMA et al., 2010), specifies that for each adaptation rule, should exist at least one state in the

DFTS where the assignment of values to the atomic context propositions satisfies the context

guard condition of the rule. The violation of this property shows adaptation rules that never are

triggered. Thus, if the DFTS violates this property, then the DAS contains a dead predicate

fault. Given a DFTS D and its adaptation rules defined by a tuple 〈ω,α(F)〉, Formula 4.2

specifies this property by stating that eventually the context guard condition of each adaptation

rule is satisfied.

∀〈ω,α(F)〉 ∈D , ♦ω (4.2)

In the running example, if by mistake the context isBtFull was related with the

battery charge level greater than 100%, then this context state would never occur. As another

example, if the context isBtFull was battery charge levels equals to 100%, and in the real

environment (specified by the Context Kripke Structure) this percentage is never achieved, then

this context state is never true. In both cases, the rule AR05, which has isBtFull as context

condition, will never be triggered and as a consequence, its adaptation actions will never be

performed, generating a dead predicate fault.

Property 03: Interleaving Correctness. This property specifies that for each

adaptation rule, its effect should be performed on the DAS, even in the situations where exists

74

an interleaving of adaptation rules. The violation of this property shows adaptation rules

whose effect is not performed because of the rules interleaving process. This fault is called

nondeterministic interleaving fault. Given a DFTS D and its adaptation rules defined by a

tuple 〈ω,α(F)〉, where α(F) = { f1, . . . , fk} indicates the set of activated features, Formula 4.3

specifies this property. This formula states that always when the rule context guard condition is

true, there is a DFTS state with this context and the features activated by the adaptation actions

of the rule triggered.

∀〈ω,α(F)〉 ∈D , �(ω → ♦(ω ∧α(F))) (4.3)

In the running example (Section 2.1), if the context guard condition of the adaptation

rule AR03 was defined as isBtNormal∧ hasPwSrc, then both rules AR03 and AR04 would

have the same context guard condition and, thus, they would be triggered at the same time.

Since they affect the same features, the order of the execution of these rules impacts the final

configuration. If first it is performed AR03 and then AR04, the feature Video will be activated,

but, otherwise, the feature Video will be deactivated. This case is an example of nondeterministic

interleaving fault.

Property 04: Feature Liveness. This property specifies that each context-aware

feature should be active in some state of the DFTS. The violation of this property indicates a

functional overhead when features included in the product are not used. This fault is called dead

feature fault. Given a DSPL feature model FM and its set FC of context-aware features,

Formula 4.4 specifies this property by stating that for each context-aware feature, there is a state

in which it is activated (i.e., has true value).

∀ f ∈ afp(FM)∧ f ∈FC , ♦ f (4.4)

In the running example, if both adaptation rules AR04 and AR05 by mistake did not

activate the feature Video, then this feature would never be active. This situation represents a

dead feature fault since the feature Video will never be enabled to use.

Property 05: Variation Liveness. This property specifies that each context-aware

feature should be activated in some state of the DFTS and deactivate in some other state. The

violation of this property shows a feature that does not adapt. This fault is called false variable

75

feature fault. Given a DSPL feature model FM and its set FC of context-aware features,

Formula 4.5 specifies this property by stating that for each context-aware feature, there is a state

in which it is deactivated (i.e., has false value).

∀ f ∈ afp(FM)∧ f ∈FC , ♦! f (4.5)

For instance, suppose that the effect of the rule AR01 in the running example is to

activate both features Image and Video. In that way, the feature Image will never be deactivated,

and then this feature will not be adaptive, resulting in a false variable feature fault.

The aforementioned properties aim to help in the identification of common faults

of the DAS adaptation mechanism. In particular, the set of properties presented can help the

software engineer to answer questions like: Are all the product configurations in conformance

with the DAS rules? Are there for each adaptation rule a context situation where this rule is

triggered? Is there some context-aware feature that is never activated? Is there some context-

aware feature that is never deactivated? Does the interleaving of adaptation rules triggered at

the same time have the expected effect?

4.3.3 Feasibility Study

In order to investigate the feasibility of the model checking approach proposed in this

thesis, it was performed a study with two DSPLs: (i) Mobile Visit Guides DSPL (MARINHO et

al., 2013) presented in Section 2.1; and (ii) Car DSPL (MAURO et al., 2016), which is an SPL

based on an industrial scenario and related to the features of a car.

The goal of this study was to answer the following question: “Do the DFTS and the

defined properties support the identification of design faults in DAS feature models?"

The first task was to define the Context Kripke Structure that models the context

variation of the DSPLs used in the study. After that, the Promela codes with the DFTS corre-

sponding to the DSPLs of the study were written using the mapping proposed in Section 4.3.1.

Lastly, the SPIN (HOLZMANN, 2003) model checker tool was used to check the properties

presented in Section 4.3.2.

In order to run the SPIN, it was used its Windows PC executable version3. Figure 15

shows an example of the execution of the SPIN to check the property referenced as pro21 on the
3 Download available at http://spinroot.com/spin/Src/index.html

76

Mobile Guide DSPL. This property refers to the “Rule Liveness” of the rule AR01 (see Table1)

and its checking did not identify errors in the Mobile Guide design. This means that there is at

least one state in the DFTS analyzed where the rule AR01 is triggered.

Figure 15 – Execution of the SPIN with command prompt in Windows

Source – the author.

In the following subsections, the results obtained during the checking of the Mobile

Guide and Car DSPL are presented. After that, Subsection 4.3.3.3 presents a discussion about

the results of this feasibility study.

4.3.3.1 Mobile Guide DSPL

In the Promela code for the Mobile Visit Guide DSPL were specified five processes

to the adaptation rules, and two more processes to the actuators on the features Image and Video.

Regarding the properties, they were specified by using the Linear Temporal Logic (see Section

4.3). In total, 15 properties were specified: (i) One for Configuration Correctness; (ii) Five to

Rule Correctness, one to each adaptation rule in Table 1; (iii) Five to Interleaving Correctness,

one to each adaptation rule; (iv) Two to Feature Liveness, corresponding to the features Image

and Video; and (v) Two to Variation Liveness, related to the features Image and Video;

As initial configuration, the following features were specified as activated: Mo-

bile Guide, ShowDocuments and Text. Besides that, the initial battery charge level was full

(isBtFull) and the smartphone was not connected to a power source (hasPwSrc= false).

This initial context state was defined by the C-KS depicted in Section 2.2.1. Furthermore, to

verify if the model checking approach can identify faults in the Mobile Guide design, a fault

77

was deliberately inserted by changing the type of features Image and Video to a XOR-group. In

this way, at least one of these features should be active at runtime, but the adaptation rule AR01

deactivates both features and this generates a fault. The complete Promela code of the DFTS of

the Mobile Guide is available at Appendix B.

As result of the properties verification, the SPIN returned that the Mobile Visit

Guides violates the property Configuration Correctness. This happened because the DFTS had

states where none of the features Video and Image were activated, and this violates the feature

model rules. More specifically, this violates the constraint ShowDocuments→ (Image∨Video)

that determines that in each product state where “ShowDocuments” is activated, at least one of

the features “Image” or “Video” should be activated. Therefore, the inserted fault was identified

successfully. One solution to this fault is to remove the Or-group and to change the type of both

features Image and Video to optional, as depicted in the feature model of Figure 2. Another

solution is to use a cardinality-based feature model, as the feature model presented by Marinho

et al. (2013).

With regards to the other properties, none violation was found. Then, all the model

adaptation rules are triggered in at least one state (Rule Liveness) and their effects are performed

(Interleaving Correctness), and all context-aware features are activated at some state (Feature

Liveness) and deactivated at some state (Variation Liveness).

It is worth noting that, as expected, it was not observed an interleaving of the

adaptation rules in this DSPL, since their rules do not have a common context guard condition.

4.3.3.2 Car DSPL

The Car DSPL (MAURO et al., 2016) has 16 features, five cross-tree rules and

five adaptation rules. Figure 16 presents part of the Car feature model. This model has three

context-aware features. Two of them (Ecall Europe and ERA/GLONASS) are activated according

to the current location context. If the car is in Europe, the feature Ecall Europe is activated. If,

however, the car is in Russia, the activated feature is ERA/GLONASS. The third feature (Adaptive

Cruise Control) has an attribute value, named maxSpeed, in function of both road and location

context. This attribute defines the maximum speed settable for cruise control. There are three

adaptation rules in this case: (i) if the road is icy, then the maxSpeed should be lower or equal to

100; (ii) if the road is wet, then the maxSpeed should be lower or equal to 160; and (iii) if the

location is Russia, then the maxSpeed should be lower or equal to 110.

78

Figure 16 – Part of the Car DSPL

Source – adapted from Mauro et al. (2016).

For the Car DSPL, the Promela code has five processes corresponding to the adap-

tation rules, and three more processes for the actuators on the features Ecall Europe, ERA/-

GLONASS and on the feature attribute maxSpeed. As an initial configuration, it was specified

the configuration described in the Mauro et al.’s work (MAURO et al., 2016), where the feature

Ecall Europe is activated and the initial value to the maxSpeed is 200. The complete Promela

code of the DFTS of the Car DSPL is available at Appendix B.

As a result of the properties verification, it was possible to identify a violation on

the property Interleaving Correctness. The explanation for this violation is that the interleaving

among the adaptation rules produces a system state where the effects of all active adaptation rules

are not performed. For instance, if there is icy on the road (road = icy) and the car is in the Russia

(location = Russia), two adaptation rules are triggered: (i) (road = icy)→ (maxSpeed <= 100) ;

and (ii) (location = Russia)→ (maxSpeed <= 110). In this case, the result of maxSpeed depends

on the execution order of the adaptation rules. Therefore, there is a design fault, because the

interleaving violates one of the actions from the triggered adaptation rules. It is worth noting that

this is a fault present in the Car feature model presented in the paper of Mauro et al. (2016). One

possible solution would be extending the context guard to make it more specific, for example,

changing the last rule to (location = Russia ∧ road = dry)→ (maxSpeed <= 110).

4.3.3.3 Discussion

The goal of the feasibility study was to investigate if the DFTS (see Section 4.2.4)

and the behavioral properties (see Section 4.3.2) proposed can be used to detect design faults in

the DAS adaptive behavior. Thus, the focus of this study was not to measure the effectiveness of

the model checking approach. This analysis is presented in Chapter 5.

79

During the feasibility study, it was identified a fault regarding the Configuration

Correctness in the Mobile Guide DSPL and a fault regarding the Interleaving Correctness in

the Car DSPL. Regarding the properties not violated, a manual verification endorsed that they

were satisfied in the DSPLs used in the study. There is some threats to the validity regarding the

feature models used, the number and type of fault inserted in the Mobiline, and the modeling

using the Promela. However, the results of the study indicated that the proposed model checking

approach can identify design faults in the DAS adaptive behavior.

It is important to mention that in this feasibility study, it was used only the SPIN

model checker to verify the DSPLs adaptive behavior. However, other model checker tools could

be used. For example, by using PRISM4, the software engineer could relate probabilities to the

DFTS transitions.

4.4 Testing the DAS Adaptive Behavior

In TestDAS, the final output is a set of test cases to validate if the DAS adaptation

mechanism is working correctly. As presented in Chapter 2, a test case is defined by a set of

preconditions, inputs and expected results. For testing the adaptive behavior, the test cases shall

be derived from the adaptation rules and the possible context states. Thus, first, in this section,

the concept of adaptation test case for TestDAS is introduced in Definition 4.4.1.

Definition 4.4.1 (Adaptation Test Case (ATC)) An adaptation test case is defined by the initial

configuration of the adaptive system S1 that is defined by its active features, a context state C

and the expected system configuration S2, which should satisfy the adaptation rules triggered by

the context state C. An ATC aims to determine whether or not the covered adaptive behavior has

been implemented correctly in the dynamically adaptive system

Then, this section presents how adaptation test cases can be generated to validate

the DAS adaptive behavior. The key idea is to use the properties specified in the Section 4.3.2

for the DAS model checking as test coverage criteria to guide the DAS testing. For the latter,

TestDAS generates sequences of ATCs that have the potential to reveals failures among the

system re-configurations.
4 http://www.prismmodelchecker.org/

80

Subsection 4.4.1 introduces the concept of test sequence based on the DFTS structure.

Next, Subsection 4.4.2 presents a set of test coverage criteria to guide the DAS test cases design.

Finally, Subsection 4.4.3 discusses the interactions among the test coverage criteria.

4.4.1 Adaptation Test Sequence

In a DFTS D = 〈S ′,I ′,P,L ′,→′〉, a transition is a tuple (s1,Ctx,s2), where

s1,s2 ∈ S′ and Ctx ∈ P. Semantically, this transition means that given the current system state

s1, if the context Ctx becomes true, the expected system state is s2. If the set of active features

in s2 is different from the set of active features in s1 (L′PF
(s2) 6= L′PF

(s1)), then this transition

triggers an adaptation. Otherwise, it shows that the context Ctx has no effect over the current

product configuration. In both cases, a transition from DFTS can be seen as an adaptation test

case to validate if the context Ctx makes the product changes from s1 to s2 properly. In this

case, the steps involved to test a transition (s1,Ctx,s2) could be: 1) Set up the DAS configuration

according to the active features in the state s1; 2) Change the context to Ctx; 3) Verify if the DAS

configuration is changed to the system state s2.

However, such single transition test case will not detect faults that are only detectable

through exercising sequences of adaptations. For instance, failures in the intern representation of

the DAS configuration after a re-configuration (PUSCHEL et al., 2014). Thus, adaptation test

sequences are more suitable to find out different kinds of failures in the DAS adaptive behavior.

The test sequences also have other advantages: (i) they can save testing resources (e.g., time to

set up the tests preconditions) since the tests are performed in sequence; and (ii) they can be

used to test potential failures scenarios, for example, the context changing before the effect of an

adaptation takes place.

Definition 4.4.2 introduces the concept of test sequence used by TestDAS.

Definition 4.4.2 (Adaptation Test Sequence (ATS)) Let D = 〈S ′,I ′,P,L ′,→′〉 be a DFTS.

An n-test sequence is a finite sequence of n system state transitions s0
ctx1,ω1:α1(F1)−−−−−−−−→ s1

ctx2,ω2:α2(F2)−−−−−−−−→

s2 . . .
ctxn,ωn:αn(Fn)−−−−−−−−→ sn, where si ∈ S′ and ctxi |= ωi . Testing such sequence means to assess that

the active features in the state si+1 are according to the action α(i), triggered by the context ctxi.

When n=1 (1-test sequence), the sequence is the testing of a single DFTS transition.

Table 6 shows an example of test sequence from the Mobile Guide (see Section 2.1).

This is a 6-test sequence that has six adaptation test cases and covers the different context states

81

defined in the C-KS of this DSPL (see Figure 7). It is worth noting that as ATCs should be

executed as a sequence, the expected configuration of a test case is the initial configuration of the

next adaptation test case. For instance, the system configuration with the set of features {Mobile

Guide, Show Documents, Text, Image, Video} is the expected result of the first ATC and the

initial configuration (i.e., precondition) for the second ATC.

Table 6 – Example of Adaptation Test Sequence.

Parameter Value

Initial Configuration {Mobile Guide, Show Documents, Text, Image, Video}
New Context isBtFull

Expected Configuration {Mobile Guide, Show Documents, Text, Image, Video}
New Context isBtNormal

Expected Configuration {Mobile Guide, Show Documents, Text, Image}
New Context isBtLow

Expected Configuration {Mobile Guide, Show Documents, Text}
New Context isBtLow,hasPwSrc

Expected Configuration {Mobile Guide, Show Documents, Text, Image}
New Context isBtNormal,hasPwSrc

Expected Configuration {Mobile Guide, Show Documents, Text, Image, Video}
New Context isBtFull,hasPwSrc

Final Configuration {Mobile Guide, Show Documents, Text, Image, Video}

Source – the author.

By using the concept of test sequence, the tester can explore the DAS in different

perspectives to achieve a given testing goal. For example, one can look for context states specific

faults, to test the DAS with the more likely adaptation sequences or to test sequences where

specific use cases should be executable. In the next subsection, a set of five test coverage criteria

are described to guide the generation of test sequences independent of the DAS domain.

4.4.2 Test Criteria for DAS testing

In order to support the DAS testing, TestDAS proposes to use the properties defined

in Section 4.3.2 to guide the definition of test sequences. Therefore, a test suite can be built to

test the DAS in order to verify if there are failures related to the faults already verified in the DAS

design during the model checking approach. In the following paragraphs, for each behavioral

property, it is defined the related test criteria, as well as examples of test sequences to achieve

the criterion based on the Mobile Guides DSPL (see Section 2.1).

Test Sequence for Property 01 - Configuration Correctness. A violation of this

property indicates that the DAS achieved an invalid configuration with regards to its feature

82

model rules. Thus, to test if the product has a invalid configuration fault, the adaptation test

sequence should cover all the DFTS states, since this modeling describes all possible system

configurations according to the context changes of the environment.

Definition 4.4.3 (Configuration Correctness Coverage) A set T S of adaptation test sequences

satisfies the Configuration Correctness Coverage criterion if and only if for all state s′ from the

DFTS, there is at least one test sequence ts ∈ T S such that ts covers the sate s′.

Different strategies can be used by the tester to define a test sequence to satisfy the

Configuration Correctness Coverage. In the Algorithm 1, one of these strategies is presented. By

following this algorithm, first, the tester must identify the context states of the DAS (line 4) and

the initial context state (line 5). This can be done by analyzing the context model of the DAS

and the environment where the product will be deployed.

Next, the initial context (iCtx) is added to the list of already visited context states

(line 6), and it is defined the first system state as this initial context plus the expected product

configuration. In Algorithm 1, the resulting product configuration (i.e., the product configuration

adapted according to the triggered adaptation rules) is returned by the function e f f ect (line 7),

which receives as argument the set R of active rules in a given context and an adaptive system

configuration. After that, the created system state (sysSt) is appended to the test sequence (line 8).

Then, while there are context states not analyzed, the tester should define the following context

state that should be used in the tests (lines 10-11), and identify the corresponding system state

that should be added in the test sequence (lines 12-14). For the latter, it is used the previous DAS

configuration, obtained with the function f eatures() over the last system state created (line 12).

The return of Algorithm 1 (line 16) is a test sequence represented by a path T , which contains a

sequence of context changes and the expected DAS configurations.

It is important to notice that this coverage criterion can require exhaustive testing.

So the tester can apply a “relaxed” Configuration Correctness Coverage criterion, by choosing a

prioritization criterion. For instance, instead of covering all DFTS states, the tester can choose

the pairwise covering (IEEE, 2015) of the context propositions to reduce the number of context

states to be tested.

Figure 17 depicts an example of test sequence to verify if the GREat Tour (LIMA et

al., 2013), which is a product from the Mobile Guides DSPL (see Section 2.1), achieves some

invalid configuration during its adaptations process. Note that such test sequence covers all states

of the DFTS created to this DAS (see Section 2.2.1).

83

Algorithm 1 Test Sequence Specification for Property 01.
1: function TESTSEQUENCE_PROP1(E)
2: Path T = /0
3: Set VisitedCtx= /0
4: Identify the set C S of context states of the DAS
5: Define the initial context state iCtx
6: VisitedCtx= VisitedCtx∪{iCtx}
7: sysSt= iCtx∪ e f f ect(RiCtx,E)
8: T .append(sysSt)
9: while (C S \VisitedCtx) 6= /0 do

10: Define the next context state nCtx from C S
11: VisitedCtx= VisitedCtx∪{nCtx}
12: nSysSt= nCtx∪ e f f ect(RnCtx, f eatures(sysSt))
13: T .append(nSysSt)
14: sysSt= nSysSt

15: end while
16: return T
17: end function

Figure 17 – Example of Test Sequence for Property 01

Source – the author.

Test Sequence for Property 02 - Rule Liveness. A violation in the Rule Liveness

property indicates rules that are never triggered. For instance, this can occur in reason of a fault

in the context guard definition. Aiming to test if the product has the dead predicate fault, the

84

n-test sequence should cover the context triggers of all adaptation rules of the DAS under testing.

Definition 4.4.4 (Rule Liveness Coverage) A set T S of adaptation test sequences satisfies the

Rule Liveness Coverage criterion if and only if for all context guard conditions ω from the DAS

adaptation rules, there is at least one test sequence ts ∈ T S such that ts covers at least one

context state that satisfies the guard condition ω .

Again, different strategies can be used by the tester to generate a test sequence

satisfying this criterion. One possibility is to adapt the Algorithm 1 by limiting the context states

of the set C S to those that trigger some adaptation rule of the DAS.

Figure 18 depicts an example of test sequence to verify if some adaptation rule of

the GREat Tour is not triggered when it should be. Note that the goal here is to validate that

when the context condition of one adaptation rule of the Mobile Guide (see Table 1) is satisfied,

this rule triggers its adaptation actions. For instance, in Figure 18, from the first state when

the context is BtNormal (N), the adaptation rule AR03 (see Table 1) is triggered and, then, the

feature Video is expected to be deactivated in the next state.

Figure 18 – Example of Test Sequence for Property 02

Source – the author.

85

Test Sequence for Property 03 - Interleaving Correctness. A violation of the

Interleaving Correctness property indicates that the interaction among active adaptation rules

provides unexpected results. In order to test if the product has the nondeterministic interleaving

fault, the test sequence should cover all states of the C-KS that trigger more than one adaptation

rule.

Definition 4.4.5 (Interleaving Correctness Coverage) A set T S of adaptation test sequences

satisfies the Interleaving Correctness Coverage criterion if and only if for all context guard

conditions ω from the DSPL adaptation rules that trigger more than one adaptation rule, there is

at least one test sequence ts such that ts covers at least one context state that satisfies the guard

condition ω .

As can be observed in Table 1, the Mobile Guide DSPL has not adaptation rules that

can be triggered at the same time, since all its rules have a different context guard condition. If,

however, there was a rule AR06 with the context condition equals to the AR05’s context condition

(isBtFull), then the test sequence would cover a context state that satisfies this condition.

In order to obtain a test sequence for achieving the Interleaving Correctness Coverage

criterion, it is possible to adapt the Algorithm 1 by limiting the context states of the set C S to

those that trigger more than one adaptation rule of the DAS.

Test Sequence for Property 04 - Feature Liveness. A violation in the Feature

Liveness Property indicates a context-aware feature that is not activated in the product. To test if

the DAS has the dead feature fault, the test sequence should cover at least one transition for

each context-aware feature, where its state changes from deactivated to activated.

Definition 4.4.6 (Feature Liveness Coverage) A set T S of adaptation test sequences satisfies

the Feature Liveness Coverage criterion if and only if for all context-aware features f from the

DAS, there is at least one test sequence ts such that ts triggers the activation of the feature f

from a state where this feature was deactivated.

Algorithm 2 presents a strategy to generate a test sequence for this criterion. The

first step is to identify the context-aware features (line 3). Next, for each context-aware feature

fi, the algorithm appends in the path T a system state sysSt (lines 6-11), where the feature fi is

deactivated. Next, it identifies another system state nSysSt (lines 13-14), where the feature fi is

activated by the action of some adaptation rule. Lastly, the algorithm returns the test sequence

T (line 17).

86

Algorithm 2 Test Sequences Generation for Property 04.
1: function TESTSEQUENCE_PROP4(FM ,R)
2: Path T = /0
3: Identify the set C A F of context aware features of the FM
4: for all feature fi ∈ C A F do
5: if T = /0 then
6: Define a valid system state sysSt where fi 6∈ f eatures(sysSt)
7: T .append(sysSt)
8: end if
9: if fi ∈ f eatures(sysSt) then

10: Define a system state sysSt2 where f 6∈ f eatures(sysSt2)
11: T .append(sysSt2)
12: end if
13: Identify a system state nSysSt that satisfies the context condition of one adaptation

rule that activates fi
14: T .append(nSysSt)
15: sysSt= nSysSt

16: end for
17: return T
18: end function

Figure 19 depicts an example of test sequence to verify if in the GREat Tour the

features are activated as expected. In this example, with one test sequence is possible to test if

both features Image and Video are activated in some context state. Note that the order of the

adaptation test cases is important to ensure that the DAS changes from a configuration where

Video and Image are deactivated to another configuration where they are activated.

Figure 19 – Example of Test Sequence for Property 04

Source – the author.

87

Test Sequence for Property 05 - Variation Liveness. A violation in Variation

Liveness property indicates that a context-aware feature is not deactivated in the product as

expected. In order to test if the product has the false variable feature fault, the test sequence

should cover at least one transition for each context-aware feature, where its state changes from

activated to deactivated.

Definition 4.4.7 (Variation Liveness Coverage) A set T S of adaptation test sequences satisfies

the Variation Liveness Coverage criterion if and only if for all context-aware feature f from the

DAS, there is at least one test sequence ts such that ts triggers the deactivation of the feature f

from a state where this feature was activated.

Figure 20 depicts an example of adaptation test sequence to verify if in the GREat

Tour the context-aware features are deactivated as expected. In this case, the first configuration

state has both features Image and Video activated. Next, an adaptation test case validates that the

feature Video is deactivated when the context is isBtNormal. After that, there is an ATC to test

if the feature Image is deactivated as expected when the context is isBtLow.

Figure 20 – Example of Test Sequence for Property 05

Source – the author.

88

Regarding the algorithm to generate an adaptation test sequence for the Variation

Liveness Coverage criterion, it can be defined in a similar way to Algorithm 2. The difference

is that for this criterion, the algorithm should focus on the transitions from states where the

context-aware feature is activated to states where it is deactivated.

4.4.3 Interactions among Test Coverage Criteria

The coverage percentage of the test criterion proposed in this section is measured

by the Formula 2.3, which uses the number of test coverage items covered by the test cases,

and the total number of test coverage items identified. For instance, for the criterion Rule

Liveness Coverage, the adaptation test sequence should cover the context guard conditions of

each adaptation rule. In the running example (see Section 2.1), there are five adaptation rules and,

thus, five test coverage items. If the test sequence covers all these items, the criterion coverage is

100%; otherwise, the percentage is proportional to the number of adaptation rules that have been

covered. Thus, the tester can combine the test criteria proposed and choose the desired coverage

percentage for each criterion to satisfy him/her needs.

It is also important to note that the coverage of one test criterion can affect the

coverage of another criterion. This relationship among two test coverage criteria A and B can be

classified into three types: (i) Strong, a test criterion A with a Strong relationship with a criterion

B means that a full (100%) coverage of A will leads to a full coverage of B; (ii) Medium, a test

criterion A with a Medium relationship with a criterion B means that a full coverage of A does

not ensure a full coverage of B; and (iii) Weak, a test criterion A with a Weak relationship with a

criterion B means that the coverage of A often has a few impact or does not have impact in the

coverage of B.

Based on this classification, Table 7 presents the relationships among the test cover-

age criteria proposed. It is worth noting that the relationship between two criteria is not mutual,

that is, the relationship type from the criterion A to the criterion B could not be the same from B

to A. For instance, the Configuration Correctness Coverage has a Strong relationship with Rule

Liveness Coverage, but the latter has only a Medium relationship with Configuration Correctness.

As presented in Table 7, the criterion Configuration Correctness Coverage is the

unique that has a Strong relationship with other criteria. Since it covers all DFTS states, its

full coverage will leads to the full coverage of the Rule Liveness Coverage and Interleaving

Correctness Coverage.

89

Table 7 – Usual relationship among the test criteria

Test Criterion Configuration
Correctness

Rule Live-
ness

Interleaving
Correctness

Feature
Liveness

Variation
Liveness

Configuration Correctness - Strong Strong Medium Medium
Rule Liveness Medium - Medium Medium Medium

Interleaving Correctness Weak Weak - Weak Weak
Feature Liveness Medium Medium Weak - Weak

Variation Liveness Medium Medium Weak Weak -

Source – the author.

However, the criterion Configuration Correctness Coverage does not determine the

order of the adaptation test cases in the adaptation test sequence, but only which (all) DFTS

states should be covered by the test sequence. Thus, the full Configuration Correctness Coverage

should cover some test coverage items of both criteria Feature Liveness and Variation Liveness,

but it does not ensure their full coverage.

With regards to the Rule Liveness Coverage, it has a Medium relationship with all

other criteria. It covers some of the DFTS states, but cannot ensure the coverage of at all (e.g.,

different DFTS states reached by different contexts that trigger the same adaptation rule). It

covers the interleaving of rules that have the same context guard condition. However, it does

not ensure the coverage of the interleaving of those rules that have different context conditions

that can be true at the same time. Also, this coverage criterion does not specify the order of the

adaptation test cases and, thus, its full coverage cannot ensure the full coverage of both Feature

Liveness and Variation Liveness.

The Interleaving Correctness Coverage criterion has a Weak relationship with all

other criteria. This test criterion deals with the coverage of the context conditions that trigger

more than one adaptation rule. Thus, any adaptation rule that is not triggered with another

rule at the same time is not covered, as well as the DFTS states generated by these rules. In

addition, besides not specifying the order of the adaptation test cases, the Interleaving Correctness

Coverage criterion cannot cover the (de)activation of features triggered by rules that have not the

same context guard condition of other rules.

The criteria Feature Liveness Coverage and Variation Liveness Coverage have a

Weak relationship with each other because they have opposite purposes. The first one deals with

the features activation, whereas the other deals with feature deactivation. Since these criteria

cover the activation (Feature Liveness) and deactivation (Variation Liveness) of all context-aware

features, they cover some adaptation rules and achieve some states of the DFTS. Thus, these

90

criteria have a Medium relationship with the Rule Liveness and Configuration Correctness. On

the other hand, with regards to the Interleaving Correctness Coverage, both criteria have a

Weak relationship because their full coverage only ensures to cover the interleaving of rules that

have the same context condition guard, and only if these rules are the unique available for the

activation or deactivation of some context-aware feature.

It is important to highlight that Table 7 describes a common relationship among

the test coverage criteria proposed that should be valid in the most of the DAS, but that can

be different in some cases. For instance, given a DAS in which all adaptation rules can be

interleaved, then the full Interleaving Correctness Coverage will leads to the full Rule Liveness

Coverage. In this case, the relationship between the Interleaving Correctness Coverage and Rule

Liveness Coverage is Strong. Therefore, it is important to analyze the DAS under testing to

eventually adjust the relationships depicted in Table 7.

4.5 Supporting Tools

Another contribution of this thesis is the development of a tool and a library for

supporting the DAS model checking and testing according to the TestDAS method presented in

Figure 13.

The tool and the library are called TestDAS Tool and CONTroL (CONtext variability

based software Testing Library), respectively. Both are Java applications and were developed by

using the Eclipse IDE5. The first one supports the DAS model checking and the generation of

adaptation test sequences according to the test criteria proposed in Section 4.4. The other one

supports the test sequences execution in the DAS under testing.

The following subsections present details about the functionality, interfaces, design

and limitations of the TestDAS tool (Subsection 4.5.1) and the CONTroL (Subsection 4.5.2).

4.5.1 TestDAS tool

The TestDAS tool is a Java application that helps the user (Software Engineer/Tester)

to perform the model checking according to the approach described in Section 4.3, and the DAS

testing following the test coverage criteria depicted in Section 4.4.

In summary, the TestDAS tool receives as input the DAS feature model and produces

an excel file with the context states in an adjacency matrix. Next, the user fills the matrix with the
5 https://www.eclipse.org/

91

context variation (see Section 2.2.1). By using this matrix and the feature model, the TestDAS

tool generates then a DFTS, provides an interface for the DAS model checking and exports a test

sequence in the JavaScript Object Notation (JSON) format 6.

This tool was developed by using the following third-party APIs: (i) JExcelApi7,

which is a Java library for reading/writing Excel (ii) Gson8, which is a Java serialization/deserial-

ization library to convert Java Objects into JSON and back; and (iii) Sat4j9 that is the a library

for boolean satisfaction and optimization in Java. The latter was used to identify the contexts

that can satisfy the Interleaving Correctness Coverage criterion (see Section 4.4.2).

The next subsection describes the overview of this tool regarding its package diagram.

After that, the functionality and main user interfaces are presented in Subsection 4.5.1.2. Then,

the limitations of the TestDAS tool are summarized in Subsection 4.5.1.3.

4.5.1.1 Tool Overview

Figure 21 presents the package diagram of the TestDAS tool. As depicted in this

figure, this tool is composed by the following packages: (i) contextEvolModel; (ii) contextModel;

(iii) featureModel; (iv) CFMtoCKS; (v) mapping; (vi) runSPin; (vii) DFTS; (viii) testElements;

(ix) generator; (x) userInterface; and (xi) utilities.

The packages contextEvolModel, contextModel and featureModel are related to the

input of the TestDAS tool. The package contextEvolModel contains the classes that represent the

context variation model (see Section 2.2.1). In the contextModel package are the classes that

represent the context variability, whereas the package featureModel has the classes that represent

the feature variability. The classes of both packages compose the DAS feature model.

The package CFMtoCKS has two classes: CtxStateExtractor and CKSExtrator. The

first one is in charge of extracting from the context-aware feature model the context states to

generate an excel file with an adjacency matrix. In this matrix, the columns and rows refer to

the context states, that is, the valid combinations of contexts. The purpose of this matrix is to

allows the user to specify the possible transitions among the context states (see Section 2.2.1).

The class CKSExtractor, in turn, reads the generated .xls file to identify the relationships among

the context states, and creates internally the Context Kripke Structure of the DAS under testing.
6 http://www.json.org
7 http://jexcelapi.sourceforge.net/
8 https://github.com/google/gson
9 http://www.sat4j.org/

92

Figure 21 – Package Diagram of the TestDAS tool

Source – the author

The role of the classes in the package mapping is to generate the .pml file 10 with the

DFTS and the behavioral properties according to the context variation model, feature model and

context model. The classes in the package runSpin are in charge of running the Windows prompt

command and execute the SPIN tool to check the behavioral properties over the DFTS.

The package DFTS contains the classes to generate the DFTS from the context-aware

feature model and the C-KS, and the classes to represent the DFTS in a graph. This representation

in the form of a graph was used to support the generation of the test sequences.

The package testElements has the classes that represent an adaptation test sequence

and the adaptation test cases. The classes in the package generator generate the test sequences

according to the test coverage criteria proposed in Section 4.4.2.

The package userInterface contains the user interfaces built to support the user

interaction with the functionality provided by the TestDAS tool. Lastly, the package utilities

gathers the classes with common functions such as generating and reading files.
10 ProMeLa specification file

93

4.5.1.2 Functionality

Figure 22 presents the initial user interface of the TestDAs tool. It is worth noting

that the TestDAS tool does not support the DAS feature modeling. Then, this tool receives

as input the context-aware feature model that should be upload (1) through a JSON file. So,

the TestDAS tool is independent of a feature modeling tool since the unique constraint is that

the feature model should be parsed into a JSON file following the class diagram presented in

Appendix C.

Figure 22 – Initial Screen of the TestDAS tool

Source – the author

Since the feature model is uploaded, the user can generate the .xls file with the

context states by clicking on the option CKS (2). This .xls file has the adjacent matrix in which

the user should fill the allowed transitions among the context states. After that, the user should

click on the option PML file (3) that receives as input the .xls file with the C-KS filled in the

adjacent matrix and generates the Promela file with the DFTS and the behavioral properties

presented in Section 4.3.2.

At this moment, the software engineer can use the Promela file generated and run

it with the SPIN model checker tool using the Windows prompt command (see Section 4.3) or

it can click on the option Model Checking (4) to use the interface created to support the DAS

model checking. Figure 23 presents this user interface. In such interface, the user can select the

94

behavioral property and run it with the option “Run SPIN”. If an error is found, the application

also gets the SPIN logs and shows through the option Log/Trail.

Figure 23 – Model checking screen of the TestDAS tool

Source – the author

The advantage of the model checking directly from the Promela source is that the

user can specify other properties to be checked beyond the properties specified automatically. On

the other hand, the advantage of the user interface depicted in Figure 23 is that it makes easier

to apply the model checking, especially to who has not experience on model checking (see the

results of the evaluation of this tool in Chapter 5).

The Test Sequence option (5) generates the test sequences using as input the context-

aware feature model and context variation model. Figure 24 presents an example of test sequence

generated from the running example (see Section 2.1). This test sequence has six adaptation

test cases. Each test case has: (i) a test case ID; (ii) the ID of the DFTS transition covered; (iii)

the context state specified by the context features that should be active; and (iv) the expected

features that should be activated when the context state is true.

95

Figure 24 – Example of Test Sequence generated by TestDAS

Source – the author

It is worth noting that for the sake of simplicity, the adaptation test cases in Figure 24

shows only the context-aware features that are required to be activated. In this way, the features

not depicted in the block expectedFeatureStatus should be deactivated. Similarly, in Figure 24

are depicted only the context features that are true in the context state of the test case, meaning

that the other context features of the context-aware feature model should be false.

The option Control Report (6) is used to support the generation of the report from

the CONTroL. It receives as input a JSON file generated by the CONTroL with the test cases

results and generates a .html file with the results. More details about this report are presented in

Subsection 4.5.2.

4.5.1.3 Limitations

The TesTDAS tool was developed for supporting the use the TestDAS method.

However, it has some limitations as described as follows:

• The tool only accepts context-aware feature model converted in a JSON file following the

structure depicted in Appendix C. This makes the input more generic since it does not

96

depend on a specific modeling tool. Nevertheless, the user must create a parser to generate

the JSON file from a context-aware feature model specified in him/her feature modeling

tool;

• The TestDAS tool does not deal with feature attributes or feature cardinality that are

presented in cardinality-based feature models (BENAVIDES et al., 2010);

• At this moment, the TestDAS tool only supports the SPIN model checker tool. The choice

of this tool was made because it is widely known by the model checking community

(HOLZMANN, 2003; SHARMA, 2013);

• The tool does not support logic formulas with the context features, that is, a combination

with AND or OR among the context features to trigger the (de)activation of features. In

the current version, the software engineer/tester should specify only one context feature as

the context guard condition.

4.5.2 CONTroL

CONTroL is a Java application that aims to support the user (Tester) to execute test

sequences in the DAS under testing. In summary, it receives as input a JSON file with test

sequences, controls the context captured by application during its execution, monitors the features

(de)activation and generates an HTML file with the test results. It is important to highlight that

the CONTroL requires the instrumentation of the DAS under testing. This is needed to allow

CONTroL to use Aspect-Oriented Programming (KISELEV, 2002) to intercept the execution of

the DAS under testing in order to control the context and monitor the feature status.

With regards to the CONTroL implementation, it was made by using the following

third-party APIs: (i) Jackson11, which is a Java library to convert Java Objects into JSON and

back; (ii) Extent12, which is a java library to support the creation of test reports in HTML; and

(iii) Aspectj 13, which is an aspect-oriented extension to the Java programming language.

The next subsection describes the overview of this tool regarding their class diagram.

After that, the functionality and an example of test report are presented in Subsection 4.5.2.2.

Finally, the limitations of the CONTroL are summarized in Subsection 4.5.2.2.
11 https://github.com/FasterXML/jackson
12 http://extentreports.com
13 https://www.eclipse.org/aspectj/

97

4.5.2.1 Library Overview

Figure 25 presents the class diagram of the CONTroL. The use of this library is

based on three Java annotations defined by the classes: ControlSystemAdapted, ControlContext

and ControlFeature. The class ControlContext is used to annotate the methods of the DAS under

testing that are in charge of capturing the context values. The class ControlFeature is used to

annotate the methods related to the status of the DAS features, that is, its (de)activation. The class

ControlSystemAdapted, in turn, should be used to annotate the methods in charge of performing

the DAS adaptations based on the context changes.

Figure 25 – Class Diagram of the CONTroL

Source – the author

These annotations are used by the aspects implemented in the classes ContextAspect,

98

FeatureAspect and SystemStatusAspect. The aspect ContextAspect uses the annotation Con-

trolContext to create a pointcut to intercepts the methods that capture the context and change

the context values according to the test sequence in execution. The aspect FeatureAspect uses

the annotation ControlFeature to create a pointcut to intercept the methods that change the

feature status and store the feature current status in the test sequence in execution. The aspect

SystemStatusAspect uses the annotation ControlSystemAdapted to create a pointcut to intercept

the method in charge of the DAS adaptations and verify the test case results by comparing the

expected feature status with the real feature status. These results are stored in an instance of the

classe Test Sequence. All these three aspects use the class WorkerRunnable to perform operations

over the intercepted methods by using threads.

The class TestSequence contains a list of TestCase and stores the current test case in

the execution. The class TestCase has attributes to indicate the context state, expected features,

actual features and test result. These last two attributes are defined at runtime by the aspects

ControlFeature and ControlSystemAdapted, while the context state is read during the CONTroL

execution by the aspect ControlContext. Moreover, the class TestCase has one object of the class

TimeoutManager to monitor if the test case execution spent more time than the timeout limit

and zero ou more objects from the class Reason, which is related to the warnings that could be

triggered during the tests (e.g., an warning informing that a given context was not ready from the

test sequence during the tests).

With regards to the report generation, there are the following classes: (i) ReportMan-

ager, which managers the test results; (ii) Report that represent an instance of the test report;

(iii) TestSequenceReport that gathers all instances of TestCaseReport; and (iv) TestCaseReport,

which stores the warnings (from the class Reason), the test results (i.e., passed, failed, warning)

and other information (e.g., list of features that should be activated but were not).

Aiming to support the CONTroL execution there are yet the class ControlUtils with

methods to read and write files, and the class ControlSetup that stores the location of the test

sequence, the duration of the timeout and the directory to save the test results.

4.5.2.2 Functionality

Figure 26 presents an overview of the CONTroL execution. First, the Tester should

add the CONTroL library in the source code of the application. Next, he/she should instrument

the code by putting the annotations ControlContext, ControlFeature and ControlSystemAdapted

99

in the methods of the application under testing for context capture, changing the feature status

and adapting the application, respectively.

Figure 26 – Overview of the CONTroL

Source – the author

Figure 27 presents the code of the running example (see Section 2.1) instrumented

with the annotations before mentioned. As depicted in this figure, both the annotations Control-

Context and ControlFeature has one parameter. In the first annotation, the user should specify the

name of the context feature, whereas in the second one it should be specified the feature name.

After the code instrumentation, the user should add in the device a folder called

“control” with two files: one (CONTroL setup) with information about the location of the test

sequence and the directory to save the tests results; and a JSON file with the test sequence.

Therefore, when the DAS under testing starts its execution, the CONTroL starts to control its

context and to observe its feature (de)activation based on the annotations. The test execution

ends when the CONTroL performs all the test sequence. Based on the test results, the CONTroL

generated a HTML report using the Extent library 14. Figure 28 presents an example of the report

generated. For each test sequence it shows the result (passed, failed, warning) and by clicking on

the test sequence, it is possible to see the results of each adaptation test case.

14 http://extentreports.com

100

Figure 27 – Example of code annotated. (A) class VideoFeature; (B) class BatteryContext; (C)

class ContextManager

Source – the author

Figure 28 – Example of report generated by the CONTroL

Source – the author

Figure 29 presents the results of a test case that has passed. In this case, the report

presents only the context state, the expected activated context-aware features and a message

stating that the expected features matched with the actual activated features in the DAS under

testing.

Figure 30 presents the results of a test case that failed during the execution. In this

case, besides information about the test case (context state and expected features), the report

presents other information: (i) Activated Feature, which is the list of actual activated features; (ii)

Deactivate Expected Features, which is the list of expected features that during the test execution

101

were deactivated when should not; (iii) Unexpected Activated Features that shows the features

activated that were not expected by the test case; and (iv) Unvisited Contexts, which presents the

contexts that were in the test sequence, but were not used during the test execution.

Figure 29 – Example of a passed test case in the report generated by the CONTroL

Source – the author

Figure 30 – Example of a failed test case in the report generated by the CONTroL

Source – the author

4.5.2.3 Limitations

The limitations of the CONTroL use are described as follows:

• Currently, this library does support the testing of situations in which the context changes

during the system adaptation;

• The library requires the annotation of methods for context capture, feature (de)activation

102

and the adaptation process itself. This could require some refactoring of the source of the

application under testing;

• At this moment, CONTroL has support only for Java and Android applications, and

requires the set up of the DAS to use AspectJ (KISELEV, 2002); and

• CONTroL supports only contexts that can be represented by Boolean, Integer, Double or

String variables.

4.6 Conclusion

In this chapter, TestDAS, which is the method proposed for testing the DAS adaptive

behavior, was presented. Besides the generation of tests, this method involves a model checking

approach to identify design faults. Therefore, within the TestDAS method, this chapter presented:

(i) a model for the DAS adaptive behavior, called Dynamic Feature Transition System (DFTS);

(ii) An approach to model checking the DAS design; (iii) A set of test coverage criteria to guide

the DAS testing; and (iv) a supporting tool and library.

DFTS is a formalism, also proposed in this work, to model the adaptive behavior

of DAS and that represent the feature (de)activation and the context changes. This model

describes the snapshots of context and system features in a given instant of time. Thus, it

supports the identification of design faults and adaptation failures related to the adaptation rules

of dynamically adaptive systems. For the DAS model checking, it was presented how to map

the concepts of the DFTS to Promela, which is the language of the SPIN model checker tool.

Besides that, a set of behavioral properties was presented to support the identification of design

faults in the DAS adaptation logic specified by the adaptation rules.

In order to support the tests generation, a set of test coverage criteria was created

based on the behavioral properties proposed to the DAS model checking. Based on these criteria

and in the DFTS of the DAS under testing, TestDAS generates adaptation test sequences. Also, to

support the use of the method proposed, a tool called “TestDAS tool” was developed to support

the DAS model checking and the generation of test sequences. Furthermore, a library called

CONTroL was implemented to support the execution of test sequences in Android applications.

The next chapter presents the details and results of the assessment of TestDAS. This

evaluation was focused on the effectiveness of both the model checking approach and the test

generation proposed. Also, the feasibility of using the TestDAS tool and the CONTroL based on

the results of an observation study is discussed.

103

5 EVALUATION

As depicted in Chapter 4, TestDAS, proposed in this thesis, addresses the generation

of test sequences for testing the DAS adaptive behavior, as well as the DAS model checking.

Also, two supporting tools were built to support the TestDAS use. In this chapter, TestDAS

evaluations, performed to assess the method and its tools, are described.

This chapter is organized as follows. Section 5.1 presents the results of the evaluation

of the model checking approach of TestDAS. Section 5.2 describes the experiment performed to

assess the tests generated by TestDAS. Section 5.3 discusses the feasibility of using the TestDAS

tool and CONTroL for applying the TestDAS method. Finally, Section 5.4 concludes this chapter.

5.1 Assessment of the Faults Identification Effectiveness

The TestDAS method has a model checking approach (see Section 4.3) and a set of

behavioral properties (see Section 4.3.2) whose violation reveals faults in the DAS design. Thus,

since the goal of this approach is to support the identification of design faults, this evaluation

aims to investigate the following question:

(Q1) How effective is the model checking approach in detecting behavioral faults?

In order to answer this question, it was used the mutation analysis (OFFUTT;

UNTCH, 2001), in which faulty versions (mutants) of a correct DAS design were created with

the purpose to assess if the model checking approach can support the identification of violations

of the properties specified in Section 4.3.2. The mutation analysis technique was chosen for this

evaluation, because it allows the systematic seeding of faults and the statistical analysis of fault

detection effectiveness of the model checking approach.

With regards to the study object, it was used the Mobile Guide DSPL (MARINHO

et al., 2013) that is a DAS related to the mobile and context-aware applications domain. In

particular, for the experiment, it was used a part of this DAS, which is presented in Section 2.1.

This evaluation was carried out based on the following phases:

• Phase I: Mutants Generation. The first phase of this evaluation was the generation of

mutants (OFFUTT; UNTCH, 2001) from the original DAS specification. Thus, from a

correct design of the Mobile Guide (i.e., a specification that does not violate any property)

new feature models were created with different syntactic changes in the adaptation rules

104

design. These changes were based on a set of transformation rules called mutation

operators (JIA; HARMAN, 2011).

• Phase II: Mutants Model Checking. In this phase, it was performed the model checking

approach in each mutant generated to verify if they satisfy the behavioral properties defined

in Section 4.3.2. The mutants that violated any property were marked as killed.

• Phase III: Equivalent Mutants Identification. The last phase is related to the manual

inspection of the not killed mutants to determine whether they are equivalent to the Mobile

Guide. In this evaluation, the equivalent mutants are those that produce the same adaptive

behavior of the Mobile Guide. Thus, these mutants are not expected to be identified by the

model checking approach.

Furthermore, aiming to provide evidence regarding the research question Q1, the

mutant score (JIA; HARMAN, 2011) of the model checking approach was measured based on

Formula 5.1.

MutationScore(MS) =
#KilledMutants

(#GeneratedMutants−#EquivalentMutants)
(5.1)

where:

#KilledMutants is the number of killed mutants during Phase II

#GeneratedMutants is the number of mutants generated in Phase I

#EquivalentMutants is the number of equivalent mutants identified in Phase III

Subsection 5.1.1 describes the process used to generate mutants. Next, the results of

the mutants model checking are described in Subsection 5.1.2. Then, the equivalent mutants and

the mutation score are described in Subsection 5.1.3. Finally, a discussion of the results and the

threats to validity are addressed in Subsection 5.1.4 and Subsection 5.1.5, respectively.

5.1.1 Mutants Generation

The mutants are created by syntactic changes to the original model or program,

which are derived from predefined sets of rules called mutation operators (OFFUTT; UNTCH,

2001). For instance, typical mutation operators include the modification of Boolean expressions

by replacing the operators.

105

In the literature, it was not found mutation operators focused on context-aware

feature models or adaptation rules. Thus, for this evaluation, mutation operators were defined

based on the set of mutants operators proposed by Arcaini et al. (2016) for SPL feature models.

Arcaini et al. (2016) present 14 operators and classify them into two types: feature-based and

constraint-based. The first one is related to the type of features (mandatory, optional, alternative,

or-group), whereas the latter concerns the require and exclude relationships.

It is worth noting that the focus of this evaluation was the mutation over the adaptation

behavior. So, the mutation operators defined affect the adaptation rules (see Definition 4.2.1),

represented in this work by a tuple with the following elements: (i) a context guard condition;

(ii) an action from the set [activate, deactivate]; and (iii) a set of system features. Therefore,

these operators were classified into three classes: (i) context-based, which are related to the

context guard condition of the adaptation rule; (ii) action-based that affect the action triggered

by the adaptation rule; and (iii) system-based, which refers to the features (de)activated by the

adaptation rules.

Table 8 presents the feature-based mutation operators of Arcaini et al. (2016). Only

mutation operators of the type system-based were defined from them, since these operators of

Arcaini et al. (2016) are related to the type of feature. The defined operators for this evaluation

are also depicted in Table 8.

Only from OptToMan was not possible to derive an operator, since the actions of

the adaptation rules do not affect the mandatory features. In total, nine system-based mutation

operators were defined from the feature-based mutation operators of Arcaini et al. (2016).

Table 9 presents the constraint-based mutation operators of Arcaini et al. (2016).

These operators affect the constraints (require and exclude) among features. As presented in

Section 2.2.1, the adaptation rules can be represented by include and exclude relationships

and, thus, from the set of constraint-based mutation operators were defined four action-based

mutation operators that affect the actions of adaptation rules.

With regards to the context-based mutation operators, they were created based on

the adaptation rule (see Definition 4.2.1) and Context-Kripke Structure (see Definition 2.2.1)

definitions. These operators are presented in Table 10. The first operator (CtxINVAR) entails

a change of the context guard condition of a given adaptation rule to a context that does not

exist. The next one (CtxUNRAR) refers to a context that exists, but it is not achieved by the

Context-Kripke Structure of the DAS. The last operator (CtxINTAR) changes the context guard

106

Table 8 – System-based mutation operators defined to the adaptation rules

Feature-based Mutation Operator (ARCAINI et al., 2016) System-based Mutation Operator
ID Description ID Description

AlToOr an Alternative is changed to an Or AltToORAR

the activation of only one
feature from an alternative
group is changed to activate
more than one feature of this
group

AlToAnd an Alternative is changed to an And AltToAndAR

the activation of only one
feature from an alternative
group is changed to activate
all features of this group

OrToAl an Or is changed to an Alternative OrToAlAR

the activation of more than
one feature from an
OR-group is changed to
activate only one feature of
this group

OrToAnd an Or is changed to an And OrToAndAR

the activation of more than
one feature from an
OR-group is changed to
activate all features of this
group

AndToOr an And is changed to an Or AndToOrAR

the activation of all features
from an And-group is
changed to activate one or
more features (not all) of
this group

AndToAl an And is changed to an Alternative AndToAlAR

the activation of all features
from an And-group is
changed to activate only one
feature of this group

ManToOpt
a mandatory relation is changed to
optional - Not applicable

OptToMan
an optional relation is changed to
mandatory OptToManAR

the target of an action
(act/deac) of the rule is
changed from an optional
feature to a mandatory
feature

MF a feature f is removed DelFAR
a feature f is removed from
an adaptation rule

MoveF
a feature f is moved as child of
another feature (not belonging to its
descendants)

MoveFAR

a feature f is moved from an
adaptation rule to another
one

Source – The author
Note – According to Arcaini et al. (2016), the parent-child relation is one of the following types: (1) Or - at least

one of the sub-features must be selected if the parent is selected; (2) Alternative (xor) – exactly one of
the sub-features must be selected whenever the parent feature is selected; (3) And - each child of an And
must be either Mandatory (it is always selected) or Optional (it may or may not be selected).

conditions of adaptation rules to make two rules, which have different actions on the same

feature, be triggered with the same context.

Besides the first-order mutation operators described in Tables 8, 9 e 10, a set of high-

107

Table 9 – Action-based mutation operators defined to the adaptation rules

Constraint-based Mutation Operator (ARCAINI et al., 2016) Action-based Mutation Operator
ID Description ID Description

MC an extra-constraint is removed DelRlAR
an adaptation rule is
removed

ReqToExcl
a requires constraint is transformed
into an excludes constraint ActToDeaAR

an activation action is
transformed into a
deactivation action

ExclToReq
an excludes constraint is
transformed into a requires
constraint

DeaToActAR

a deactivation action is
transformed into an
activation action

GC

a general constraint is modified by
inserting a new feature, changing a
logical operator, or removing part
of it

AddRlAR
an activation/deactivation of
a feature f is added

Source – The author
Note – According to Arcaini et al. (2016): (1) extra-constraints are cross-tree relations (require/exclude) among

features; (2) general constraint is specified through a propositional formula (using the usual Boolean
operators) representing the features as propositional variables

Table 10 – Context-based mutation operators defined to the adaptation rules

ID Description

CtxINVAR change a context guard condition to one that does not exists
CtxUNRAR change a context guard condition to one unreachable

CtxINTAR
change the context guard conditions of adaptation rules that have different actions
(activation/deactivation) on the same feature f to make them be triggered at the same time

Source – The author

order mutation operators was created by performing more than one mutation. These operators

are presented in Table 11 and they focus on the context and actions of the adaptation rules.

Table 11 – Higher-order mutation operators defined to the adaptation rules

ID Type Description

DelRlAllAR action-based remove all adaptation rules that affect a feature f

ActToDeaAllAR action-based
change all activation actions that affect a feature f to a deactivation
action

DeaToActALlAR action-based
change all deactivation actions that affect a feature f to an activation
action

CtxINVAllAR context-based
change the context guard condition of all rules that affect a feature f to
contexts that does not exists

CtxUNRAllAR context-based
change the context guard condition of all rules that affect a feature f to
contexts unreachable

CtxINTAllAR context-based
change the context guard condition of adaptation rules to ensure that for
each action that affects a feature f there is an opposite action triggered
by the same context

Source – The author

108

Therefore, 22 mutation operators were defined for this evaluation: (i) nine system-

based mutation operators; (ii) seven action-based mutation operators; and (iii) six context-based

mutation operators.

For each mutation operator, one or more mutants were generated manually from the

Promela code with the design of the Mobile Guide. This code refers to the Dynamic Feature

Transition System of this DAS, as discussed in Section 4.2.

Figure 31 presents an example of mutant created from the operator OptToManAR,

which changes the target of an action from a context-aware feature to a mandatory feature. In

particular, the mutation operator changes the deactivation of the feature Image (buss!imageOff)

to the deactivation of the mandatory feature Show Documents (buss!showDocsOff).

Figure 31 – Example of mutant created from the Mobile Guide

Source – the author

It is worth pointing out that in the original feature model of the Mobile Guide, both

features Image and Video are optional. Thus, to apply the operators AltToORAR and AltToAndAR,

it was created a slightly modified version of the original feature model, in which the features

Image and Video have an alternative relationship. Also, another slightly modified version of

the original feature model was needed to apply the operators OrToAlAR and OrToAndAR. In the

latter, the features Image and Video have an or-relationship.

Table 12 presents the number of mutants generated per type of mutation operator and

per each operator. In total, 114 mutants were generated. The system-based mutation operators

created the most of these mutants (54%). A short description of each mutant is depicted in

Appendix D, whereas the .pml files correspondent to the mutants and the original models are

available at https://github.com/GREatResearches/TestDAS.

109

Table 12 – Number of mutants generated

Group # Mutants per Group Operator # Mutants

System-based 62

AltToORAR 4
AltToAndAR 4
OrToAlAR 3

OrToAndAR 3
AndToOrAR 2
AndToAlAR 6

OptToManAR 20
DelFAR 10

MoveFAR 10

Action-based 30

DelRlAR 5
ActToDeaAR 6
DeaToActAR 4

AddRlAR 10
DelRlAllAR 1

ActToDeaAllAR 2
DeaToActALlAR 2

Context-based 22

CtxINVAR 5
CtxUNRAR 5
CtxINTAR 8

CtxINVAllAR 1
CtxUNRAllAR 1
CtxINTAllAR 2

TOTAL 114

Source – The author

5.1.2 Mutants Model Checking

During the Mutants Model Checking phase, the model checking approach of the

TestDAS (see Section 4.3) was applied in each mutant generated. Then, the SPIN model checker

was used through the TestDAS tool (see Section 4.5) to verify the properties defined in Section

4.3.2 over the Promela code corresponding to each mutant.

Table 13 depicts the results of this phase of the mutant analysis. In this table, the

number of killed mutants means the number of mutants that have a violation in some of the

properties checked. In total, for each mutant were checked 15 properties: (i) one from the

behavioral property Configuration Correctness that checks whether the product states are valid

regarding the feature model; (ii) five from the property Rule Liveness that check if each one

of the five adaptation rules of the Mobile Guide is triggered at some time; (iii) five from the

property Interleaving Correctness to check if the actions of all adaptation rules of the Mobile

Guide are performed; (iv) two from the property Feature Liveness to check if the features Image

and Video are activated at some time; and (v) two from the property Variation Liveness to check

if the features Image and Video are deactivated at some time.

110

Table 13 – Results of the mutants model checking

Group Operator # Mutants # Killed per Property # Killed Mut. % Killed Mut.P1 P2 P3 P4 P5

System-based

AltToORAR 4 4 0 0 0 0 4 100%
AltToAndAR 4 4 0 0 0 0 4 100%
OrToAlAR 3 1 0 0 0 1 2 67%

OrToAndAR 3 0 0 0 0 1 1 33%
AndToOrAR 2 0 0 0 0 1 1 50%
AndToAlAR 6 0 0 0 0 1 1 17%

OptToManAR 20 8 0 0 0 0 8 40%
DelFAR 10 0 0 0 0 1 1 10%

MoveFAR 10 0 0 10 0 0 10 100%

Action-based

DelRlAR 5 0 0 0 0 1 1 20%
ActToDeaAR 6 0 0 0 0 0 0 0%
DeaToActAR 4 0 0 0 0 1 1 25%

AddRlAR 10 0 0 10 0 0 10 100%
DelRlAllAR 1 0 0 0 1 0 1 100%

ActToDeaAllAR 2 0 0 0 2 0 2 100%
DeaToActALlAR 2 0 0 0 0 2 2 100%

Context-based

CtxINVAR 5 0 5 0 0 0 5 100%
CtxUNRAR 5 0 5 0 0 0 5 100%
CtxINTAR 8 0 0 8 0 0 8 100%

CtxINVAllAR 1 0 1 0 (1) 0 1 100%
CtxUNRAllAR 1 0 1 0 (1) 0 1 100%
CtxINTAllAR 2 0 0 2 0 0 2 100%

Total 114 17 12 30 3 9 71 62%

Source – The author
Note – P1 = Configuration Correctness; P2 = Rule Liveness; P3 = Interleaving Correctness; P4 = Feature Liveness;

P5 = Variation Liveness.
Note – “(x)” indicates that the property killed x mutants already killed by another property

As presented in Table 13, 71 (62%) from the 114 mutants were killed by the model

checking approach. With regards to the classes of mutation operators, the number of killed

mutants was: (i) System-based: 32 (52%) from 62 mutants generated by this class of mutation

operator; (ii) Action-based: 17 (57%) from the 30 mutants generated by this class of operator;

and (iii) Context-based: all (100%) the 22 generated mutants by this class of operator.

Most of the mutants was killed by the violation of only one property. Only the mu-

tants from the mutation operators CtxINVAllAR and CtxUNRAllAR were killed by two properties

(Rule Liveness and Feature Liveness).

It is worth noting that the identification of the mutants by the properties depends

on both the mutation operator and the DAS model. As depicted in Table 13, in the Mobiline,

for some operators all the mutants were killed. For instance, the operator CtxINVAR created

five mutants by changing the adaptation rules trigger to an invalid context. Thus, the affected

adaptation rules were not triggered and, therefore, such mutants were killed by property P2 -

111

Rule Liveness, which states that all adaptation rules should be triggered at some state. On the

other hand, none of the mutants from the operator ActToDeaAR was killed. An analysis of the

mutants not killed was made in the Equivalent Mutants Identification phase, which is presented

in the next subsection.

5.1.3 Equivalent Mutants and Mutation Score

The equivalent mutants are those that behave like the original Mobile Guide, that is,

those that generate the same product configurations of the Mobile Guide in the same context

situations. Since they have the same adaptive behavior, the model checking approach cannot

distinguish such mutants from the original Mobile Guide.

Table 14 presents the list of alive mutants after the model checking and the result of

the analysis of equivalent mutants. This analysis was made based on a comparison of the product

adaptations triggered by the original DAS and the mutant.

For instance, the alive mutant AM11 has a mutation in the adaptation rule AR03 in

which the action to activate the feature Image (Image(ON)) was changed to affect the feature

ShowDocs (ShowDocs(ON)). Since the feature ShowDocs is mandatory, it is active all time in

the original DAS and the before mentioned mutation does not violate this condition. Besides

that, given the context variation model used (see Section 2.2.1), the adaptation rule AR05, which

activates both features Image and Video, is triggered before the AR03. Then, the execution of the

rule AR03 of the mutant AM11 only deactivated Video, achieving the same product configuration

(with the feature Image activated and the feature Video deactivated) as the original Mobile Guide.

As presented in Table 14, from the analysis of the alive mutants were identified 15

equivalent mutants. Thus, by using the formula 5.1, the mutation score achieved is equals to 72%

(71/(114-15)).

5.1.4 Discussion

The evaluation of the effectiveness of the model checking approach was focused on

the investigation of the following question: (Q1) How effective is the model checking approach

in detecting behavioral faults? For this purpose, the mutant analysis was used in order to create

mutants versions from a correct DAS specification to verify whether the TestDAS supports the

identification of these mutants.

112

Table 14 – List of Alive Mutants (AM)

Operator ID AR Original Mutation Equivalent?

OrToAlAR AM1 AR05 Image(ON), Video(ON) Image (ON), Video (OFF) No

OrToAndAR
AM2 AR02 Image(ON), Video(OFF) Image(ON), Video(ON) No
AM3 AR03 Image(ON), Video(OFF) Image(ON), Video(ON) No

AndToOrAR AM4 AR01 Image(OFF), Video(OFF) Image(OFF), Video(ON) No

AndToAlAR

AM5 AR01 Image(OFF), Video(OFF) Image(OFF), Video(ON) No
AM6 AR04 Image(ON), Video(ON) Image(OFF), Video(ON) No
AM7 AR05 Image(ON), Video(ON) Image(OFF), Video(ON) No
AM8 AR04 Image(ON), Video(ON) Image (ON), Video (OFF) No
AM9 AR05 Image(ON), Video(ON) Image (ON), Video (OFF) No

OptToManAR

AM10 AR02 Image(ON), Video(OFF) ShowDocs(ON), Video(OFF) No
AM11 AR03 Image(ON), Video(OFF) ShowDocs(ON), Video(OFF) Yes
AM12 AR04 Image(ON), Video(ON) ShowDocs(ON), Video(ON) Yes
AM13 AR04 Image(ON), Video(ON) Image(ON), ShowDocs(ON) No
AM14 AR05 Image(ON), Video(ON) ShowDocs(ON), Video(ON) Yes
AM15 AR05 Image(ON), Video(ON) Image(ON), ShowDocs(ON) Yes
AM16 AR02 Image(ON), Video(OFF) Text(ON), Video(OFF) No
AM17 AR03 Image(ON), Video(OFF) Text(ON), Video(OFF) Yes
AM18 AR04 Image(ON), Video(ON) Text(ON), Video(ON) Yes
AM19 AR04 Image(ON), Video(ON) Image(ON), Text(ON) No
AM20 AR05 Image(ON), Video(ON) Text(ON), Video(ON) Yes
AM21 AR05 Image(ON), Video(ON) Image(ON), Text(ON) Yes

DelFAR

AM22 AR01 Image(OFF), Video(OFF) Image (OFF) Yes
AM23 AR02 Image(ON), Video(OFF) Image(ON) Yes
AM24 AR02 Image(ON), Video(OFF) Video(OFF) No
AM25 AR03 Image(ON), Video(OFF) Image(ON) No
AM26 AR03 Image(ON), Video(OFF) Video(OFF) Yes
AM27 AR04 Image(ON), Video(ON) Image(ON) No
AM28 AR04 Image(ON), Video(ON) Video(ON) Yes
AM29 AR05 Image(ON), Video(ON) Image(ON) Yes
AM30 AR05 Image(ON), Video(ON) Video(ON) Yes

DelRlAR

AM31 AR02 Image(ON), Video(OFF) delete AR No
AM32 AR03 Image(ON), Video(OFF) delete AR No
AM33 AR04 Image(ON), Video(ON) delete AR No
AM34 AR05 Image(ON), Video(ON) delete AR Yes

ActToDeaAR

AM35 AR02 Image(ON), Video(OFF) Image (OFF), Video (OFF) No
AM36 AR03 Image(ON), Video(OFF) Image(OFF), Video(OFF) No
AM37 AR04 Image(ON), Video(ON) Image(OFF), Video(ON) No
AM38 AR04 Image(ON), Video(ON) Image(ON), Video(OFF) No
AM39 AR05 Image(ON), Video(ON) Image(OFF), Video(ON) No
AM40 AR05 Image(ON), Video(ON) Image(ON), Video(OFF) No

DeaToActAR

AM41 AR01 Image(OFF), Video(OFF) Image(OFF), Video(ON) No
AM42 AR02 Image(ON), Video(OFF) Image(ON), Video(ON) No
AM43 AR03 Image(ON), Video(OFF) Image(ON), Video(ON) No

Source – The author
Note – The mutant equivalent identification took into account the adaptation rules and the context variation model

The results of the mutant analysis showed a mutation score of 72%, indicating that

the model checking approach proposed can identify design faults in the adaptive behavior of

a DAS. Furthermore, it is important to note that the alive mutants did not violate any property

checked. After a manual verification of these mutants, it was possible to observe that they

113

represent a different adaptive behavior compared to the Mobile Guide, but without design faults.

So, by taking into account only the models with design faults, the model checking approach

successfully identified all mutants. Therefore, in the evaluation performed, the model checking

approach was effective (Q1) in the identification of design faults related to the set of properties

presented in Section 4.3.2.

With regards to the behavioral properties checked, each one identified a set of

mutants. The property Interleaving Correctness has the higher number of killed mutants (30),

whereas the property Feature Liveness identified only three mutants. The following paragraphs

discuss the faults identified by each property based on the killed mutants.

The violation of the property Configuration Correctness occurs when the adaptation

rules generate an invalid product configuration. The faults that made this violation in this

evaluation were: (F1) an adaptation rule deactivating a mandatory feature; (F2) an adaptation

rule activating an optional child feature, but deactivating its parent feature; and (F3) an adaptation

rule activating more than one child feature from a xor-group. For instance, a given mutant (created

by the operator OptToManAR) deactivated the feature Text, which is mandatory (F1). Another

one (created by the operator OptToManAR) deactivated the feature ShowDocs that is the parent

of both features Image and Video (F1 and F2). The mutants from the operators AltToORAR and

AltToAndAR, in turn, activated two features in a xor-group (F3).

The property Rule Liveness is violated when the context condition of the adaptation

rule is unsatisfiable. The faults that made this violation were: (F4) the context guard of the

adaptation rule does not exist in the context variation model; and (F5) the context guard of the

adaptation rule is not reachable by the context variation model. As expected, the fault F4 was

present in the mutants created by the operators CtxINVAR and CtxINVAllAR, whereas the mutants

from the operators CtxUNRAR and CtxUNRAllAR had the fault F5.

The violation of the property Interleaving Correctness occurs when adaptation rules

triggered at the same time have not the expected effect. The faults that made this violation were:

(F6) two adaptation rules with the same context guard, but one activating a feature F and other

deactivating the same feature; and (F7) two adaptation rules with different context conditions,

but that are satisfiable at the same time in some context state, and where one activated and

the other deactivated the same feature. The first type of fault (F6) happened with the mutants

generated from the operators CtxINTAR and CtxINTAllAR. The fault F7 was identified in the

mutants generated from MoveFAR and AddRlAR.

114

The violation of the property Feature Liveness occurs when the context-aware fea-

tures are never activated. The faults that made this violation were: (F8) missing the unique

adaptation rule that activates a context-aware feature F; and (F9) the rules that should activate

a context-aware feature F were deactivating it. The fault F8 happened with the mutants gen-

erated from the operators DelRlAllAR, CtxINVAllAR and CtxUNRAllAR. The mutants from the

ActToDeaAllAR had the fault F9.

The violation of the property Variation Liveness occurs when context-aware features

are never deactivated. The faults that made this violation were: (F10) missing the unique

adaptation rule that deactivated a context-aware feature F; and (F11) the rules that should

deactivate a context-aware feature F were activating it. The faults F10 and F11 were present in

the mutants generated from DelT lAR and DeaToActAR, respectively.

5.1.5 Threats to Validity

The main threats to the validity of the evaluation performed are related to the internal

validity and external validity. Threats to internal validity concern issues that may indicate a

casual relationship when there is none, whereas threats to external validity are conditions that

limit the ability to generalize the results (WOHLIN et al., 2014).

With regards to the internal validity, the main threat is related to the selection of the

mutation operators used in the evaluation. Since mutation operators over the adaptation rules

were not found, it was defined a set of operators based on the mutation operators proposed by

Arcaini et al. (2016). The latter concern mutations on a SPL feature model, whose concepts

(feature, require and exclude dependence, feature relationships) are present in the context-aware

feature models of a DAS. Also, the manual creation of the mutants is a threat to the internal

validity, because the wrong mutation generation could affect the results. In order to mitigate

this threat, all mutants created were double inspected by the author of this thesis to check the

application of the mutation operators and to confirm that all violations were correctly identified

by the TestDAS.

The main threat to the external validity is the study object (i.e., the Mobile Guide),

which is an academic Dynamic Software Product Line. However, the set of design faults

identified during the evaluation and presented in Subsection 5.1.4 is related to errors in the

adaptation rules. Thus, they are not domain-specific faults and can be identified in others DAS

by the model checking approach proposed.

115

5.2 Assessment of the Generated Tests

This section presents the empirical evaluation performed through a controlled ex-

periment to assess the tests generated by the TestDAS method proposed in Chapter 4. An

experiment is a formal, rigorous and controlled investigation that allows to draw conclusions

about a hypothesis that states the relationship between the cause and the effect (WOHLIN et al.,

2000).

According to Wohlin et al. (2000), the experiment process can be divided into the

following activities: (i) Definition, in which the experiment is defined in terms of problem, objec-

tive and goals; (ii) Planning, in which the design of the experiment is defined; (iii) Operation,

which is the experiment execution for collecting the measures to evaluate the hypothesis; (iv)

Analysis and Interpretation, which is related to the data analysis, hypothesis test and discussion

of the results; and (v) Presentation and Package that is concerned with presenting and packaging

of the experiment findings. This last activity is important to allow the experiment replication.

For this purpose, all experiment data are available online 1.

The next subsections present the experiment performed following the activities

suggested by Wohlin et al. (2000). Subsection 5.2.1 presents the definition of the experiment.

Subsection 5.2.2 describes the experiment design. Subsection 5.2.3 presents the experiment

operation, including the lessons learned from a pilot study performed to assess the experiment

planning. Subsection 5.2.4 presents the data analysis and interpretation of results. Finally,

Subsection 5.2.5 discusses the findings and Subsection 5.2.6 presents the threats to validate of

the experiment.

5.2.1 Experiment Definition

By using the template of Wohlin et al. (2000), which follows the Goal-Question-

Metric (BASILI; ROMBACH, 1994) template for goal definition, the goal of this experiment

was defined as follows: to analyze the adaptation test sequences generated by the TestDAS for

the purpose of characterize with regard to the number of tests, time spent and tests coverage

from the point of view of researchers and testers in the context of post-graduated (M.Sc. and

Ph.D.) students and practitioners testing two DAS in different application domains.

The application domains chosen to the experiment were smart home and mobile visit
1 https://github.com/GREatResearches/TestDAS

116

guide. In the first case, it was used the SmartHome DSPL presented by Carvalho et al. (2016)

that is a DAS for monitoring and controlling the functions of a smart house. In the second one, it

was used the MobileGuide DSPL (MARINHO et al., 2013), presented in Section 2.1.

The evaluation question Q1 was defined to the Mutant Analysis (Section 5.1). There-

fore, for the controlled experiment, it were defined the questions Q2, Q3 and Q4 as follow:

(Q2) Does the number of the tests is increased when the TestDAS is followed? Rationale:

This question intends to evaluate if the proposed testing method creates more tests than

the tester’s experience based testing;

(Q3) Does the coverage of the tests is increased when the TestDAS is followed? Rationale:

This question intends to evaluate if the proposed testing method creates tests with a better

coverage than the tester’s experience based testing. This coverage is measured in terms of

adaptation actions and contexts; and

(Q4) Does the time spent to create adaptation test cases is lower when the TestDAS

is followed? Rationale: This question is related to the time spent by TestDAS in the

generation of test sequences based on the input provided by the experiment’s participants.

The goal of this question was to assess if the participants spent more time using the

TestDAS or specifying the tests manually.

Then, in order to answer the defined questions, three metrics were defined as follows:

• Number of Adaptation Test Cases (NATC). It refers to the number of different test cases

that compose the adaptation test sequences created during the experiment.

• Adaptation Test Coverage (ATC). In this thesis, the adaptation of a DAS refers to the

activation/deactivation of its features based on the context. Thus, this measure refers to

the number of adaptation actions (#ActionsCovered) - feature action/deactivation - and

context situations (#ContextCovered) covered by the test cases. The measure ACT of a test

sequence TS is given by the formula 5.2. Note that the total number of adaptation actions

(#TotalActions) is twice the number of context-aware features since each one should be

activated and deactivated. The total number of context situations (#TotalContexts) refers

to the number of context states.

ATC(T S) =
#ActionsCovered +#ContextCovered

#TotalActions+#TotalContexts
∗100 (5.2)

117

• Time Spent (TS). It gives the time spent in minutes and seconds by the experiment’s

participant to create the adaptation test cases to the DAS used in the experiment.

5.2.2 Experiment Planning

The goal of the Planning phase is to define how the experiment is conducted

(WOHLIN et al., 2000). Thus, during this phase it was defined the hypothesis being investigated,

variables involved, subjects, as well as the experiment design and the materials used. The

planning of the experiment conducted to assess the tests generated by the TestDAS is detailed in

the following subsections.

5.2.2.1 Hypothesis Investigated

As mentioned before, a controlled experiment is an empirical study that provides

evidence to test a hypothesis, which states the relationship between the cause and effect investi-

gated. Based on the questions defined during the Definition phase, the hypotheses defined are

stated as follows:

Hypothesis related to the Q2

– HN0 : NTestsWithTestDAS = NTestsWithExperienceBasedTesting

– HN1 : NTestsWithTestDAS 6= NTestsWithExperienceBasedTesting

Hypothesis related to the Q3

– HC0 : CoverageWithTestDAS =CoverageWithExperienceBasedTesting

– HC1 : CoverageWithTestDAS 6= CoverageWithExperienceBasedTesting

Hypothesis related to the Q4

– HT0 : TimeWithTestDAS = TimeWithExperienceBasedTesting

– HT1 : TimeWithTestDAS 6= TimeWithExperienceBasedTesting

For the questions Q2, Q3 and Q4, the null hypothesis (HN0, HC0 and HT0) states

that the use of the TestDAS method provides the same results as the experience-based testing,

while the alternative hypothesis states that they have different results regarding the number of

test cases (HN1), test coverage (HC1) and time spent to generate the tests (HT1). Therefore, this

experiment aims to compare the use of two treatments for DAS testing: T1 - TestDAS and T2 -

Experience-based testing.

118

5.2.2.2 Experiment Variables

According to Wohlin et al. (2000), a controlled experiment involves two kind of

variables: (i) independent variables that are those variables that can be controlled and changed

in the experiment; and (ii) dependent variable that are those which are observed to measure the

effect of the treatment.

In this experiment, the independent variables are the DAS used (SmartHome and

Mobiline) and the background experience of the subjects. The dependent variables are the

metrics Number of Adaptation Test Cases, Adaptation Test Coverage and Time Spent, which

were defined to answer the questions of the experiment.

5.2.2.3 Subjects

People who apply the treatments are called subjects (WOHLIN et al., 2000). In this

experiment, the subjects were chosen based on convenience sampling, in which the nearest and

most convenient persons are selected as subjects (WOHLIN et al., 2000).

In total, twelve participants were selected for the experiment. Six of them are

postgraduate students, that is, two P.hD. students and four M.Sc. students of Computer Science

from the Federal University of Ceará. The other six are professionals who work as Tester or Test

Analyst at the Group of Computer Networks, Software Engineering and Systems (GREat2).

Figure 32 presents the profile of the students that have participated in the experiment.

All postgraduate students already knew what is a DSPL and its main concepts. Five of them

(83%) had worked with DSPL in academic projects. Besides that, all students knew about

software testing and five of them (83%) have already tested software in academy and industry.

All students from the experiment also had already implemented software with Java and Android3.

Regarding the model checking, most of them (67%) knew what is model checking, but only one

(17%) had used a model checker tool. Also, two of the students (33%) did not know about model

checking.

From the group of professionals involved in the experiment, see Figure 33, only one

(17%) knew what is a DSPL and its related concepts, such as feature model and adaptation rules.

All of them had already experience on software testing in academy and industry. In this case, two
2 http://great.ufc.br
3 This information is important since the CONTroL, used in the observational study depicted in Section 5.3,

requires basic knowledge on Java and Android

119

Figure 32 – Profile of the students from the experiment

Source – the author

of the professionals (33%) had more than three years’ experience, whereas the other five (67%)

had at least one year’s experience on software testing. Also, all of them had already implemented

software with Java and the most of them (83%) had already used Android to implement a mobile

application. However, none of them had used a model checker tool.

Figure 34 summarizes the previous knowledge of all subjects of the experiment on

the two main concepts used in the experiment: Software Testing and DSPL.

All subjects of the experiment had already experience with software testing, with

the majority (92%) having tested software in both academy and industry. With regards to the

knowledge on DSPL, seven of the subjects (58%) knew the DSPL concepts and five of them

(41%) had already worked with DSPL/context variability in academic projects.

120

Figure 33 – Profile of the professionals from the experiment

Source – the author

Figure 34 – Knowledge of the subjects on Software Testing and DSPL concepts

Source – the author

121

5.2.2.4 Experiment Design and Instrumentation

The experiment performed used the design type composed of one factor (the method

used for DAS testing) with two treatments: (T1) With the TestDAS method; (T2) Without the

TestDAS, that is, based on the experience of the subject.

Table 15 presents the experiment design used, whose goal was to compare the two

treatments each other (WOHLIN et al., 2000). To perform the tasks of the experiment, the

subjects were divided into two groups, A and B. In Group A, the subjects not used the TestDAS

(T2) to perform the Task I, and used the TestDAS (T1) in Task II. In Group B, the order was

the opposite, that is, the subjects of this group used the TestDAS (T1) in Task I, but did not use

it in Task II (T2). It is worth noting that for the tasks I and II the study objects used were the

Mobiline and SmartHome, respectively.

Table 15 – Experiment Design

Task Group A Group B

Task I (Mobiline) Experience-Based (T2) TestDAS (T1)
Task II (SmartHome) TestDAS (T1) Experience-Based (T2)

Source – The author

Therefore, all subjects used the two treatments, but with different objects (DPLS)

in each task. The group of the subjects defined the order of the treatments used. The groups

organization, in turn, was made randomly, but ensuring a balanced number of professionals and

students in each group.

With regards the material used during the experiment, it is presented in Appendix E.

First, the subjects filled out the Background Form reporting information about their knowledge

on DSPL, Software Testing, Model Checking and Java/Android.

Before the execution of the experiment tasks, the subjects received training address-

ing the concepts related to DSPL, Model Checking, and Software Testing. Furthermore, the

subjects performed an exercise to learn the format that should be used to specify manually the

adaptation test cases and how to use the TestDAS tool.

For each task, the subjects received a document describing the DSPL, its feature

model and a description of the environment context behavior. If the task would be performed

with the TestDAS, the subject also received the context variation model of the DSPL under

testing. After each task, the subjects should answer the Post-Task Questionnaire to provide their

122

feedback about the task execution.

After performing the Task II, the subjects filled out the Post-Experiment Question-

naire, in which they could state their feedback about the entire experiment and their feeling

about the best way for testing the DAS adaptive behavior.

5.2.3 Experiment Operation

In the Operation phase, the experiment is carried out in order to collect the data that

should be analyzed (WOHLIN et al., 2000). This phase comprises three steps: (i) Preparation, in

which the material is prepared and the subjects are invited; (ii) Execution, in which the subjects

perform the experiment tasks and the data is collected; and (iii) Data Validation, in which the

collected data is validated.

During the Preparation, the subjects 5.2.2.3 were invited to participate of the experi-

ment. The requirements for the selection of the subjects were: (i) to have previous knowledge on

Software Testing; and (ii) to have experience on software testing. Based on these requirements

and the convenience sampling (WOHLIN et al., 2000), 12 subjects were selected (see Section

5.2.2.3). Also, before the experiment execution, all material presented in Section 5.2.2.4 was

prepared.

In the Execution, the experiment was performed by using the design described in

Section 5.2.2.4. At this moment, the data about the background and the feedback of the subjects

were collected through forms (see Appendix E), and the metrics (see Section 5.2.1) were collected

by analyzing the tests generated and monitoring the time spent during the tasks. More details of

the Execution are presented in Subsection 5.2.3.2.

With regards the Data Validation, it was performed after the experiment execution

to check that the data were collected correctly. In this experiment, all subjects completed the

tasks and filled out the required forms. Therefore, the data from all subjects could be used in the

Analysis phase.

A pilot study was also performed to assess the experiment planning and operation.

The results and lessons learned from the pilot study are described in Subsection 5.2.3.1.

5.2.3.1 Pilot Study

The pilot study (WOHLIN et al., 2014) aims to identify problems in the experiment

planning or operation. It is performed before the experiment tasks session, and usually involves

123

a few subjects.

For the pilot study, it was selected two master students from the Federal University

of Ceará. These students knew software testing and had already tested software in academy and

industry. One of them knew what is a Dynamic Software Product Line and its main concepts

(i.e., feature model, context-based runtime adaptation), whereas the other one did not know what

is a DSPL. Also, both have already implemented software with Java and Android, but they had

never used the model checking before.

Each student was assigned to a different group, A or B. After that, they followed the

steps planned to the experiment: (i) to answer the Background Form about previous experience;

(ii) to review the concepts during a training session; (iii) to execute the experiment tasks and

answer the Post-Task Questionnaires; and (iv) to answer the Post-Experiment questionnaire.

Then, a discussion with these subjects was performed to identify their feedback about the

experiment execution and difficulties they have during the activities.

Based on the pilot study, a set of improvements was made in the experiment forms,

training and task instrumentation. The changes performed are summarized follows:

• Forms. Some form questions were improved to avoid misunderstanding. Also, the forms

were adjusted to follow the same pattern, for example, the use of the five points Likert

scale (ROBINSON, 2014) whenever possible;

• Training. Improvement of the material by adding examples of contexts, a context variation

model and adaptation test cases; and

• Experiment Task. The task document was improved to better describe the features and

contexts of the DAS feature model used. Besides that, it was developed a template to

be used during the manual test cases specification since the subjects had doubts about

the specification format. Also, it was created a figure to explain to the subjects, after

the execution of Task II, the test criteria used by the TestDAS. The latter was required

because in the last experiment activity (i.e., when the subjects are asked to fill out the

Post-Experiment Questionnaire) the subjects should compare the test criteria used during

the experience-based testing and the ones used by the TestDAS.

Therefore, the pilot study was important to identify problems in the experiment

planning that could affect its results. All improvements before mentioned are already considered

in the materials presented in Appendix E.

124

5.2.3.2 Experiment Execution

Figure 35 presents the experiment activities. Initially, the experiment tasks were

introduced to the subjects. After that, they filled out the Background Form with information

about their previous knowledge. Next, the subjects were randomly divided into two groups, A

and B, keeping a balanced number of professionals and researchers in each group.

Figure 35 – Activities performed in the experiment

Source – the author

All subjects received training on the concepts related to the experiment aiming to

balance the knowledge on DSPLs and testing of the adaptive behavior. This training session

spent about 10 minutes, and involved a slide presentation and exercises to the better understating

of the concepts used in the experiment.

The participants from the Group A specified tests in Task I based on their expertise.

After that, they received training on TestDAS tool for performing the Task II. This training spent

about 15 minutes, and involved a slide presentation and exercises with the TestDAS tool. On the

other hand, the participants from the Group B used the TestDAS in Task I and, thus, before this

task, they received the training on TestDAS tool. Next, these subjects specified tests in Task II

based on their experience. Therefore, all the subjects used both treatments, allowing one group

to act as the control of the other.

In each task, after the creation of the test cases (based on the experience or using the

TestDAS), the subjects filled out the Post-Task Questionnaire. After the execution of Task II,

125

the test coverage criteria used by the TestDAS were presented to the subjects. It is worth noting

that these criteria were presented only after the Task II in order to not influence the execution

of the tasks. In particular, the Task II of the Group B that should be conducted based on the

participant’s experience.

Furthermore, all subjects were asked to fill out the Post-Experiment Questionnaire.

More details about the forms used in the experiment are depicted in Section 5.2.2.4.

5.2.4 Data Analysis and Interpretation of Results

The analysis was performed based on descriptive statistics, hypothesis testing and

the feedback of the subjects reported in the forms. Thus, the next subsection presents the data

from the experiment tasks. SubSection 5.2.4.2 describes the qualitative data gathered from the

forms. After that, Subsection 5.2.4.3 describes the hypothesis testing through statistical analysis,

and Subsection 5.2.5 draws conclusions based on the presented data.

5.2.4.1 Descriptive Statistics

Table 16 presents the raw experimental data. In Task I, the mean value in the Group

A for the time spent was 4m 6s, with a standard deviation (SD) of 2m 34s, whereas in the Group

B the mean was 3m 52s, with SD of 1m 2s. Median values were 3m 13s and 3m 50s for the

Group A and Group B, respectively.

Table 16 – Raw experimental data

Subject Profile Group Task I Task II
Time(m:s) # Tests Coverage Time(m:s) # Tests Coverage

S1 Student A 3:00 4 58.33% 8:30 6 100%
S2 Student A 1:51 4 58.33% 4:26 6 100%
S3 Student A 3:26 4 58.33% 5:52 6 100%
S4 Professional A 2:23 4 58.33% 5:33 6 100%
S5 Professional A 5:09 4 58.33% 6:48 6 100%
S6 Professional A 8:49 6 100% 6:47 6 100%
S7 Student B 5:10 6 100% 7:26 6 100%
S8 Student B 4:50 6 100% 11:41 4 62.50%
S9 Student B 3:02 6 100% 5:19 4 56.25%

S10 Professional B 3:33 6 100% 5:16 4 56.25%
S11 Professional B 2:30 6 100% 3:58 4 62.50%
S12 Professional B 4:08 6 100% 3:29 4 62.50%

Source – The author

126

With regards to the test coverage, the mean value for Group A was 65.28%, with

SD of 17.01% and a median value of 58.33%. On the other hand, all subjects of the Group B

achieved 100%.

In Task II, the mean value in Group A for the time spent was 6m 19s, with SD of 1m

22s and the median value of 6m 19s. The Group B, in turn, has as mean 6m 11s, with SD of

3m 1s and the median value of 6m 11s. Regarding the test coverage, all subjects of Group A

achieved 100%, whereas the mean value for Group B was 66.67%, with SD of 16.61% and the

median value of 62.5%.

Figure 36 presents the boxplot of the raw data regarding the test coverage and time

spent during the tasks using the subjects’ experience. Thus, the graphs in this figure use the data

from the Group A in Task I and the Group B in Task II. Also, they present the data by the group

of students and professionals who participated in the experiment.

Figure 36 – Test coverage and time spent in Tasks conducted with experience-based testing

Source – the author

As presented in Figure 36, the data from professionals and students have outliers in

the data related to test coverage. These outliers correspond to the participants S6 and S7 from

Table 16, who achieved a 100% coverage rate. Besides that, with regards to the tests coverage,

the data from the professionals have a symmetric distribution (i.e., the data is evenly split at the

median) and a median value higher than the students.

In the data related to time spent, there is a outlier only in the group of professionals.

This data is from the professional S6 (see Table 16) that spent more time than the other ones. A

possible reason is that from the professional group, only the subject S6 has knowledge on DSPLs.

127

However, more experiments are needed to draw conclusions about that. Also, the professionals

have a time spent median slightly higher than the students. Moreover, the values of time spent

for the students are quite different.

5.2.4.2 Qualitative Data

As presented in Subsection 5.2.2.4, the subjects filled out forms after the tasks and at

the end of the experiment. The goal of the forms after the tasks (Post-Task Questionnaire) was to

acquire information about the feeling of the subject about: (i) the easiness of the task; (ii) the

training session; (iii) the task goals; and (iv) whether the coverage of the created tests is good

or not. For these questions, it was used a Likert scale with five levels from Strongly Agree to

Strongly Disagree.

Table 17 presents the results of the Post-Task Questionnaire related to Task I. In

Group A, which generated the tests based on the experience, all subjects “Strongly Agree” that

the task was easy and that the goals were clear. Besides that, they reported that the goals were

clear and the test coverage was good. In the Group B, which used the TestDAS, all subjects

“Strongly Agree” that the task was easy, the training was enough and the tests coverage was good.

Also, they stated that the goals were clear.

Table 17 – Subjects’ feedback regarding the Task I (Mobiline)

Group Scale Easy Task Enough Training Clear Goals Good tests coverage

A

Strongly Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Agree 0 (0%) 1 (17%) 0 (0%) 2 (33%)

Strongly Agree 6 (100%) 5 (83%) 6 (100%) 4 (67%)

B

Strongly Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Agree 0 (0%) 0 (0%) 2 (33%) 0 (0%)

Strongly Agree 6 (100%) 6 (100%) 4 (67%) 6 (100%)

Source – The author

Aiming to assess the agreement among the answers from the subjects presented in

Table 17, it was measured the Randolph’s free-marginal multirater Kappa (RANDOLPH, 2005).

For this purpose, the cases were the topics addressed (Easy Task, Enough Training, Clear Goals,

Good tests coverage) in the Post-Task Form and the categories were the values of the Likert scale

used. As a result, for the Group A the free-Kappa value was 0.72, whereas for the Group B

128

the free-Kappa value was 0.83. Thus, by using the interpretation provided by Landis and Koch

(1997)4, there is a substantial agreement in the Group A and an almost perfect agreement in the

Group B. This high agreement inside the groups was expected since the subjects have a similar

background (see Section 5.2.2.3) and performed the Task I by using the same treatment.

Table 18 presents the results of the Post-Task Questionnaire related to the Task II.

In the Group A, which used the TestDAS in this task, all subjects stated that the task was easy,

the training was enough and the task goals were clear. Regarding the test coverage, five of the

subjects reported that the coverage was good, whereas one subject was undecided (“Neutral”).

In the Group B, which created the tests based on the experience, all subjects reported that the

training was enough, the goals were clear and the test coverage was good. However, only four

subjects stated that the task was easy, whereas one did not report this task as easy (“Disagree”)

and another one was undecided (“Neutral”).

Table 18 – Subjects’ feedback regarding the Task II (SmartHome)

Group Scale Easy Task Enough Training Clear Goals Good tests coverage

A

Strongly Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 0 (0%) 1 (17%)
Agree 5 (83%) 1 (17%) 0 (0%) 1 (17%)

Strongly Agree 1 (17%) 5 (83%) 6 (100%) 4 (66.6%)

B

Strongly Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Disagree 1 (17%) 0 (0%) 0 (0%) 0 (0%)
Neutral 1 (17%) 0 (0%) 0 (0%) 0 (0%)
Agree 2 (33%) 2 (33%) 1 (17%) 4 (67%)

Strongly Agree 2 (33%) 4 (67%) 5 (83%) 2 (33%)

Source – The author

In order to assess the agreement among the answers from the subjects presented in

Table 18, it was measured the Randolph’s free-marginal multirater Kappa (RANDOLPH, 2005).

Again, the cases were the topics addressed in the Post-Task Form and the categories were the

values of the Likert scale used. As a result, for Group A the free-Kappa value was 0.60, whereas

for Group B the free-Kappa value was 0.29. Thus, there is a moderate agreement (LANDIS;

KOCH, 1977) in Group A. However, in Group B, the value of free-Kappa indicates only a fair

agreement. By analyzing the answers of the subjects from the Group B, the main differences

were in the question addressing the easiness of the task. A possible reason for this discrepancy is
4 0 - poor agreement; between 0.0 and 0.20 - a slight agreement; between 0.21 and 0.40 - fair agreement; between

0.41 and 0.60 - moderate agreement; between 0.61 and 0.80 - substantial agreement; and between 0.81 and 1.00
- almost perfect agreement

129

that some of the subjects of the Group B felt it was more easy to create the tests by using the

TestDAS, as they did in Task I.

The post-task forms also had open questions related to general comments (optional)

and the testing criterion applied (mandatory in Task conducted based on the subjects’ experience).

In the latter, all subjects reported that created the tests to cover the contexts, and one of them

stated that also focused on covering all possible combinations of context. With regards to the

comments, the subjects’ feedback is summarized as follows:

• “The excel file (used by the TestDAS tool to specify the context variation model) did not

make easy to see the context model”;

• “The method presents a good coverage and is easy to understand to who already know

DSPL concepts”;

• “Manual testing is costly”; and

• “Without the method the effort increased to generate tests cases and I am not sure if all

cases were covered”.

The form filled out at the end of the experiment (Post-Experiment Questionnaire)

aimed to collect feedback about which treatment (using TestDAS or based on the subjects’

experience) has better coverage and creates tests in less time. Table 19 presents the results of this

form. In Group A, most of the subjects (83%) stated that the TestDAS has a better coverage and

generate more tests, whereas 50% stated that it spent less time than manual testing. On the other

hand, in Group B, all subjects reported that using the TestDAS they achieved a better coverage,

generated more tests and that they spent less time to generate tests.

Table 19 – Subjects’ answers in the Post-Experiment Form

Group Scale TestDAS has better
coverage

TestDAS creates tests
in less time

TestDAS creates
more tests

A

Strongly Disagree 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 1 (17%) 3 (50%) 1 (17%)
Agree 2 (33%) 0 (0%) 2 (33%)

Strongly Agree 3 (50%) 3 (50%) 3 (50%)

B

Strongly Disagree 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%)
Neutral 0 (0%) 0 (0%) 0 (0%)
Agree 0 (0%) 0 (0%) 0 (0%)

Strongly Agree 6 (100%) 6 (100%) 6 (100%)

Source – The author

130

When asked about which was the best way to specify the tests, all subjects (100%)

stated that to specify tests with the TestDAS is better than to specify tests based on the tester’s

experience.

5.2.4.3 Hypothesis Testing

In order to analyze the experiment results, statistical tests were applied using the

SPSS tool (IBM, 2017). First, it was used the Kolmogorov-Smirnov test (HOLLANDER;

WOLFE, 1999; WOHLIN et al., 2014) to assess if it is reasonable to assume that the data sets

from the experiment come from a normal distribution. Table 20 presents the results of this test

for three variables measured in the experiment: number of tests, test coverage and time spent.

Note that the p-values for the Kolmogorov-Smirnov tests related to the variables

number of tests and test coverage are near 0.000 (in the row “Asymp. Sig.”). This implies

that these data set have not a normal distribution, because the p-value was smaller than the

significance level (0.05). On the other hand, the p-value for the variable time spent (0,0771) is

higher than 0.05, which means that the distribution of this data set corresponds to the theoretical

distribution.

Table 20 – Data set normality test

Description #Tests Test Coverage Time Spent

Kolmogorov-Smirnov Z 1,858 1,855 0,664
Asymp. Sig (2 tailed) 0,002 0,002 0,771

Source – The author

Therefore, the Kolmogorov-Smirnov tests indicated that the data set of two variables

did not follow a normal distribution and, thus, it was necessary to use non-parametric tests for the

hypothesis testing. In this case, it was applied the Mann-Whitney test (WOHLIN et al., 2014),

which is a non-parametric test of the null hypothesis and that has a greater efficiency than the

t-test on non-normal distributions.

Table 21 presents the results of the hypothesis testing performed in order to compare

the tests generated by Groups A and B in Task I, with regards to the number of tests, time

spent and tests coverage. It is worth noting that in Task I, the subjects from Group A used

experience-based testing (Treatment 2), whereas the subjects from Group B used the TestDAS

(Treatment 1). So, the values presented in this table are the asymptotical significance of the

131

comparison between the treatments, using the Mann-Whitney test. Values below 0.05 indicate a

statistically significant difference between the results. Thus, the results indicated a statistically

significant difference between the use of the treatments concerning the number of test cases

(p-value = 0.005 < 0.05) and the tests coverage (p-value = 0.006 < 0.05). On the other hand, the

use of the two treatments have shown results statistically equal to each other with regards to the

time spent in this task (p-value = 0,522 > 0.05).

Table 21 – Comparison between the treatments in Task I

Description #Tests Test Coverage Time Spent

Mann-Whitney U 3,000 3,000 14,000
Asymp. Sig (2 tailed) 0,005 0,006 0,522

Source – The author

Table 22 presents the results of the Mann-Whitney test for Groups A and B in Task II.

Again, there is a statistically significant difference between the use of the treatments concerning

the number of test cases (p-value = 0,005 < 0,05) and the test coverage (p-value = 0,007 < 0,05).

However, the use of the two treatments have shown results statistically equal to each other with

regards to the time spent in Task II (p-value = 0.423 > 0.05).

Table 22 – Comparison between the treatments in Task II

Description #Tests Test Coverage Time Spent

Mann-Whitney U 3,000 3,000 13,000
Asymp. Sig (2 tailed) 0,005 0,007 0,423

Source – The author

Based on the results depicted in Table 21 and Table 22, the null hypothesis HN0

and HC0 can be rejected and their respective alternative hypothesis (HN1 and HC1) can be

accepted. On the other hand, the null hypothesis HT0 cannot be rejected since there was not

found statistically significant difference in the time spent by the use of the treatments.

5.2.5 Discussion

The evaluation of the TestDAS focused on to investigate three questions: (Q2) Does

the number of the tests is increased when the TestDAS is followed?; (Q3) Does the coverage of

the tests is increased when the TestDAS is followed?; and (Q4) Does the time spent to create

132

adaptation test cases is lower when the TestDAS is followed?.

With regards to the number of tests (Q2), the data of the controlled experiment

showed that the number of test cases in the test sequences generated by the TestDAS is higher

than the number of test cases created by the subjects that had used only experience-based testing.

Besides, the data set from the experiment showed that the coverage of the tests generated (Q3)

by the TestDAS is higher than the coverage achieved by the tests created manually using the

subjects’ experience. Regarding the time spent (Q4) to generate the tests with TestDAS and

manually using the subjects’ experience, the hypothesis testing did not reject the null Hypothesis

HT0, since the p-value was smaller than 0.05, which is out of the confidence interval of 95%. So,

the data from the experiment showed that there was no gain using the TestDAS, regarding the

time spent to generate the adaptation test sequences.

Beyond the quantitative data collected in the experiment, forms filled out by the

subjects after the experiment tasks and after the entire experiment provided qualitative data

addressing the TestDAS and the experiment itself. In these forms, all subjects reported that the

training was enough and the task goals were clear. Concerning the tasks, all subjects using the

TestDAS stated that the tests generation was easy. On the other hand, two of the subjects did not

agree that the tests creation was easy using only their experience.

Furthermore, only one (8%) from the twelve subjects did not agree (he stated

“Neutral”) that the TestDAS has better coverage than experience-based testing. Also, only one

subject did not agree that TestDAS generates more tests than the experience-based testing. Thus,

these data corroborate with the results obtained from the quantitative data.

With regards to the time spent, three of the subjects from the Group A did not agree

that TestDAS generate tests in less time. Nevertheless, all subjects from Group B reported that

the TestDAS generated the tests faster than the tests creation based on their experience. In fact, as

depicted in Subsection 5.2.4.1, the value of the time spent by the Group B with the TestDAS was

slightly lower than the time spent in the manual creation of the tests. Thus, there is a divergence

with the quantitative data since they did not show a statistically significant difference between

the time spent with TestDAS and with the tests creation based on the subjects’ experience.

Therefore, the collected data indicate the effectiveness of the TestDAS regarding

the number of tests and test coverage compared to the manual tests creation using the subject’s

experience. This result was expected since the test coverage criteria used in TestDAS were

proposed based on a set of behavioral properties related to the DAS adaptive behavior.

133

Also, despite most of the subjects had reported in the qualitative forms that the Test-

DAS spent less time than experience-based testing, this was not corroborated by the quantitative

data. Thus, the experiment data does not show evidence that the TestDAS has gain regarding

the time spent to create the tests. The main reason for this result, according to the observations

during the experiment, is the need to specify manually the DAS context variation model to use

the TestDAS.

5.2.6 Threats to Validity

This section discusses the threats to the validity of the experiment results with

regards to: (i) Conclusion Validity; (ii) Construct Validity; (iii) Internal Validity; and (iv) External

Validity.

Threats to the Conclusion Validity concern the relationship between the treatment and

the outcome (WOHLIN et al., 2000). One of these threats refers to the reliability of the measures

used. In order to have an objective measure (independent from a human judgment), it was

defined a measure related to the coverage of the context and adaptation actions over the features.

The background of the subjects and the division into the groups are also threats to this validity.

Regarding the subjects, it was required a previous knowledge in Software Testing, and a training

session was performed to balance the knowledge of the concepts used during the experiment. In

order to mitigate the threat related to the division into the groups, the subjects were randomly

assigned to the groups, but keeping a balanced number of students and professionals in each one.

Other threats to the Conclusion Validity are the low statistical power and the violation

of the assumptions of statistical tests (WOHLIN et al., 2000). Both of them can lead to wrong

conclusions. Aiming to mitigate such threats, first, it was applied the Kolmogorov-Smirnov test

(HOLLANDER; WOLFE, 1999) to assess if the data follow a normal distribution. Next, since

the data did not have a normal distribution, it was applied the Mann-Whitney test (WOHLIN et

al., 2014) that is a non-parametric statistical test.

The Construct Validity concern generalizing the results of the experiment to the

theory behind the experiment (WOHLIN et al., 2000). The main threats are related to the

experiment design, for instance, the mono-operation bias (WOHLIN et al., 2000). To mitigate

this kind of threats, the experiment used two different objects and the experiment design was

previously assessed through a pilot study. Another possible threat is the under representation

of the construct, since only parts of academic DAS were used in the experiment. A larger DAS

134

could yield a more reliable data set, but it could not be possible to execute the experiment tasks

in an acceptable time.

As mentioned in Section 5.1.5, threats to Internal Validity are influences that can

affect the independent variable with respect to causality (WOHLIN et al., 2000). In this case, a

threat is the learning effect, i.e., Maturation (WOHLIN et al., 2000). To mitigate this effect, the

subjects applied the treatment in different orders. The subjects from Group A used experience-

based testing in Task I and the TestDAS in Task II, whereas the subjects from Group B used the

TesTDAS in Task I and only their experience in Task II. Thus, all subjects used the two treatments

of the experiment, where the order of the treatment used was defined randomly. This also avoids

social threats, such as (WOHLIN et al., 2000): (i) compensatory equalization of treatments,

when participants may wish they were in the other group and this affect the performance of

them; (ii) compensatory rivalry, when there is a rivalry between the groups and this affect the

participants’ performance; and (iii) resentful demoralization, when due to the treatment used, the

participant is not motivated and not perform as good as it generally does.

Another threat to the Internal Validity is the selection of the subjects that was made

based on convenience sampling (WOHLIN et al., 2014). However, it is worth noting that

they were randomly assigned to the groups (A or B). Also, to mitigate the threat of a bad

instrumentation, it was assessed during the pilot study and its results pointed out improvements

that were made in the experiment instrumentation.

As mentioned in Section 5.1.5, threats to External Validity are conditions that limit

the ability to generalize the results to industrial practice (WOHLIN et al., 2000). The main threat

to this validity is related to the DSPLs (Mobiline and SmartHome) used, since they are academic

DAS; and in the experiment, it was used only part of their feature models. An experiment with

a larger DAS would demand effort incompatible with the time available for the experiment.

Furthermore, despite the participation of professionals, the experiment also has students as

subjects, which might be not representative of the population.

5.3 Assessment of the Supporting Tools

As presented in Section 4.5, the TestDAS tool and the CONTroL were implemented

to support the use of the TestDAS method. The TestDAS tool helps in the model checking

process, as well as in the generation of the test sequences for a given DAS. The CONTroL, in

turn, aims to support the execution of the test sequences in the application under testing.

135

In this way, the goal of this evaluation was to investigate the feasibility of using these

tools during the activities of the TestDAS. The evaluation questions from Q1 to Q4 were defined

to the Mutant Analysis (Section 5.1) and Controlled Experiment (Section 5.2). Therefore, for the

tool evaluation, it was defined the question Q5 as follow:

(Q5) Is the use of TestDAS tool and CONTroL feasible to perform the TestDAS method

activities?

In order to answer Q5, it was performed an Observational Study (KITCHENHAM

et al., 2002), in which the participants used both the TestDAS tool and the CONTroL during

the execution of the TestDAS method and after that, they provided feedback concerning these

supporting tools.

With regards to the participants of this study, they were the same one that performed

the experiment tasks (see Section 5.2.2.3). The use of the same subjects in both evaluations

brings a threat to the validity, as discussed in Section 5.3.4. However, the participants performed

different tasks in these evaluations, and the goal in the observational study was to collect the

users’ feedback about the tools implemented, whereas the experiment focused on the comparison

between TestDAS and experience based testing. It is also important to mention that CONTroL

was not used in the experiment described in Subsection 5.2 since it would require the instru-

mentation of all source code of the Mobile Guide and Smart Home, and this would make the

experiment more difficult and time-consuming to execute.

The following subsections are organized as follows. Subsection 5.3.1 describes the

design and execution of the observational study. Subsection 5.3.2 presents the results obtained

from this evaluation. Subsection 5.3.3 discusses the results to answer the question investigated.

Finally, the threats to the validity of the results are depicted in Subsection 5.3.4.

5.3.1 Design and Execution of the Observational Study

As mentioned before, the goal of the observational study was to assess the feasibility

of using the TestDAS tool and the CONTroL to perform the TestDAS activities depicted in

Chapter 4. For this purpose, the observation study execution was organized into three phases,

described as follows:

• Phase I - Preparation. In this phase, the objectives of the study were introduced to the

participants. Also, this phase involved a training session about the main concepts regarding

136

the model checking approach;

• Phase II - Use of the TestDAS tool. The first activity of this phase was a training session

on the functionality of TestDAS tool, presented in Section 4.5. Then, the subjects were

required to run the model checking and to generate a test sequence using the TestDAS

tool. For these tasks, they received a JSON (JavaScript Object Notation)5 file with a

context-aware feature model and a document describing the study object and the context

variation model. After uploading the JSON file to the TestDAS tool and filling out the

adjacency matrix generated with the context variation model, the participants performed

the checking of the properties defined in Section 4.3.2 and generated the test sequences.

At last, the subjects filled out a Feedback Form - TestDAS tool (see Appendix F) with their

opinion about the tool; and

• Phase III - Use of the CONTroL. In this phase, first, the subjects received training about

the CONTroL (see Section 4.5). Next, they used the CONTroL to include annotations

(i.e., @ControlContext, @ControlFeature and @ControlSystemAdapted) in an application

under testing. Then, they ran the test sequence generated in Phase II in this application

and analyzed the test results exported by the tool in an HTML file. In the last activity, the

subjects were asked to provide feedback concerning the use of the CONTroL by filling out

the Feedback Form - CONTroL, which is available at Appendix F.

It is important to highlight that in this evaluation the participants were not required

to fill out a background form, since they had already done this in the controlled experiment (see

Section 5.2). Thus, the background of the participants of the observational study can be seen

in Section 5.2.2.3. Besides that, in this evaluation, the subjects were not divided into groups

since the goal was not to compare different treatments, but indeed collect evidence regarding the

feasibility of using the supporting tools implemented.

With regards to the study object, it was used the Mobile Guide DSPL (see Section 2.1)

and the GREat Tour application (MARINHO et al., 2013) in the Phases II and III, respectively.

The GREat Tour is an Android application generated from the Mobile Guide, which self-adapts

according to the visitor’s context to provide texts, images or videos. This application follows the

adaptation rules presented in Table 1, concerning the running example depicted in the Chapter 1.

The feedback forms contains open and closed questions. The closed questions

concern the opinion of the subject regarding the easiness of use and whether they would like to
5 www.json.org/

137

use the tool in the testing/verification of DAS. For this kind of questions, it was used the five-point

Likert scale (ROBINSON, 2014) varying from “Strongly Disagree” to “Strongly Agree”. The

open questions, in turn, are related to difficulties faced by the participant and suggestions for

improving the tools. It is worth noting that the forms’ questions were defined to provide initial

evidence regarding the user perception. A complete evaluation, for instance, using the TAM

(Technology Acceptance Model) (VENKATESH; DAVIS, 2000; DAVIS, 1986), would require

more time and effort, and thus it was left as future work.

In addition to the qualitative data collected by the feedback forms, the time spent in

the tasks was monitored to observe whether the participants have a similar performance.

5.3.2 Results

Table 23 presents the time spent by the participants during the tasks of the obser-

vational study. The mean of the time spent in the tasks (model checking and test sequence

generation) with the TestDAS tool was 5m 38s with a standard deviation equals to 36 seconds.

In the task related to the test execution with CONTroL, the mean of time spent was 5m 6s, with

SD equals to 41 seconds. By observing these standard deviation values, it was possible to note

that the data tend to be close to the mean and, thus, the participants spent a similar time in the

tasks of the study.

Table 23 – Time spent by the subjects in the tasks with TestDAS tool and CONTroL

Subject Time Spent (m:s)
TestDAS Tool CONTroL

S1 5:00 4:00
S2 5:44 5:23
S3 5:36 6:00
S4 5:31 5:55
S5 5:42 5:00
S6 6:32 5:09
S7 6:06 5:15
S8 6:47 6:00
S9 5:32 5:06
S10 4:34 4:36
S11 5:28 4:03
S12 5:12 4:50

Mean 5:38 5:06
SD 0:37 0:41

Source – The author

Table 24 presents the results of the closed questions in the Feedback Form - TestDAS

138

tool filled out in the Phase II. Most of the participants stated that it was easy to perform the

model checking with the TestDAS tool and that they would like to use this tool for supporting

the model checking in DAS. Regarding the generation of test sequences with the TestDAS tool,

most of the subjects reported that it was an easy task, whereas all of them stated that would like

to use the TestDAS tool for testing DAS.

Table 24 – Subjects’ feedback regarding the TestDAS Tool

Scale Model Checking Test Generation
Easy to use Would use Easy to use Would use

Strongly Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Neutral 2 (16%) 1 (8%) 1 (8%) 0 (0%)
Agree 5 (42%) 4 (33%) 3 (25%) 1 (8%)

Strongly Agree 5 (42%) 7 (59%) 8 (67%) 11 (92%)

Source – The author

According to the feedback of the participants, the main difficulties concerning the

use of the TestDAS tool were related to the understanding of the model checking log and the use

of an excel file to specify the context variation model. In this way, the main suggestion for the

improvement of this tool refers to the creation of an interface to support the specification of the

context variation model. Other suggestions include improvements in the user interface and the

creation of a Domain Specific Language (DSL) for the user specify her/him own properties to be

checked.

Table 25 presents the results of the closed questions in the Feedback Form - CONTroL

filled out in the Phase III. As depicted in this table, most of the participants stated that the use of

the CONTroL was easy. Also, all of them would like to use this tool during the test execution

over a DAS.

Table 25 – Subjects’ feedback regarding the CONTroL

Scale Easy to use Would use

Strongly Disagree 0 (0%) 0 (0%)
Disagree 0 (0%) 0 (0%)
Neutral 3 (25%) 0 (0%)
Agree 4 (33%) 1 (8%)

Strongly Agree 5 (42%) 11 (92%)

Source – The author

139

In the open questions, five of the subjects reported that the main difficulty for the

use of the CONTroL is related to the code understanding and the instrumentation task. For the

improvement of this tool, three of the participants suggested automating the code annotation.

Also, two subjects stated that would be interesting to generate the test report in the mobile device,

since in the observational study the test results were exported from the device to a notebook in

order to generate the corresponding HTML file.

5.3.3 Discussion

The evaluation of the feasibility of the implemented supporting tools was conducted

in order to answer the following task: (Q5) Is the use of TestDAS tool and CONTroL feasible to

perform the TestDAS method activities?. For this purpose, an observational study was performed,

in which the participants used the TestDAS tool and the CONTroL, and, next, they provided their

feedback regarding these tools.

All subjects successfully finished the tasks of the observational study using the two

tools evaluated. The results of this study showed that most of the participants felt that it was

easy to run model checking (84%) and generate test sequences (92%) with TestDAS tool. Also,

most of them (75%) reported that it was easy to use the CONTroL for running a test sequence.

Therefore, the data from the PoC provided evidence that the use of both implemented tools is

feasible to support the execution of the TestDAS method.

The major difficulty during the use of the TestDAS tool was the filling out of the

excel file with the context variation model. With regards to the CONTroL, the major difficulty

reported by the participants refers to the application code instrumentation. However, the results

were positive and most of the participants would like to use the TestDAS tool and CONTroL for

DAS model checking (92%) and testing (100%).

It is worth noting that the participants did not specify the feature model, since it is

not a goal of the TestDAS tool to provide support to feature modeling. Besides that, the current

implementation of the TestDAS tool is not integrated with a feature modeling tool. Thus, the

user should upload a JSON file with the feature model.

Moreover, the CONTroL depends on the programming language of the application

under testing. Currently, the CONTroL supports Java and Android applications, but to another

kind of application (e.g., IOS application), adaptations in the CONTroL code can be needed.

140

5.3.4 Threats to Validity

The main threats to the validity of the results from the observational study concern

the internal validity and external validity.

The main threat related to the internal validity is the selection of the participants.

Since the participants of the observational study were the same from the controlled experiment

(see Section 5.2), the results of this study can be affected by the learning of the participants.

However, the set of tasks in this study was different from the controlled experiment. In the latter,

the participants did not perform model checking and did not run the tests.

With regards to the external validity, the main threat is the study objects used, because

the Mobile Guide and the GREat Tour are small and academic DAS. Thus, spite of the positive

results in using the TestDAS tool and CONTroL, these results can not be generalized to all kind

of DAS.

5.4 Conclusion

In this chapter, three evaluations performed to assess the TestDAS were presented, as

well as the feasibility study of two supporting software, TestDAS tool and CONTroL. Thus, this

chapter described the following evaluations: (i) an evaluation of the model checking approach of

the TestDAS by using a mutant analysis; (ii) a controlled experiment to compare the TestDAS

with experience-based testing regarding the time spent to create the tests, tests coverage and

number of tests; and (iii) an observational study to assess the feasibility of using the TestDAS tool

to apply the TestDAS method, and the CONTroL to perform test sequences over the application

under testing.

The first evaluation investigated how effective is the model checking approach

proposed. For this purpose, 114 mutants were created from a correct DSPL design, and then

the model checking approach was applied in each mutant to compute the number of killed

mutants (i.e., identified by the approach as a faulty model). As a result, the approach successfully

identified all DAS specifications with design faults.

The second evaluation was performed through a controlled experiment and focused

on the comparison between TestDAS and experience based testing. Twelve subjects participated

in this experiment and provided quantitative and quantitative data that supported this comparison.

The results of such evaluation pointed out evidence that the TestDAS has a better results than

141

experience-based testing for the testing of adaptive systems, regarding the number of test cases

generated and the tests coverage. On the other hand, according to the experiment data, there is

no gain in the time spent using the TestDAS to generate the test sequences.

The third evaluation, the observational study, assessed the feasibility of using the

supporting tools implemented to perform the TestDAS method. In this evaluation, the participants

used the TestDAS tool and the CONTroL and provided their feedback through forms. The data

from this study revealed evidence that the use of these tools is feasible and they support the

execution of the TestDAS. Also, most of the participants reported that was easy to use the

TestDAS tool and CONTroL.

The next chapter concludes this thesis by revisiting the research hypothesis, and

summarizing the results and publications during the thesis work period. Furthermore, it describes

the perspectives of future work related to the contributions presented in Chapter 4.

142

6 CONCLUSION

This thesis presented a testing method, called TestDAS, for supporting the testing of

the DAS adaptive behavior. It also introduced its supporting tools and discussed the evaluations

performed.

This chapter concludes the thesis and is organized as follows. Section 6.1 depicts

an overview of this thesis. Section 6.2 summarizes the main results of this thesis. Section 6.3

discusses the hypothesis investigated and compares TestDAS with related work. Finally, Section

6.4 introduces the limitations of this work, and Section 6.5 presents some insights for future

work.

6.1 Overview

Dynamically Adaptive Systems (DAS) self-adapt according to the context infor-

mation gathered from the surrounding environment (BENCOMO et al., 2008). Such dynamic

behavior is typically designed using adaptation rules, which are context-triggered actions re-

sponsible for software reconfiguration actions. Thus, faults in the adaptation rules can result in

failures in the adaptive behavior of the DAS at runtime.

Given the complexity introduced by the use of context information as an adaptation

trigger, the verification and validation activities are important activities to ensure the correctness

of the DAS adaptive behavior. Therefore, methods and tools supporting these activities are

needed to ensure quality for adaptive systems. As discussed in Chapter 3, in the literature there is

a lack of a formalism that represents the effects of adaptation rules in the DAS behavior, allowing

the checking of properties related to the adaptation rules design and the (de)activation of features.

Besides, the existing testing methods do not ensure the coverage of the adaptation rules effects

(i.e., feature activation/deactivation). For example, these methods do not guarantee the coverage

of DAS configurations resulting from the adaptation rules interleaving or the (de)activation of all

system features by the adaptation rules.

Aiming to address this gap, the goal of this research was to propose a method for

testing the DAS adaptive behavior focused on the effects of the adaptation rules. This thesis

achieved this goal by proposing the TestDAS (described in Chapter 4), which is a testing method

that includes: (i) a set of test coverage criteria used to generate test sequences to validate the

adaptive behavior of dynamic systems; (ii) a model, called Dynamic Feature Transition System

143

(DFTS), to specify the DAS adaptive behavior; (iii) a set of behavioral properties that DAS should

satisfy; and (iv) a model checking approach that can identify design faults in the adaptation rules.

Furthermore, two supporting tools were implemented: (i) TestDAS tool, which

supports the generation of test sequences for validating the DAS adaptive behavior, as well as the

checking of properties over the DAS design; and (ii) CONTroL, which supports the execution of

test sequences to validate the DAS adaptive behavior.

To assess the TestDAS and the supporting tools, three evaluations were performed,

as described in Chapter 5. The first one was carried out using a mutant analysis to evaluate

if the model checking approach can identify design faults in the adaptation rules. The second

one aimed to compare through a controlled experiment the tests generated by TestDAS and

the experience based testing. The last one focused on the feasibility of the supporting tools

implemented, and it was conducted through an observational study.

The results of all these evaluations showed evidence regarding the benefits of the

TestDAS and its tools. The mutant analysis gathered data that showed that the model checking

approach proposed is effective in the identification of behavioral fault patterns. In the controlled

experiment, the data analysis concluded that TestDAS generates more tests and achieves a better

coverage than the tests created based on the tester’s experience. Also, the observational study

shows that the TestDAS tool and CONTroL support the TestDAS activities successfully.

6.2 Main Results

The main results of this thesis, which were presented in Chapter 4 and evaluated in

Chapter 5, are summarized as follows:

• TestDAS method. This method supports the generation of test sequences to validate the

adaptive behavior of dynamic systems based on a set of five coverage criteria. The TestDAS

also involves a model for the DAS adaptive behavior, called Dynamic Feature Transition

System (DFTS), and an approach for model checking that helps in the identification of

design faults in DAS specifications;

• Set of behavioral properties. The five properties defined can be used to identify design

faults in the DAS specification, since they are related to behavior fault patterns;

• TestDAS tool. This tool supports the software engineer to use the DFTS to generate test

sequences, as well as to identify faults in adaptation rules design; and

• CONTroL. A library implemented in the Java language that performs the test sequences

144

generated by the TestDAS on the DAS under testing.

Furthermore, five papers were published in conferences and journals from the re-

search performed in this thesis work. Also, one paper was accepted for publication. Table 26

presents the references of these papers. The first paper (SANTOS et al., 2017) presents an

approach to develop DAS by using an variability modeling technique and the model checking

approach depicted in Section 4.3. The next paper (SANTOS et al., 2017) concerns the systematic

review performed on context-aware testing, which was important to identify the existing test

coverage criteria related to dynamic adaptation. The DFTS (see Section 4.2) and the behavioral

properties proposed (see Section 4.3.2) were introduced in the paper (SANTOS et al., 2016).

The paper (SANTOS et al., 2015b) introduced the initial proposal of this thesis work. The papers

(SANTOS et al., 2015a) and (SANTOS et al., 2014), in turn, describe results from the literature

review activity (see Section 1.5) related to the software variability and SPL domain.

Table 26 – Papers from this thesis work

Reference Qualis Status

SANTOS, I. S.; SOUZA, M. L. J.; CARVALHO, M. L. L.; OLIVEIRA, T. A.; ALMEIDA,
E. S.; ANDRADE, R. M. C. Dynamically Adaptable Software is All about Modeling

Contextual Variability and Avoiding Failures. IEEE Software, 2017b.
A1 Accepted

SANTOS, I. S.; ANDRADE, R. M. d. C.; ROCHA, L. S.; MATALONGA, S.; OLIVEIRA,
K. M. de; TRAVASSOS, G. H. Test case design for context-aware applications: Are we

there yet?. Information and Software Technology, Butterworth-Heinemann, Newton, MA,
USA, v. 88, n. C, p. 1–16, ago. 2017a. ISSN 0950-5849

A2 Published

SANTOS, I. S.; ROCHA, L. S.; NETO, P. A. S.; ANDRADE, R. M. C. Model Verification
of Dynamic Software Product Lines. In: Proceedings of the 30th Brazilian Symposium on

Software Engineering. New York, NY, USA: ACM, 2016. (SBES ’16), p. 113–122.
B2 Published

SANTOS, I. S.; ANDRADE, R. M. C.; NETO, P. A. S. Um método para geração
otimizada de testes a partir de requisitos para linhas de produto de software dinâmicas.

In: Proceedings of the V Workshop de Teses e Dissertações do CBSoft, 2015b
- Published

SANTOS, I. S.; ANDRADE, R. M.; NETO, P. A. S. Templates for textual use cases of
software product lines: results from a systematic mapping study and a controlled

experiment. Journal of Software Engineering Research and Development, v. 3, n. 1, 2015a
B3 Published

SANTOS, I. S.; ANDRADE, R. M. C. C.; NETO, P. A. S. How to Describe SPL
Variabilities in Textual Use Cases: A Systematic Mapping Study. In: Eighth Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS), 2014. p.

64–73

B3 Published

Source – the author.

Other 19 papers were also published during the thesis work period. Although they

do not present results from this thesis work, they were important for the improvement of the

research skills such as critical thinking, research methods, and academic writing. The main topics

addressed by these papers were: Test Generation, Testing Process, Agile Methods, Ubiquitous

145

Systems, Teaching of Software Engineering, and Software Measures. The references of these 19

published papers are presented in Appendix G.

6.3 Revisiting the Research Hypothesis and Related Work

In Chapter 1, it was presented the research hypothesis that guided this thesis work.

So, based on the results presented in Chapter 4 and the evaluations described in Chapter 5, it

is possible to analyze (accept or reject) this research hypothesis. This analysis is presented as

follows:

Research Hypothesis: A DAS testing method using a model to specify the DAS features configu-

ration based on adaptation rules provides better coverage of the adaptive behavior and supports

the identification of faults in the adaptation rules design.

Hypothesis Analysis: Accepted. Based on the evaluations presented in Chapter 5, it was

possible to gather evidence that the TestDAS supports the generation of adaptation test sequences

achieving a better coverage of the DAS adaptive behavior. This method also supports the model

checking for the faults identification in the adaptation rules of DAS. Furthermore, it was possible

to observe that the Dynamic Feature Transition Systems (DFTS), which models the features

configuration based on the context changes and adaptation rules, supports the TestDAS during

the DAS testing and model checking.

With regards to the related work, Chapter 3 points out that there is a lack of a

formalism to represent the effects of adaptation rules in the DAS configuration, allowing the

checking of properties related to the adaptation rules and (de)activation of features. Also, only

one work (LOCHAU et al., 2015) supports the use of a well-known model checker, and the

checking of properties related to fault patterns, as well as user-defined properties. In this scenario,

the differential of TestDAS is that it models the DAS configurations based on the context and

adaptation rules triggered. Thus, the proposed method supports the checking of properties to

reason about the effects of the adaptation rules over the DAS features. Also, it uses the SPIN and

not only supports the identification of adaptation fault patterns, but also supports the checking of

properties defined by the software engineer. Table 27 presents TestDAS according to the criteria

146

used in Chapter 3 (see Table 4) to present the studies related to DAS model checking.

Table 27 – TestDAS in comparison to the work related to DAS model checking.

Work System Model Tool Properties Checked
Fault Patterns User-Defined

TestDAS Dynamic Feature Transition System SPIN Yes Yes

Source – the author.

Regarding the related work to DAS testing, described in Chapter 3, most of the

studies propose black-box approaches and some studies propose context-based test coverage

criteria. However, even measuring the context coverage, the existing test coverage criteria do not

ensure the coverage of the effects of the adaptation rules over the DAS features. Thus, there is a

lack of approaches to guide the DAS testing that take into account the coverage of the adaptation

rules actions. TestDAS addresses this gap by generating adaptation test sequences based on the

context and adaptation rules. For this purpose, it uses a model of the DAS adaptive behavior (i.e.,

the Dynamic Feature Transition System) that is built based on the DAS feature model and the

context variation model. Table 28 presents TestDAS according to the criteria used in Chapter 3

(see Table 5) to present the studies related to DAS testing.

Table 28 – TestDAS in comparison to the work related to DAS testing.

Work Test Technique Test Type Context-Based Coverage

TestDAS Adaptation Test Sequences Black-Box Yes

Source – the author.

6.4 Limitations

The method proposed in this thesis, called TestDAS, contributes to the quality

assurance of dynamic systems since the design from the implementation. However, TestDAS

has some limitations. TestDAS does not address the runtime testing or model checking. In this

way, it does not concern the verification and validation of changes in the structural variability

at runtime, for example, the inclusion of new context-aware features while the DAS is running

(CAPILLA et al., 2014b).

Besides that, TestDAS addresses only atomic adaptations and, thus, it does not allow

changes in the context state during the test of a DAS reconfiguration. Also, the tools implemented

147

to support the TestDAS help in the use of this method, but they lack usability and have limitations.

For instance, the TestDAS tool does not address feature attributes and CONTroL only handles

Java and Android applications.

Lastly, the evaluation performed used only academic DSPLs and a low number of

participants. So, there is no evidence regarding the use of TestDAS in large DSPLs. It is also

necessary the replication of these evaluations with other study objects and participants in order

to gather more evidence concerning the TestDAS benefits.

6.5 Future Work

This thesis proposed a method, called TestDAS, for DAS testing that supports the

identification of faults and failures concerning the DAS adaptive behavior. From the results of

this thesis, the main future research directions are described as follows:

• TestDAS at runtime. The method proposed works at design time, identifying faults and

failures before the deploy of DAS. So, an extension of this method to make it applicable at

runtime could complement the testing and model checking at design time, since it could

support the identification of failures that occur only at runtime. For instance, failures

related to the inclusion of a new feature or a new adaptation rule while DAS is running.

• Context changes during testing. TestDAS does not address context changes during a

adaptation of the DAS. Hence, it does not allow the context to vary during testing freely,

not addressing the truly context-aware testing (SANTOS et al., 2017)(MATALONGA et

al., 2017). Therefore, an extension of the TestDAS to consider context changes could take

into account the unpredictable behavior of the context, which may change at any time.

• Use of a Domain Specific Language. In Chapter 4, a set of behavioral properties was

presented to support the software engineer in the identification of faults related to the DAS

design. He/she could also specify their properties and run them on SPIN by using the

proposed mapping of the Dynamic Feature Transition System in Promela code. In this

way, a Domain Specific Language (DSL)(KOSAR et al., 2016) could make easier the

creation of new properties to be checked. Also, a DSL could support the feature model

specification in the TestDAS tool and, thus, it will not be required a third tool for the DAS

modeling.

• Automated code instrumentation with CONTroL. As pointed out in Chapter 5, the main

difficulty with regards to the CONTroL use was the code instrumentation. Thus, the

148

automatic code instrumentation using the CONTroL annotation might lead to reductions

in the effort related to the use of this tool.

• Automated generation of the context variation model. The Context Kripke Structure, which

is used by the TestDAS, models the evolution of the context of the DAS environment. Such

model could be automatically generated by monitoring the DAS environment and inferring

relationship among the contexts. This automatic generation is interesting to reduce the

effort related to the use of TestDAS.

• New empirical evaluations. This thesis presented a controlled experiment regarding the test

generation and a mutant analysis to assess the model checking approach. They provided

evidence of the TestDAS benefits. However, new studies, in other domains and with

more subjects, are needed to gather more evidence. Also, the tools implemented require

evaluations regarding the scalability and usability.

• Use of Search-Based Software Engineering. By using the testing coverage criteria and the

Search-Based Software Engineering (SBSE) (HARMAN et al., 2012; HARMAN et al.,

2015), test sequences could be generated to optimize a given goal (e.g., to maximize the

Interleaving Correctness Coverage while minimizing the size of the test sequence). Since

the use of SBSE could generate optimal or near-optimal test sequences in an acceptable

time, it could also address the testing of DAS with large feature models or large context

variation models.

149

BIBLIOGRAPHY

ALMEIDA, E. S.; ALVARO, A.; GARCIA, V. C.; MASCENA, J. C. C. P.; BUREGIO, V. A. A.;
NASCIMENTO, L. M.; LUCREDIO, D.; MEIRA, S. L. C.R.U.I.S.E: Component Reuse in
Software Engineering. [S.l.]: C.E.S.A.R e-book, 2007.

ALVES, V.; SCHNEIDER, D.; BECKER, M.; BENCOMO, N.; GRACE, P. Comparative
study of variability management in software product lines and runtime adaptable systems.
In: International Workshop on Variability Modelling of Software-intensive Systems. [S.l.:
s.n.], 2009. p. 9–17.

AMALFITANO, D.; FASOLINO, A. R.; TRAMONTANA, P.; AMATUCCI, N. Considering
context events in event-based testing of mobile applications. In: Software Testing, Verification
and Validation Workshops (ICSTW), 2013 IEEE Sixth International Conference on. [S.l.:
s.n.], 2013. p. 126–133.

ARCAINI, P.; GARGANTINI, A.; RICCOBENE, E. Asmetasmv: A way to link high-level
asm models to low-level nusmv specifications. In: Proceedings of the Second International
Conference on Abstract State Machines, Alloy, B and Z. Berlin, Heidelberg: Springer-Verlag,
2010. (ABZ’10), p. 61–74. ISBN 3-642-11810-0, 978-3-642-11810-4.

ARCAINI, P.; GARGANTINI, A.; VAVASSORI, P. Automatic detection and removal of
conformance faults in feature models. In: 2016 IEEE International Conference on Software
Testing, Verification and Validation (ICST). [S.l.: s.n.], 2016. p. 102–112.

ARCAINI, P.; RICCOBENE, E.; SCANDURRA, P. Formal design and verification of
self-adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst., ACM,
New York, NY, USA, v. 11, n. 4, p. 25:1–25:35, jan. 2017. ISSN 1556-4665.

BAIER, C.; KATOEN, J.-P. Principles of Model Checking. [S.l.]: The MIT Press, 2008. ISBN
026202649X, 9780262026499.

BARESI, L.; QUINTON, C. Dynamically evolving the structural variability of dynamic
software product lines. In: Proceedings of the 10th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. Piscataway, NJ, USA: IEEE Press,
2015. (SEAMS ’15), p. 57–63.

BARTOCCI, E.; LIó, P. Computational modeling, formal analysis, and tools for systems biology.
PLOS Computational Biology, Public Library of Science, v. 12, n. 1, p. 1–22, 01 2016.

BASHARI, M.; BAGHERI, E.; DU, W. Dynamic software product line engineering: A reference
framework. International Journal of Software Engineering and Knowledge Engineering,
v. 27, n. 02, p. 191–234, 2017.

BASILI, V.; ROMBACH, H. Goal question metric paradigm. Encyclopedia of Software
Engineering, v. 2, p. 528–532, 1994.

BENAVIDES, D.; SEGURA, S.; RUIZ-CORTéS, A. Automated analysis of feature models 20
years later: A literature review. Information Systems, v. 35, n. 6, p. 615 – 636, 2010. ISSN
0306-4379.

150

BENCOMO, N.; HALLSTEINSEN, S.; ALMEIDA, E. A view of the dynamic software product
line landscape. Computer, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 45, n. 10,
p. 36–41, out. 2012. ISSN 0018-9162.

BENCOMO, N.; HALLSTEINSEN, S.; ALMEIDA, E. Santana de. A view of the dynamic
software product line landscape. Computer, v. 45, n. 10, p. 36–41, Oct 2012.

BENCOMO, N.; SAWYER, P.; BLAIR, G. S.; GRACE, P. Dynamically adaptive systems are
product lines too: Using model-driven techniques to capture dynamic variability of adaptive
systems. In: Second International Workshop DSPL. [S.l.: s.n.], 2008. p. 23–32.

BENDUHN, F.; THüM, T.; LOCHAU, M.; LEICH, T.; SAAKE, G. A survey on modeling
techniques for formal behavioral verification of software product lines. In: Proceedings of the
Ninth International Workshop on Variability Modelling of Software-intensive Systems.
NY, USA: ACM, 2015. (VaMoS ’15), p. 80–87. ISBN 978-1-4503-3273-6.

BIERE, A.; CIMATTI, A.; CLARKE, E. M.; ZHU, Y. Symbolic model checking without
bdds. In: Proceedings of the 5th International Conference on Tools and Algorithms for
Construction and Analysis of Systems. London, UK, UK: Springer-Verlag, 1999. (TACAS
’99), p. 193–207. ISBN 3-540-65703-7.

BOURQUE, P.; FAIRLEY, R. (Ed.). Guide to the Software Engineering Body of Knowledge,
Version 3.0. [S.l.]: IEEE Computer Society, 2014.

BROWN, P. J.; BOVEY, J. D.; CHEN, X. Context-aware applications: from the laboratory to the
marketplace. IEEE Personal Communications, v. 4, n. 5, p. 58–64, 1997. ISSN 1070-9916.

BRUGALI, D.; CAPILLA, R.; HINCHEY, M. Dynamic variability meets robotics. Computer,
IEEE Computer Society Press, Los Alamitos, CA, USA, v. 48, n. 12, p. 94–97, dez. 2015. ISSN
0018-9162.

CAFEO, B. B.; NOPPEN, J.; FERRARI, F. C.; CHITCHYAN, R.; RASHID, A. Inferring
test results for dynamic software product lines. In: Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference on Foundations of Software Engineering.
New York, NY, USA: ACM, 2011. (ESEC/FSE ’11), p. 500–503. ISBN 978-1-4503-0443-6.

CAPILLA, R.; BOSCH, J.; TRINIDAD, P.; CORTÉS, A. R.; HINCHEY, M. An overview of
dynamic software product line architectures and techniques: Observations from research and
industry. Journal of Systems and Software, v. 91, p. 3–23, 2014.

CAPILLA, R.; ORTIZ, O.; HINCHEY, M. Context variability for context-aware systems.
Computer, v. 47, n. 2, p. 85–87, Feb 2014. ISSN 0018-9162.

CARVALHO, M. L. L.; GOMES, G. S. D. S.; SILVA, M. L. G. D.; MACHADO, I. D. C.;
ALMEIDA, E. S. d. On the implementation of dynamic software product lines: A preliminary
study. In: X Brazilian Symposium on Software Components, Architectures and Reuse
(SBCARS). [S.l.: s.n.], 2016. p. 21–30.

CHAKRAVARTHY, V.; REGEHR, J.; EIDE, E. Edicts: Implementing features with flexible
binding times. In: Proceedings of the 7th International Conference on Aspect-oriented
Software Development. New York, NY, USA: ACM, 2008. (AOSD ’08), p. 108–119. ISBN
978-1-60558-044-9.

151

CLARKE JR., E. M.; GRUMBERG, O.; PELED, D. A. Model checking. Cambridge, USA:
MIT Press, 1999. ISBN 0-262-03270-8.

CLASSEN, A.; CORDY, M.; SCHOBBENS, P.-Y.; HEYMANS, P.; LEGAY, A.; RASKIN, J.-F.
Featured transition systems: Foundations for verifying variability-intensive systems and their
application to ltl model checking. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA,
v. 39, n. 8, p. 1069–1089, ago. 2013. ISSN 0098-5589.

CLASSEN, A.; HEYMANS, P.; SCHOBBENS, P.-Y.; LEGAY, A.; RASKIN, J.-F. Model
checking lots of systems: Efficient verification of temporal properties in software product
lines. In: Proceedings of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1. NY, USA: ACM, 2010. p. 335–344. ISBN 978-1-60558-719-6.

CORDY, M.; CLASSEN, A.; HEYMANS, P.; LEGAY, A.; SCHOBBENS, P.-Y. Assurances
for self-adaptive systems: Principles, models, and techniques. In: . Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013. cap. Model Checking Adaptive Software with Featured
Transition Systems, p. 1–29. ISBN 978-3-642-36249-1.

CORDY, M.; SCHOBBENS, P.-Y.; HEYMANS, P.; LEGAY, A. Behavioural modelling and
verification of real-time software product lines. In: Proceedings of the 16th International
Software Product Line Conference - Volume 1. NY, USA: ACM, 2012. p. 66–75. ISBN
978-1-4503-1094-9.

CZARNECKI, K.; WASOWSKI, A. Feature diagrams and logics: There and back again. In:
Proceedings of the 11th International Software Product Line Conference. Washington, DC,
USA: IEEE Computer Society, 2007. (SPLC ’07), p. 23–34. ISBN 0-7695-2888-0.

DAVIS, F. D. A technology acceptance model for empirically testing new end-user
information systems: theory and results. Tese (Thesis) — Massachusetts Institute of
Technology, 1986.

DEY, A. K. Understanding and using context. Personal Ubiquitous Computing,
Springer-Verlag, London, UK, v. 5, n. 1, p. 4–7, 2001. ISSN 1617-4909.

DIMOVSKI, A. S.; AL-SIBAHI, A. S.; BRABRAND, C.; WĄSOWSKI, A. Efficient
family-based model checking via variability abstractions. International Journal on Software
Tools for Technology Transfer, p. 1–19, 2016.

DJOUDI, B.; BOUANAKA, C.; ZEGHIB, N. A formal framework for context-aware systems
specification and verification. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA,
v. 122, n. C, p. 445–462, dez. 2016. ISSN 0164-1212.

DOBSON, S.; STERRITT, R.; NIXON, P.; HINCHEY, M. Fulfilling the vision of autonomic
computing. Computer, IEEE Computer Society Press, Los Alamitos, CA, USA, v. 43, n. 1, p.
35–41, jan. 2010. ISSN 0018-9162.

EKER, S.; MESEGUER, J.; SRIDHARANARAYANAN, A. The maude LTL model checker.
Electronic Notes in Theoretical Computer Science, v. 71, n. Supplement C, p. 162 – 187,
2004. ISSN 1571-0661. WRLA 2002, Rewriting Logic and Its Applications.

ELBERZHAGER, F.; ROSBACH, A.; MüNCH, J.; ESCHBACH, R. Reducing test effort: A
systematic mapping study on existing approaches. Information and Software Technology,
v. 54, n. 10, p. 1092 – 1106, 2012. ISSN 0950-5849.

152

ENGSTRöM, E.; RUNESON, P. Software product line testing - a systematic mapping study. Inf.
Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 53, n. 1, p. 2–13, jan. 2011.
ISSN 0950-5849.

FOGDAL, T.; SCHERREBECK, H.; KUUSELA, J.; BECKER, M.; ZHANG, B. Ten years of
product line engineering at danfoss: Lessons learned and way ahead. In: Proceedings of the
20th International Systems and Software Product Line Conference. New York, NY, USA:
ACM, 2016. (SPLC ’16), p. 252–261. ISBN 978-1-4503-4050-2.

GRIEBE, T.; GRUHN, V. A model-based approach to test automation for context-aware mobile
applications. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing.
New York, NY, USA: ACM, 2014. (SAC ’14), p. 420–427. ISBN 978-1-4503-2469-4.

GROOTE, J. F.; MATHIJSSEN, A.; RENIERS, M.; USENKO, Y.; WEERDENBURG, M. V.
The formal specification language mcrl2. In: In Proceedings of the Dagstuhl Seminar. [S.l.]:
MIT Press, 2007.

GUEDES, G.; SILVA, C.; SOARES, M.; CASTRO, J. Variability management in dynamic
software product lines: A systematic mapping. In: Proceedings of the 2015 IX Brazilian
Symposium on Components, Architectures and Reuse Software. Washington, DC, USA:
IEEE Computer Society, 2015. (SBCARS ’15), p. 90–99. ISBN 978-1-4673-9630-1.

HALLSTEINSEN, S.; HINCHEY, M.; PARK, S.; SCHMID, K. Dynamic software product lines.
Computer, v. 41, n. 4, p. 93–95, April 2008. ISSN 0018-9162.

HäNSEL, J.; GIESE, H. Towards collective online and offline testing for dynamic software
product line systems. In: Proceedings of the 2Nd International Workshop on Variability
and Complexity in Software Design. Piscataway, NJ, USA: IEEE Press, 2017. (VACE ’17), p.
9–12. ISBN 978-1-5386-2803-4.

HARMAN, M.; JIA, Y.; ZHANG, Y. Achievements, open problems and challenges for search
based software testing. In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST). [S.l.: s.n.], 2015. p. 1–12. ISSN 2159-4848.

HARMAN, M.; MANSOURI, S. A.; ZHANG, Y. Search-based software engineering: Trends,
techniques and applications. ACM Comput. Surv., ACM, New York, NY, USA, v. 45, n. 1, p.
11:1–11:61, dez. 2012. ISSN 0360-0300.

HARTMANN, H.; TREW, T. Using feature diagrams with context variability to model multiple
product lines for software supply chains. In: 2008 12th International Software Product Line
Conference. [S.l.: s.n.], 2008. p. 12–21.

HASLINGER, E. N.; LOPEZ-HERREJON, R. E.; EGYED, A. Using feature model knowledge
to speed up the generation of covering arrays. In: Proceedings of the Seventh International
Workshop on Variability Modelling of Software-intensive Systems. New York, NY, USA:
ACM, 2013. (VaMoS ’13), p. 16:1–16:6. ISBN 978-1-4503-1541-8.

HOLLANDER, M.; WOLFE, D. A. Nonparametric Statistical Methods. United States: John
Wiley & Sons, 1999.

HOLZMANN, G. Spin Model Checker, the: Primer and Reference Manual. First. [S.l.]:
Addison-Wesley Professional, 2003. ISBN 0-321-22862-6.

153

IBM. Predictive analytics software and solutions. 2017. Available at <http://www-01.ibm.
com/software/analytics/spss/>. Last Access in nov. 2017.

IEEE. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009, January
2010.

IEEE. Ieee standard for system and software verification and validation. IEEE Std 1012-2012
(Revision of IEEE Std 1012-2004), p. 1–223, May 2012.

IEEE. IEEE Draft International Standard for Software and Systems Engineering–Software
Testing–Part 4: Test Techniques. ISO/IEC/IEEE P29119-4-FDIS April 2015, p. 1–147, April
2015.

JIA, Y.; HARMAN, M. An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 37, n. 5, p. 649–678, set. 2011. ISSN
0098-5589.

JOHANSEN, M. F.; HAUGEN, O.; FLEUREY, F. An algorithm for generating t-wise covering
arrays from large feature models. In: Proceedings of the 16th International Software
Product Line Conference - Volume 1. New York, NY, USA: ACM, 2012. (SPLC ’12), p.
46–55. ISBN 978-1-4503-1094-9.

KANG, K. C.; COHEN, S. G.; HESS, J. A.; NOVAK, W. E.; PETERSON, A. S.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Pittsburgh, PA, 1990.

KISELEV, I. Aspect-Oriented Programming with AspectJ. Indianapolis, IN, USA: Sams,
2002. ISBN 0672324105.

KITCHENHAM, B. A.; PFLEEGER, S. L.; PICKARD, L. M.; JONES, P. W.; HOAGLIN,
D. C.; EMAM, K. E.; ROSENBERG, J. Preliminary guidelines for empirical research in
software engineering. IEEE Trans. Softw. Eng., IEEE Press, Piscataway, NJ, USA, v. 28, n. 8,
p. 721–734, ago. 2002. ISSN 0098-5589.

KOSAR, T.; BOHRA, S.; MERNIK, M. Domain-specific languages. Inf. Softw. Technol.,
Butterworth-Heinemann, Newton, MA, USA, v. 71, n. C, p. 77–91, mar. 2016. ISSN 0950-5849.

KOWAL, M.; SCHULZE, S.; SCHAEFER, I. Towards efficient SPL testing by variant reduction.
In: Proceedings of the 4th International Workshop on Variability & Composition. New
York, NY, USA: ACM, 2013. (VariComp ’13), p. 1–6. ISBN 978-1-4503-1867-9.

LAMANCHA, B. P.; POLO, M.; PIATTINI, M. PROW: A pairwise algorithm with constRaints,
Order and Weight. Journal of Systems and Software, v. 99, p. 1 – 19, 2015. ISSN 0164-1212.

LANDIS, J.; KOCH, G. The measurement of observer agreement for categorical data.
Biometrics, v. 33, n. 1, p. 159–174, 1977.

LEMOS, R.; GIESE, H.; MÜLLER, H. A.; SHAW, M.; ANDERSSON, J.; LITOIU, M.;
SCHMERL, B.; TAMURA, G.; VILLEGAS, N. M.; VOGEL, T.; WEYNS, D.; BARESI, L.;
BECKER, B.; BENCOMO, N.; BRUN, Y.; CUKIC, B.; DESMARAIS, R.; DUSTDAR, S.;
ENGELS, G.; GEIHS, K.; GÖSCHKA, K. M.; GORLA, A.; GRASSI, V.; INVERARDI,
P.; KARSAI, G.; KRAMER, J.; LOPES, A.; MAGEE, J.; MALEK, S.; MANKOVSKII, S.;
MIRANDOLA, R.; MYLOPOULOS, J.; NIERSTRASZ, O.; PEZZÈ, M.; PREHOFER, C.;
SCHÄFER, W.; SCHLICHTING, R.; SMITH, D. B.; SOUSA, J. P.; TAHVILDARI, L.; WONG,

http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/analytics/spss/

154

K.; WUTTKE, J. Software engineering for self-adaptive systems: A second research roadmap.
In: . Software Engineering for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. p. 1–32. ISBN 978-3-642-35813-5.

LESTA, U.; SCHAEFER, I.; WINKELMANN, T. Detecting and explaining conflicts in
attributed feature models. In: Proceedings of the Workshop on Formal Methods and
Analysis in Software Product Line Engineering (FMSPLE). [S.l.: s.n.], 2015. (FMSPLE
2015).

LIMA, E. R. R.; ARAUJO, I. L.; SANTOS, I. S.; OLIVEIRA, T. A.; MONTEIRO, G. S.;
COSTA, C. E. B.; SEGUNDO, Z. F. S.; ANDRADE, R. M. C. Great tour: Um guia de visitas
móvel e sensível ao contexto. In: XII Workshop on Tools and Applications. 19th Brazilian
Symposium on Multimedia and the Web. [S.l.: s.n.], 2013.

LIU, Y.; XU, C.; CHEUNG, S. C. AFChecker: Effective model checking for context-aware
adaptive applications. J. Syst. Softw., Elsevier Science Inc., New York, NY, USA, v. 86, n. 3, p.
854–867, mar. 2013. ISSN 0164-1212.

LOCHAU, M.; BÜRDEK, J.; HÖLZLE, S.; SCHÜRR, A. Specification and automated
validation of staged reconfiguration processes for dynamic software product lines. Software &
Systems Modeling, p. 1–28, 2015.

LOPEZ-HERREJON, R. E.; CHICANO, F.; FERRER, J.; EGYED, A.; ALBA, E.
Multi-objective optimal test suite computation for software product line pairwise testing.
In: Proceedings of the 2013 IEEE International Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 2013. (ICSM ’13), p. 404–407. ISBN
978-0-7695-4981-1.

LOPEZ-HERREJON, R. E.; FERRER, J.; CHICANO, F.; EGYED, A.; ALBA, E. Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies for pairwise
testing of software product lines. In: 2014 IEEE Congress on Evolutionary Computation
(CEC). [S.l.: s.n.], 2014. p. 387–396. ISSN 1089-778X.

LOPEZ-HERREJON, R. E.; FISCHER, S.; ; RAMLER, R.; EGYED, A. A first systematic
mapping study on combinatorial interaction testing for software product lines. In: Proceedings
of the 4th International Workshop on Combinatorial Testing (IWCT 2015), International
Conference on Software Testing, Verification and Validation Workshops (ICSTW). [S.l.:
s.n.], 2015.

MANIKAS, K.; HANSEN, K. M. Software ecosystems - a systematic literature review. J. Syst.
Softw., Elsevier Science Inc., New York, NY, USA, v. 86, n. 5, p. 1294–1306, maio 2013. ISSN
0164-1212.

MARINHO, F. G. PRECISE: Um Processo de veRificação Formal para modElos de
CaracterístIcas de Aplicações Móveis e Seníveis ao ContExto. Tese (Thesis) — Universidade
Federal do Ceará, 2012.

MARINHO, F. G.; ANDRADE, R. M. C.; WERNER, C.; VIANA, W.; MAIA, M. E. F.;
ROCHA, L. S.; TEIXEIRA, E.; FILHO, J. B. F.; DANTAS, V. L. L.; LIMA, F.; AGUIAR,
S. Mobiline: A nested software product line for the domain of mobile and context-aware
applications. Sci. Comput. Program., Elsevier North-Holland, Inc., Amsterdam, The
Netherlands, The Netherlands, v. 78, n. 12, p. 2381–2398, dez. 2013. ISSN 0167-6423.

155

MARINHO, F. G.; MAIA, P. H. M.; ANDRADE, R. M. C.; VIDAL, V. M. P.; COSTA, P.
A. S.; WERNER, C. Safe adaptation in context-aware feature models. In: Proceedings of the
4th International Workshop on Feature-Oriented Software Development. New York, NY,
USA: ACM, 2012. (FOSD ’12), p. 54–61. ISBN 978-1-4503-1309-4.

MATALONGA, S.; RODRIGUES, F.; TRAVASSOS, G. H. Characterizing testing methods for
context-aware software systems: Results from a quasi-systematic literature review. Journal of
Systems and Software, v. 131, p. 1 – 21, 2017. ISSN 0164-1212.

MAURO, J.; NIEKE, M.; SEIDL, C.; YU, I. C. Context aware reconfiguration in software
product lines. In: Proceedings of the Tenth International Workshop on Variability
Modelling of Software-intensive Systems. NY, USA: ACM, 2016. (VaMoS ’16), p. 41–48.
ISBN 978-1-4503-4019-9.

MENS, K.; CAPILLA, R.; CARDOZO, N.; DUMAS, B. A taxonomy of context-aware software
variability approaches. In: Companion Proceedings of the 15th International Conference
on Modularity. New York, NY, USA: ACM, 2016. (MODULARITY Companion 2016), p.
119–124.

MICSKEI, Z.; SZATMÁRI, Z.; OLÁH, J.; MAJZIK, I. A concept for testing robustness and
safety of the context-aware behaviour of autonomous systems. In: Proceedings of the 6th
KES International Conference on Agent and Multi-Agent Systems: Technologies and
Applications. Berlin, Heidelberg: Springer-Verlag, 2012. (KES-AMSTA’12), p. 504–513. ISBN
978-3-642-30946-5.

MOSTEFAOUI, G. K.; PASQUIER-ROCHA, J.; BREZILLON, P. Context-aware computing: a
guide for the pervasive computing community. In: The IEEE/ACS International Conference
onPervasive Services, 2004. ICPS 2004. Proceedings. [S.l.: s.n.], 2004. p. 39–48.

MUCCINI, H.; SHARAF, M.; WEYNS, D. Self-adaptation for cyber-physical systems: A
systematic literature review. In: Proceedings of the 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems. New York, NY, USA:
ACM, 2016. (SEAMS ’16), p. 75–81. ISBN 978-1-4503-4187-5.

MUNOZ, F. Validation of reasoning engines an adaptation mechanisms for self-adaptive
systems. Tese (Thesis) — Université Rennes, 2010.

MURGUZUR, A.; CAPILLA, R.; TRUJILLO, S.; ORTIZ, O.; LOPEZ-HERREJON, R. E.
Context variability modeling for runtime configuration of service-based dynamic software
product lines. In: Proceedings of the 18th International Software Product Line Conference:
Companion Volume for Workshops, Demonstrations and Tools - Volume 2. New York, NY,
USA: ACM, 2014. (SPLC ’14), p. 2–9. ISBN 978-1-4503-2739-8.

MUSCHEVICI, R.; CLARKE, D.; PROENCA, J. Feature petri nets. In: Proc. Int’l Workshop
Formal Methods and Analysis in Software Product Line Engineering. [S.l.: s.n.], 2010.
(FMSPLE ’10), p. 99–106.

MUSCHEVICI, R.; PROENÇA, J.; CLARKE, D. Feature nets: behavioural modelling of
software product lines. Software & Systems Modeling, p. 1–26, 2015. ISSN 1619-1374.

MYERS, G. J.; SANDLER, C.; BADGETT, T. The Art of Software Testing. Hoboken, New
Jersey: John Wiley & Sons, Inc., 2011.

156

NETO, P. A. d. M. S.; MACHADO, I. d. C.; MCGREGOR, J. D.; ALMEIDA, E. S. de;
MEIRA, S. R. de L. A systematic mapping study of software product lines testing. Inf. Softw.
Technol., Butterworth-Heinemann, Newton, MA, USA, v. 53, n. 5, p. 407–423, maio 2011.
ISSN 0950-5849.

NORTHROP, L. M. SEI’s software product line tenets. IEEE Softw., IEEE Computer Society
Press, Los Alamitos, CA, USA, v. 19, n. 4, p. 32–40, jul. 2002. ISSN 0740-7459.

NORTHROP, L. M.; CLEMENTS, P. C. A framework for software product line
practice, version 5.0. [S.l.]: Software Engineering Institute, 2007. Available at
<http://www.sei.cmu.edu/productlines/>. Last Access in nov. 2017.

OFFUTT, A. J.; UNTCH, R. H. Mutation testing for the new century. In: WONG, W. E. (Ed.).
Norwell, MA, USA: Kluwer Academic Publishers, 2001. cap. Mutation 2000: Uniting the
Orthogonal, p. 34–44. ISBN 0-7923-7323-5.

OUAKNINE, J.; WORRELL, J. Some recent results in metric temporal logic. In: Proceedings
of the 6th International Conference on Formal Modeling and Analysis of Timed Systems.
Berlin, Heidelberg: Springer-Verlag, 2008. (FORMATS ’08), p. 1–13. ISBN 978-3-540-85777-8.

PUSCHEL, G.; GOTZ, S.; WILKE, C.; PIECHNICK, C.; ABMANN, U. Testing self-adaptive
software: Requirement analysis and solution scheme. International Journal on Advances in
Software,, v. 7, n. 1 & 2, p. 88 – 100, 2014. ISSN 1942-2628.

PüSCHEL, G.; SEIGER, R.; SCHLEGEL, T. Test modeling for context-aware ubiquitous
applications with feature petri nets. In: Modiquitous Workshop. [S.l.: s.n.], 2012.

QIN, Y.; XU, C.; YU, P.; LU, J. SIT: Sampling-based interactive testing for self-adaptive apps.
Journal of Systems and Software, v. 120, p. 70 – 88, 2016. ISSN 0164-1212.

RANDOLPH, J. J. Free-marginal multirater kappa: An alternative to Fleiss fixed-marginal
multirater kappa. [S.l.]: Joensuu University Learning and Instruction Symposium 2005,
Joensuu, Finland, 2005.

ROBINSON, J. Likert scale. In: . Encyclopedia of Quality of Life and Well-Being
Research. Dordrecht: Springer Netherlands, 2014. p. 3620–3621. ISBN 978-94-007-0753-5.

ROCHA, L. S.; ANDRADE, R. M. C. Towards a formal model to reason about context-aware
exception handling. In: Proceedings of the 5th International Workshop on Exception
Handling. Piscataway, NJ, USA: IEEE Press, 2012. (WEH ’12), p. 27–33. ISBN
978-1-4673-1766-5.

ROCHA, L. S.; ANDRADE, R. M. C. Towards a formal model to reason about context-aware
exception handling. In: Proceedings of the 5th International Workshop on Exception
Handling. Piscataway, NJ, USA: IEEE Press, 2012. (WEH ’12), p. 27–33. ISBN
978-1-4673-1766-5.

ROCHA, L. S.; F., J. B. F.; LIMA, F. F. P.; MAIA, M. E. F.; VIANA, W.; CASTRO, M. F. d.;
ANDRADE, R. M. C. Ubiquitous software engineering: Achievements, challenges and beyond.
In: 2011 25th Brazilian Symposium on Software Engineering. [S.l.: s.n.], 2011. p. 132–137.

RODRIGUES, F.; MATALONGA, S.; TRAVASSOS, G. H. CATS design: A context-aware
test suite design process. In: Proceedings of the I Brazilian Symposium on Systematic and
Automated Software Testing. [S.l.: s.n.], 2016.

http://www.sei.cmu.edu/productlines/

157

SALLER, K.; LOCHAU, M.; REIMUND, I. Context-aware DSPLs: Model-based runtime
adaptation for resource-constrained systems. In: 17th International Software Product Line
Conference Co-located Workshops. New York, NY, USA: ACM, 2013. p. 106–113.

SAMA, M.; ELBAUM, S.; RAIMONDI, F.; ROSENBLUM, D. S.; WANG, Z. Context-aware
adaptive applications: Fault patterns and their automated identification. IEEE Transactions
on Software Engineering, IEEE Computer Society, Los Alamitos, CA, USA, v. 36, n. 5, p.
644–661, 2010. ISSN 0098-5589.

SAMA, M.; ROSENBLUM, D. S.; WANG, Z.; ELBAUM, S. Model-based fault detection
in context-aware adaptive applications. In: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. New York, NY, USA:
ACM, 2008. (SIGSOFT ’08/FSE-16), p. 261–271. ISBN 978-1-59593-995-1.

SANTOS, I. S.; ANDRADE, R. M.; NETO, P. A. S. Templates for textual use cases of software
product lines: results from a systematic mapping study and a controlled experiment. Journal of
Software Engineering Research and Development, v. 3, n. 1, 2015.

SANTOS, I. S.; ANDRADE, R. M. C.; NETO, P. A. S. Um método para geração otimizada de
testes a partir de requisitos para linhas de produto de software dinâmicas. In: Proceedings of
the V Workshop de Teses e Dissertações do CBSoft. [S.l.: s.n.], 2015.

SANTOS, I. S.; ANDRADE, R. M. C.; ROCHA, L. S.; MATALONGA, S.; OLIVEIRA, K. M.
de; TRAVASSOS, G. H. Test case design for context-aware applications: Are we there yet? Inf.
Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 88, n. C, p. 1–16, 2017. ISSN
0950-5849.

SANTOS, I. S.; ANDRADE, R. M. C. C.; NETO, P. A. S. How to describe SPL variabilities in
textual use cases: A systematic mapping study. In: Software Components, Architectures and
Reuse (SBCARS), 2014 Eighth Brazilian Symposium on. [S.l.: s.n.], 2014. p. 64–73.

SANTOS, I. S.; ROCHA, L. S.; NETO, P. A. S.; ANDRADE, R. M. C. Model verification
of dynamic software product lines. In: Proceedings of the 30th Brazilian Symposium on
Software Engineering. New York, NY, USA: ACM, 2016. (SBES ’16), p. 113–122. ISBN
978-1-4503-4201-8.

SANTOS, I. S.; SOUZA, M. L. J.; CARVALHO, M. L. L.; OLIVEIRA, T. A.; ALMEIDA,
E. S.; ANDRADE, R. M. C. Dynamically adaptable software is all about modeling contextual
variability and avoiding failures. IEEE Software, 2017.

SEI. SEI Case Studies. Last Access in Nov. 2017, 2017. Available at <http://www.sei.cmu.edu/
productlines/casestudies/index.cfm>. Last Access in nov. 2017.

SHAHID, M.; IBRAHIM, S.; MAHRI, M. N. A study on test coverage in software testing. In:
International Conference on Telecommunication Technology and Applications. [S.l.: s.n.],
2011.

SHARMA, A. End to end verification and validation with SPIN. CoRR, abs/1302.4796, 2013.

SIQUEIRA, B. R.; FERRARI, F. C.; SERIKAWA, M. A.; MENOTTI, R.; CAMARGO, V. V.
de. Characterisation of challenges for testing of adaptive systems. In: Proceedings of the 1st
Brazilian Symposium on Systematic and Automated Software Testing. New York, NY,
USA: ACM, 2016. (SAST), p. 11:1–11:10. ISBN 978-1-4503-4766-2.

http://www.sei.cmu.edu/productlines/casestudies/index.cfm
http://www.sei.cmu.edu/productlines/casestudies/index.cfm

158

SPÍNOLA, R. O.; TRAVASSOS, G. H. Towards a framework to characterize ubiquitous software
projects. Inf. Softw. Technol., Butterworth-Heinemann, Newton, MA, USA, v. 54, n. 7, p.
759–785, jul. 2012. ISSN 0950-5849.

TRAVASSOS, G. H.; SANTOS, P. S. M. d.; MIAN, P. G.; NETO, A. C. D.; BIOLCHINI, J. An
environment to support large scale experimentation in software engineering. In: Proceedings
of the 13th IEEE International Conference on on Engineering of Complex Computer
Systems. Washington, DC, USA: IEEE Computer Society, 2008. (ICECCS ’08), p. 193–202.
ISBN 978-0-7695-3139-7.

VARSHOSAZ, M.; KHOSRAVI, R. Discrete time markov chain families: Modeling and
verification of probabilistic software product lines. In: Proceedings of the 17th International
Software Product Line Conference Co-located Workshops. NY, USA: ACM, 2013. (SPLC
’13 Workshops), p. 34–41. ISBN 978-1-4503-2325-3.

VENKATESH, V.; DAVIS, F. D. A theoretical extension of the technology acceptance model:
Four longitudinal field studies. Manage. Sci., INFORMS, Institute for Operations Research and
the Management Sciences (INFORMS), Linthicum, Maryland, USA, v. 46, n. 2, p. 186–204, fev.
2000. ISSN 0025-1909.

VERMESAN, O.; FRIESS, P.; GUILLEMIN, P.; GUSMEROLI, S.; SUNDMAEKER, H.;
BASSI, A.; JUBERT, I. S.; MAZURA, M.; HARRISON, M.; EISENHAUER, M.; DOODY,
P. Internet of things strategic research roadmap. [S.l.], 2011. Available at <http://www.
internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf>. Last
Access in jul. 2017.

VIANA, W.; MIRON, A. D.; MOISUC, B.; GENSEL, J.; VILLANOVA-OLIVER, M.;
MARTIN, H. Towards the semantic and context-aware management of mobile multimedia.
Multimedia Tools Appl., Kluwer Academic Publishers, Hingham, MA, USA, v. 53, n. 2, p.
391–429, jun. 2011. ISSN 1380-7501.

WANG, H.; CHAN, W. K. Weaving context sensitivity into test suite construction. In:
Automated Software Engineering, 2009. ASE ’09. 24th IEEE/ACM International
Conference on. [S.l.: s.n.], 2009. p. 610–614. ISSN 1938-4300.

WANG, H.; CHAN, W. K.; TSE, T. H. Improving the effectiveness of testing pervasive software
via context diversity. ACM Trans. Auton. Adapt. Syst., ACM, New York, NY, USA, v. 9, n. 2,
p. 9:1–9:28, jul. 2014. ISSN 1556-4665.

WANG, Z.; ELBAUM, S.; ROSENBLUM, D. S. Automated generation of context-aware tests. In:
Proceedings of the 29th International Conference on Software Engineering. Washington,
DC, USA: IEEE Computer Society, 2007. (ICSE), p. 406–415. ISBN 0-7695-2828-7.

WEYNS, D.; IFTIKHAR, M. U.; IGLESIA, D. G. de la; AHMAD, T. A survey of formal
methods in self-adaptive systems. In: Proceedings of the Fifth International C* Conference
on Computer Science and Software Engineering. New York, NY, USA: ACM, 2012. (C3S2E
’12), p. 67–79. ISBN 978-1-4503-1084-0.

WOHLIN, C.; RUNESON, P.; HöST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLÉN, A.
Experimentation in Software Engineering: An Introduction. Norwell, MA, USA: Kluwer
Academic Publishers, 2000. ISBN 0-7923-8682-5.

http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf
http://www.internet-of-things-research.eu/pdf/IoT_Cluster_Strategic_Research_Agenda_2011.pdf

159

WOHLIN, C.; RUNESON, P.; HST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLN,
A. Experimentation in Software Engineering. [S.l.]: Springer Publishing Company,
Incorporated, 2014. ISBN 3642432263, 9783642432262.

XU, C.; CHEUNG, S.; MA, X.; CAO, C.; LV, J. Detecting faults in context-aware adaptation.
International Journal of Software and Informatics, v. 7, n. 1, p. 85–111, 2013. ISSN
1673-7288.

XU, C.; CHEUNG, S. C.; MA, X.; CAO, C.; LU, J. Dynamic fault detection in context-aware
adaptation. In: Proceedings of the Fourth Asia-Pacific Symposium on Internetware. New
York, NY, USA: ACM, 2012. (Internetware ’12), p. 1:1–1:10. ISBN 978-1-4503-1888-4.

YU, L.; TSAI, W. T.; JIANG, Y.; GAO, J. Generating test cases for context-aware applications
using bigraphs. In: Software Security and Reliability (SERE), 2014 Eighth International
Conference on. [S.l.: s.n.], 2014. p. 137–146.

YU, L.; TSAI, W. T.; PERRONE, G. Testing context-aware applications based on bigraphical
modeling. IEEE Transactions on Reliability, v. 65, n. 3, p. 1584–1611, Sept 2016. ISSN
0018-9529.

ZHANG, W.; ZHAO, H.; MEI, H. Binary-search based verification of feature models.
In: Proceedings of the 12th International Conference on Top Productivity Through
Software Reuse. Berlin, Heidelberg: Springer-Verlag, 2011. (ICSR’11), p. 4–19. ISBN
978-3-642-21346-5.

160

APPENDIX A – PROMELA BASIC GRAMMAR

This appendix presents the basic grammar of the Promela concerning the main

tokens used in the code depicted in Section 4.3.1 of Chapter 4, as well as the codes presented in

Appendix B.

Promela is a verification modeling language that consist of variables, processes, and

message channels 1 as follows:

• Variables are used to store either global information about the system, or information

local to a specific process. The basic data types available in Promela are: bool, byte, short,

and int. Code 2 presents the declaration of two variables.

Code 2 – Example of variables in Promela

1 boo l f l a g = t r u e ; i n t s t a t e = 2

• Process are used to specify the system behavior. The behavior of a process is defined

in a proctype declaration. If the process has the keyword active prefixed to the proctype

declaration, then the process is active (i.e., running) in the initial system state. Code 3

presents an active process called “processA” that declares a local variable (called value) in

the initial system state.

Code 3 – Example of process in Promela

1 a c t i v e p r o c t y p e processA ()
2 { b y t e v a l u e ;
3

4 v a l u e = 3
5 }

In the process, it can be used control flow constructs, such as: selection and repetition.

The first one is defined by the syntax if :: sequence[:: sequence]∗fi and specifies

statements whose execution depends on a guard condition. The other one is defined by the

syntax do :: sequence[:: sequence]∗od and determines a cyclic process. The stop state

of the latter construct is only reachable via a break statement. Code 4 presents an example

of these constructs. The processB executes option1 or option2 depending on the guard
1 http://spinroot.com/spin/Man/Manual.html

161

statement related to the values of “a” and “b”. The process counter increments a variable

named count, and it ends the loop when the value of count is equals to 10.

Code 4 – Example of constructs in Promela

1 a c t i v e p r o c t y p e p r o c e s s B ()
2 {
3 i f
4 : : a t omi c { (a != b) −> o p t i o n 1 }
5 : : a t omi c { (a == b) −> o p t i o n 2 }
6 f i
7 }
8 a c t i v e p r o c t y p e c o u n t e r ()
9 {

10 do
11 : : c o u n t ++
12 : : (c o u n t == 10) −> b r e a k
13 od
14 }

The statements of the processess can also be enclosed prefixed with the keyword atomic

(lines 4 and 5 in Code 4). In this case, such statements are executed as one indivisible unit,

non-interleaved with other processes.

• Message channels are used to model the transfer of data from one process to another.

They are specified by the type of message and the number of messages they can store. For

instance, the channel “chA” in Code 5 stores up to 3 messages of type short. The statement

in line 7 appends the value “12” to the tail of this channel, whereas the next statement (line

8) receives the value from the head of the “chA” and stores it in the variable “msg”. It is

worth noting that if the channel size is “0”, then it cannot store message, but only pass

single messages from a process to another one.

Code 5 – Example of channel in Promela

1 chan chA = [3] o f { s h o r t } ;
2 s h o r t msg
3

4 a c t i v e p r o c t y p e p r o c e s s B ()
5 {
6 chA ! 1 2 ;
7 chA?msg
8 }

162

APPENDIX B – PROMELA CODES USED IN THE FEASIBILITY STUDY

Code 6 and Code 7 present the Promela codes corresponding to Mobile Guide and

Car DSPL, respectively. They were used in the feasibility study discussed in Section 4.3.3.

Code 6 – Promela code for the Mobile Guides DSPL

1

2 i n t b a t t e r y = 3 ;
3 boo l hasPwSrc = f a l s e , image = f a l s e , v i d e o = f a l s e , mobi leGuide = t r u e ,

showDocs= t r u e , t e x t = t r u e ;
4 mtype = { imageOn , imageOff , videoOn , v ideoOff , con tex tChanged , done , a d a p t e d

}
5 i n t numAnswer = 0 ;
6

7 chan buss = [0] o f { mtype } ;
8

9 a c t i v e p r o c t y p e I m a g e A c t u a t o r () {
10 do
11 : : a t om ic { buss ? imageOn −> image = t r u e }
12 : : a t om ic { buss ? imageOff −> image = f a l s e }
13 od
14 }
15

16 a c t i v e p r o c t y p e V i d e o A c t u a t o r () {
17 do
18 : : a t om ic { buss ? videoOn −> v i d e o = t r u e }
19 : : a t om ic { buss ? v i d e o O f f −> v i d e o = f a l s e }
20 od
21 }
22

23 a c t i v e p r o c t y p e Contextmanage () {
24 b a t t e r y = 3 ; hasPwSrc = f a l s e ;
25 buss ! c o n t e x t C h a n g e d ; bus s ? a d a p t e d
26 do
27 : : (b a t t e r y == 1 && hasPwSrc == f a l s e) −> hasPwSrc = t r u e ; bus s !

c o n t e x t C h a n g e d ; bus s ? a d a p t e d
28 : : (b a t t e r y == 1 && hasPwSrc == t r u e) −> b a t t e r y = b a t t e r y + 1 ; bus s !

c o n t e x t C h a n g e d ; bus s ? a d a p t e d
29 : : (b a t t e r y == 2 && hasPwSrc == f a l s e) −> b a t t e r y = b a t t e r y − 1 ; bus s !

c o n t e x t C h a n g e d ; bus s ? a d a p t e d
30 : : (b a t t e r y == 2 && hasPwSrc == t r u e) −> b a t t e r y = b a t t e r y + 1 ; bus s !

c o n t e x t C h a n g e d ; bus s ? a d a p t e d
31 : : (b a t t e r y == 3 && hasPwSrc == f a l s e) −> b a t t e r y = b a t t e r y − 1 ; bus s !

c o n t e x t C h a n g e d ; bus s ? a d a p t e d
32 : : (b a t t e r y == 3 && hasPwSrc == t r u e) −> hasPwSrc = f a l s e ; bus s !

163

c o n t e x t C h a n g e d ; bus s ? a d a p t e d ; b r e a k
33 od
34 }
35

36 a c t i v e p r o c t y p e C o n t r o l l e r () {
37 do
38 : : bus s ? c o n t e x t C h a n g e d −>
39 run AR01 () ; run AR02 () ; run AR03 () ; run AR04 () ; run AR05 () ;
40 numAnswer = 0 ;
41 do
42 : : (numAnswer != 5) −> buss ? done ; numAnswer = numAnswer + 1 ;
43 : : e l s e −> b r e a k
44 od
45 buss ! a d a p t e d
46 od
47 }
48

49 p r o c t y p e AR01 () {
50 i f
51 : : (b a t t e r y == 1 && hasPwSrc == f a l s e) −> buss ! imageOff ; bus s ! v i d e o O f f ;

bus s ! done
52 : : e l s e −> buss ! done
53 f i
54 }
55

56 p r o c t y p e AR02 () {
57 i f
58 : : (b a t t e r y == 1 && hasPwSrc == t r u e) −> buss ! imageOn ; bus s ! v i d e o O f f ; bus s !

done
59 : : e l s e −> buss ! done
60 f i
61 }
62

63 p r o c t y p e AR03 () {
64 i f
65 : : (b a t t e r y == 2 && hasPwSrc == f a l s e) −> buss ! imageOn ; bus s ! v i d e o O f f ; bus s

! done
66 : : e l s e −> buss ! done
67 f i
68 }
69

70 p r o c t y p e AR04 () {
71 i f
72 : : (b a t t e r y == 2 && hasPwSrc == t r u e) −> buss ! imageOn ; bus s ! videoOn ; bus s !

done
73 : : e l s e −> buss ! done
74 f i

164

75 }
76

77 p r o c t y p e AR05 () {
78 i f
79 : : (b a t t e r y == 3) −> buss ! imageOn ; bus s ! videoOn ; bus s ! done
80 : : e l s e −> buss ! done
81 f i
82 }
83

84

85 l t l p ro01 { [] ((showDocs −> mobi leGuide) && (t e x t −> showDocs) && (image
−> showDocs) &&

86 (v i d e o −> showDocs) && (mobi leGuide −> showDocs) && (showDocs −> t e x t) &&
(showDocs −> (image | | v i d e o))) }

87 l t l p ro21 {<> (b a t t e r y == 1 && hasPwSrc == f a l s e) }
88 l t l p ro22 {<> (b a t t e r y == 1 && hasPwSrc == t r u e) }
89 l t l p ro23 {<> (b a t t e r y == 2 && hasPwSrc == f a l s e) }
90 l t l p ro24 {<> (b a t t e r y == 2 && hasPwSrc == t r u e) }
91 l t l p ro25 {<> (b a t t e r y == 3) }
92 l t l p ro31 { [] ((b a t t e r y == 1 && hasPwSrc == f a l s e) −> <>(image == f a l s e

&& v i d e o == f a l s e)) }
93 l t l p ro32 { [] ((b a t t e r y == 1 && hasPwSrc == t r u e) −> <>(b a t t e r y == 1 &&

hasPwSrc == t r u e && image == t r u e &&
94 v i d e o == f a l s e)) }
95 l t l p ro33 { [] ((b a t t e r y == 2 && hasPwSrc == f a l s e) −> <>(b a t t e r y == 2 &&

hasPwSrc == f a l s e && image == t r u e &&
96 v i d e o == f a l s e)) }
97 l t l p ro34 { [] ((b a t t e r y == 2 && hasPwSrc == t r u e) −> <>(b a t t e r y == 2 &&

hasPwSrc == t r u e && image == t r u e &&
98 v i d e o == t r u e)) }
99 l t l p ro35 { [] ((b a t t e r y == 3) −> <>(b a t t e r y == 3 && image == t r u e &&

v i d e o == t r u e)) }
100 l t l p ro41 {<> image }
101 l t l p ro42 {<> v i d e o }
102 l t l p ro51 {<> ! image }
103 l t l p ro52 {<> ! v i d e o }

Code 7 – Promela code for the Car DSPL

1 boo l c a r = t r u e , emergencyCa l l = t r u e , p o s i t i o n n i n g S e r v i c e = t r u e ,
a s s i s t e n c e S y s t e m = t r u e ,

2 f r o n t D i s t a n c e _ S = t r u e , d i s t a n c e _ S = t r u e
3 boo l e r aGlonas s_R = f a l s e , g l o n a s s = f a l s e , p a r k A s s i s t e n c e = f a l s e ,

s lowFront_DS = f a l s e , s i d e D i s t a n c e _ S = f a l s e
4 boo l eCa l l_E = t r u e , gps = t r u e , adap t iveCC = t r u e , f a s t F r o n t _ D S = t r u e ,

165

i n f o t a i n m e n t S y s t e m = t r u e
5 i n t maxSpeed = 200
6 i n t l o c a t i o n = 1
7 i n t road = 1
8 i n t numAnswer = 0
9

10

11 mtype = { eCall_EOn , eCa l l_EOff , eraGlonass_ROn , e raGlonass_ROff ,
maxSpeed160 , maxSpeed100 , maxSpeed110 ,

12 con tex tChanged , done , a d a p t e d }
13

14 chan buss = [0] o f { mtype } ;
15

16 a c t i v e p r o c t y p e e C a l l _ E A c t u a t o r () {
17 do
18 : : a t om ic { buss ? eCall_EOn −> eCa l l_E = t r u e }
19 : : a t om ic { buss ? e C a l l _ E O f f −> eCa l l_E = f a l s e }
20 od
21 }
22

23 a c t i v e p r o c t y p e e r a G l o n a s s A c t u a t o r () {
24 do
25 : : a t om ic { buss ? eraGlonass_ROn −> eraGlonass_R = t r u e }
26 : : a t om ic { buss ? e r aGlon as s_ROf f −> eraGlonass_R = f a l s e }
27 od
28 }
29

30 a c t i v e p r o c t y p e maxSpeedActua tor () {
31 do
32 : : a t om ic { buss ? maxSpeed160 −> maxSpeed = 160 }
33 : : a t om ic { buss ? maxSpeed100 −> maxSpeed = 100 }
34 : : a t om ic { buss ? maxSpeed110 −> maxSpeed = 110 }
35 od
36 }
37

38 a c t i v e p r o c t y p e Contextmanage () {
39 l o c a t i o n = 1 ; road = 1
40 buss ! c o n t e x t C h a n g e d ; bus s ? a d a p t e d
41 do
42 : : (l o c a t i o n == 1 && road == 1) −> road = 2 ; bus s ! c o n t e x t C h a n g e d ; bus s ?

a d a p t e d
43 : : (l o c a t i o n == 1 && road == 2) −> road = 3 ; bus s ! c o n t e x t C h a n g e d ; bus s ?

a d a p t e d
44 : : (l o c a t i o n == 1 && road == 3) −> l o c a t i o n = 2 ; bus s ! c o n t e x t C h a n g e d ; bus s

? a d a p t e d
45 : : (l o c a t i o n == 2 && road == 3) −> road = 1 ; bus s ! c o n t e x t C h a n g e d ; bus s ?

a d a p t e d

166

46 : : (l o c a t i o n == 2 && road == 1) −> road = 2 ; bus s ! c o n t e x t C h a n g e d ; bus s ?
a d a p t e d

47 : : (l o c a t i o n == 2 && road == 2) −> road = 3 ; bus s ! c o n t e x t C h a n g e d ; bus s ?
a d a p t e d ; b r e a k

48 od
49 }
50

51 a c t i v e p r o c t y p e C o n t r o l l e r () {
52 do
53 : : bus s ? c o n t e x t C h a n g e d −>
54 run AR01 () ; run AR02 () ; run AR03 () ; run AR04 () ;
55 numAnswer = 0 ;
56 do
57 : : (numAnswer != 4) −> buss ? done ; numAnswer = numAnswer + 1 ;
58 : : e l s e −> b r e a k
59 od
60 buss ! a d a p t e d
61 od
62 }
63

64 p r o c t y p e AR01 () {
65 i f
66 : : (l o c a t i o n == 1) −> buss ! eCall_EOn ; bus s ! done
67 : : e l s e −> buss ! done
68 f i
69 }
70

71 p r o c t y p e AR02 () {
72 i f
73 : : (l o c a t i o n == 2) −> buss ! eraGlonass_ROn ; bus s ! maxSpeed110 ; bus s ! done
74 : : e l s e −> buss ! done
75 f i
76 }
77

78 p r o c t y p e AR03 () {
79 i f
80 : : (r oad == 2) −> buss ! maxSpeed100 ; bus s ! done
81 : : e l s e −> buss ! done
82 f i
83 }
84

85 p r o c t y p e AR04 () {
86 i f
87 : : (r oad == 3) −> buss ! maxSpeed160 ; bus s ! done
88 : : e l s e −> buss ! done
89 f i
90 }

167

91

92

93 l t l p ro01 { [] ((eCa l l_E −> emergencyCa l l) && (e raGlonass_R −>
emergencyCa l l) && (emergencyCa l l −> c a r) &&

94 (gps −> p o s i t i o n n i n g S e r v i c e) && (g l o n a s s −> p o s i t i o n n i n g S e r v i c e) && (
p o s i t i o n n i n g S e r v i c e −> c a r) &&

95 (p a r k A s s i s t e n c e −> a s s i s t e n c e S y s t e m) && (adap t iveCC −> a s s i s t e n c e S y s t e m)
&& (a s s i s t e n c e S y s t e m −> c a r) &&

96 (s lowFront_DS −> f r o n t D i s t a n c e _ S) && (f a s t F r o n t _ D S −> f r o n t D i s t a n c e _ S) &&
(f r o n t D i s t a n c e _ S −> d i s t a n c e _ S) &&

97 (s i d e D i s t a n c e _ S −> d i s t a n c e _ S) && (d i s t a n c e _ S −> c a r) && (
i n f o t a i n m e n t S y s t e m −> c a r) &&

98 (c a r −> emergencyCa l l) && (c a r −> p o s i t i o n n i n g S e r v i c e) && (c a r −>
a s s i s t e n c e S y s t e m) &&

99 (a s s i s t e n c e S y s t e m −> adap t iveCC) && (c a r −> i n f o t a i n m e n t S y s t e m) && (
emergencyCa l l −> (eCa l l_E ∧ e raGlonass_R)) &&

100 (p o s i t i o n n i n g S e r v i c e −> (gps ∧ g l o n a s s)) && (d i s t a n c e _ S −> (
s i d e D i s t a n c e _ S | | f r o n t D i s t a n c e _ S)) &&

101 (f r o n t D i s t a n c e _ S −> (s lowFront_DS ∧ f a s t F r o n t _ D S)) && (eCa l l_E −> gps) &&
(e raGlonas s_R −> g l o n a s s) &&

102 (p a r k A s s i s t e n c e −> s i d e D i s t a n c e _ S && f r o n t D i s t a n c e _ S) && (adap t iveCC −>
f r o n t D i s t a n c e _ S) &&

103 ((maxSpeed > 180) −> f a s t F r o n t _ D S)) }
104 l t l p ro21 {<> (l o c a t i o n == 1) }
105 l t l p ro22 {<> (l o c a t i o n == 2) }
106 l t l p ro23 {<> (road == 2) }
107 l t l p ro24 {<> (road == 3) }
108 l t l p ro31 { [] ((l o c a t i o n == 1) −> <>(l o c a t i o n == 1 && eCa l l_E == t r u e)) }
109 l t l p ro32 { [] ((l o c a t i o n == 2) −> <>(l o c a t i o n == 2 && eraGlonass_R ==

t r u e)) }
110 l t l p ro33 { [] ((road == 2) −> <>(road == 2 && maxSpeed == 100)) }
111 l t l p ro34 { [] ((road == 3) −> <>(road == 3 && maxSpeed == 160)) }
112 l t l p ro35 { [] ((l o c a t i o n == 2) −> <>(l o c a t i o n == 2 && maxSpeed == 110)) }
113 l t l p ro41 {<> eCa l l_E }
114 l t l p ro42 {<> eraGlonass_R }
115 l t l p ro43 {<> (maxSpeed == 100) }
116 l t l p ro44 {<> (maxSpeed == 160) }
117 l t l p ro45 {<> (maxSpeed == 110) }
118 l t l p ro51 {<> ! eCa l l_E }
119 l t l p ro52 {<> ! e raGlonass_R }
120 l t l p ro53 {<> (maxSpeed != 100) }
121 l t l p ro54 {<> (maxSpeed != 160) }
122 l t l p ro55 {<> (maxSpeed != 110) }

168

APPENDIX C – CLASS DIAGRAM FOR THE CONTEXT-AWARE FEATURE MODEL

Figure 37 presents the classes that represent a Context-Aware Feature Model in the

TestDAS tool. The TestDAS tool (introduced in Section 4.5) receives as input a JSON file with a

feature model following the class diagram depicted in this figure.

Figure 37 – Class diagram for a Context-Aware Feature Model in the TestDAS tool

Source – the author

169

APPENDIX D – LIST OF GENERATED MUTANTS

Table 29 summarizes the mutants created to assess the model checking approach

using the Mutant Analysis.

Table 29 – Summary of mutants

Operator Mutant ID Rule affected Mutation

AltToOR M1 R2 Image (ON), Video (ON)

AltToOR M2 R3 Image (ON), Video (ON)

AltToOR M3 R4 Image (ON), Video (ON)

AltToOR M4 R5 Image (ON), Video (ON)

AltToAnd M5 R2 Image (ON), Video (ON)

AltToAnd M6 R3 Image (ON), Video (ON)

AltToAnd M7 R4 Image (ON), Video (ON)

AltToAnd M8 R5 Image (ON), Video (ON)

OrToAl M9 R4 Image (ON), Video (OFF)

OrToAl M10 R5 Image (OFF), Video (ON)

OrToAl M11 R5 Image (ON), Video (OFF)

OrToAnd M12 R2 Image (ON), Video (ON)

OrToAnd M13 R3 Image (ON), Video (ON)

OrToAnd M14 R4 Image (ON), Video (ON)

AndToOr M15 R1 Image(ON) Video(OFF)

AndToOr M16 R1 Image(OFF) Video(ON)

AndToAl M17 R1,R4,R5 Image(OFF) Video(ON)

AndToAl M18 R1,R4,R5 Image(ON) Video(OFF)

OptToMan M19 R1 ShowDocuments (OFF), Video (OFF)

OptToMan M20 R1 Image (OFF), ShowDocuments (OFF)

OptToMan M21 R2 ShowDocuments (ON), Video (OFF)

OptToMan M22 R2 Image (ON), ShowDocuments (OFF)

OptToMan M23 R3 Show Documents (ON), Video (OFF)

OptToMan M24 R3 Image (ON), Show Documents (OFF)

OptToMan M25 R4 Show Documents (ON), Video (ON)

OptToMan M26 R4 Image (ON), Show Documents (ON)

Continued on next page

170

Table 29 – Continued from previous page

Operator Mutant ID Rule Mutation

OptToMan M27 R5 Show Documents (ON), Video (ON)

OptToMan M28 R5 Image (ON), Show Documents (ON)

OptToMan M29 R1 Text (OFF), Video (OFF)

OptToMan M30 R1 Image (OFF), Text (OFF)

OptToMan M31 R2 Text (ON), Video (OFF)

OptToMan M32 R2 Image (ON), Text (OFF)

OptToMan M33 R3 Text (ON), Video (OFF)

OptToMan M34 R3 Image (ON), Text (OFF)

OptToMan M35 R4 Text (ON), Video (ON)

OptToMan M36 R4 Image (ON), Text (ON)

OptToMan M37 R5 Text (ON), Video (ON)

OptToMan M38 R5 Image (ON), Text (ON)

DelF M39 R1 Image (OFF)

DelF M40 R1 Video (OFF)

DelF M41 R2 Image (ON)

DelF M42 R2 Video (OFF)

DelF M43 R3 Image (ON)

DelF M44 R3 Video (OFF)

DelF M45 R4 Image (ON)

DelF M46 R4 Video (ON)

DelF M47 R5 Image (ON)

DelF M48 R5 Video (ON)

MoveF M49 R2 Image (ON), Video (OFF), Image (OFF)

MoveF M50 R3 Image (ON), Video (OFF), Image (OFF)

MoveF M51 R4 Image (ON), Video (ON), Image(OFF)

MoveF M52 R5 Image (ON), Video (ON), Image(OFF)

MoveF M53 R4 Image (ON), Video (ON), Video (OFF)

MoveF M54 R5 Image (ON), Video (ON), Video (OFF)

MoveF M55 R1 Image (OFF), Video (OFF), Image(ON)

Continued on next page

171

Table 29 – Continued from previous page

Operator Mutant ID Rule Mutation

MoveF M56 R1 Image (OFF), Video (OFF), Video (ON)

MoveF M57 R2 Image (ON), Video (OFF), Video (ON)

MoveF M58 R3 Image (ON), Video (OFF), Video (ON)

DelRl M59 R1 remove R1

DelRl M60 R2 remove R2

DelRl M61 R3 remove R3

DelRl M62 R4 remove R4

DelRl M63 R5 remove R5

ActToDea M64 R2 Image (OFF), Video (OFF)

ActToDea M65 R3 Image (OFF), Video (OFF)

ActToDea M66 R4 Image (OFF), Video (ON)

ActToDea M67 R4 Image (ON), Video (OFF)

ActToDea M68 R5 Image (OFF), Video (ON)

ActToDea M69 R5 Image (ON), Video (OFF)

DeaToAct M70 R1 Image (ON), Video (OFF)

DeaToAct M71 R1 Image (OFF), Video (ON)

DeaToAct M72 R2 Image (ON), Video (ON)

DeaToAct M73 R3 Image (ON), Video (ON)

AddRl M74 R1 Image (OFF), Video (OFF), Image (ON)

AddRl M75 R1 Image (OFF), Video (OFF), Video (ON)

AddRl M76 R2 Image (ON), Video (OFF), Image (OFF)

AddRl M77 R2 Image (ON), Video (OFF), Video(ON)

AddRl M78 R3 Image (ON), Video (OFF), Image (OFF)

AddRl M79 R3 Image (ON), Video (OFF), Video (ON)

AddRl M80 R4 Image (ON), Video (ON), Image(OFF)

AddRl M81 R4 Image (ON), Video (ON), Video (OFF)

AddRl M82 R5 Image (ON), Video (ON),Image(OFF)

AddRl M83 R5 Image (ON), Video (ON),Video(OFF)

CtxINV M84 R1 CtxNotExist

Continued on next page

172

Table 29 – Continued from previous page

Operator Mutant ID Rule Mutation

CtxINV M85 R2 CtxNotExist

CtxINV M86 R3 CtxNotExist

CtxINV M87 R4 CtxNotExist

CtxINV M88 R5 CtxNotExist

CtxUNR M89 R1 isBtLow AND !hasPwSrc AND isBtFull

CtxUNR M90 R2 isBtLow AND hasPwSrc AND isBtFull

CtxUNR M91 R3 isBtNormal AND !hasPwSrc AND isBtFull

CtxUNR M92 R4 isBtNormal AND hasPwSrc AND isBtFull

CtxUNR M93 R5 isBtFull AND isBtLow

CtxINT M94 R1 isBtLow AND hasPwSrc

CtxINT M95 R1 isBtNormal AND !hasPwSrc

CtxINT M96 R1 isBtNormal AND hasPwSrc

CtxINT M97 R1 isBtFull

CtxINT M98 R5 isBtLow AND hasPwSrc

CtxINT M99 R4 isBtLow AND hasPwSrc

CtxINT M100 R5 isBtNormal AND !hasPwSrc

CtxINT M101 R4 isBtNormal AND !hasPwSrc

DelRlAll M102 all remove all AR

ActToDeaAll M103 R2,R3,R4 e R5 Image(ON) -> Image (OFF)

ActToDeaAll M104 R4,R5 Video(ON) -> Video (OFF)

DeaToActALl M105 R1 Image(OFF) -> Image(ON)

DeaToActALl M106 R1,R2,R3 Video(OFF) -> Video (ON)

CtxINVAll M107 all All to CtxNotExist

CtxUNRAll M108 all All to isBtFull AND isBtLow

CtxINTAll M109 all R1 -> +Image(ON), others -> +Image(OFF)

CtxINTAll M110 all R1,R2,R3 -> +Video(ON),others -> +Video(OFF)

173

APPENDIX E – EXPERIMENT INSTRUMENTATION

E.1 Background Form

1. Name:

2. Academic Degree

a) Graduate

b) Master Student

c) Master

d) Doctoral Student

e) Doctor

3. Which is your experience on Software Testing?

a) Know what is Software Testing and had already tested software in academy and

industry

b) Know what is Software Testing and had already tested software in academy

c) Does not have previously knowledge on Software Testing

4. Which is your experience on Model Checking?

a) Know what is Model Checking and had already used a checker tool

b) Know what is Model Checking, but had never used a checker tool

c) Does not have previously knowledge on Model Checking

5. Which is your experience on DSPL?

a) Know what is DSPL, its related concepts and had already worked with it on academic

or industry projects

b) Know what is DSPL, its related concepts, but had never worked with it

c) Does not have previously knowledge on DSPL

6. Which is your experience with Java Language?

a) Have already used Java in industry and academic projects

b) Have already used Java, but only in academic projects

c) Does not have previously knowledge on Java

7. Which is your experience with Android?

a) Have already used Android in industry and academic projects

b) Have already used Android, but only in academic projects

c) Does not have previously knowledge on Android

174

E.2 Task I - Mobiline

The Mobiline DSPL (Figure 38) is a product line of mobile applications that shows

to the visitor information about the place s/he is visiting. It has the following features:

1. Files

a) Text: A functionally that provides text content to the user

b) Video: A functionally that provides video content to the user

c) Image: A functionally that provides image content to the user

2. Show Events

a) The products of the Mobile Guide can show events to the visitors. This function can

be related to “all events” or “current events”.

Moreover, the Mobiline DSPL uses a set of context information to reconfigure by

generating a product at runtime that follows the feature model rules. Regarding the contexts

observed, they are described with their context features as follows:

1. Battery Charge level: identifies if the battery charge is Full (BtFull), Normal (BtNormal)

or Low (BtLow). Usually, the visitor receives a device with full battery and the charge is

decreasing over time.

a) BtFull

b) BtNormal

c) BtLow

2. Network Status: identifies whether the network is slow or not. This can happen anytime.

a) Slow Network

Now, you need to play the tester role. Please specify a Test Sequence of adaptation

test cases, i.e., test cases related to the adaptive behavior. Notice that mandatory features do not

change their status (i.e., they are always activated).

175

Figure 38 – Feature Model of the Mobile Visit Guide for the experiment task

Source – the author

E.3 Task II - Smart Home

The Smart Home DSPL (Figure 39) is a dynamic product line to facilitate the daily

lives of people. Some functionality of this DSPL are presented as follows:

1. Security

a) Call the Police: The security system may call the police

b) Presence Illusion: The system can have a functionality to simulate presence in the

house;

c) Alarm: The security system can have an alarm functionality

2. Temperature

a) The temperature is controlled either by air conditioning or the windows opening.

The Smart Home DSPL also uses a set of context information to reconfigure by

generating a product at runtime that follows the feature model rules. Regarding the contexts

observed, they are described with their context features as follows:

1. Robbery: identifies whether exists a threat or (exclusive) an attempt of robbery

a) Threat

b) Attempt

2. Power Consumption: identifies whether the house has low power consumption or (exclu-

sive) high power consumption. One of these contexts are always true

176

a) High Power Consumption

b) Low Power Consumption

Figure 39 – Feature Model of the Smart Home for the experiment task

Source – the author

Now, you need to play the tester role. Please specify a Test Sequence of adaptation

test cases, i.e., test cases related to the adaptive behavior. Notice that mandatory features do not

change their status (i.e., they are always activated).

E.4 Pós-Task Form

1. Name:

2. The training was enough to perform the task.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

3. The task goals were clear to me.

a) Strongly Disagree

b) Disagree

c) Neutral

177

d) Agree

e) Strongly Agree

4. I had enough time to perform the task.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

5. The task was easy.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

6. For me, the coverage of the test cases created is enough.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

7. Describe the approach used to create the test cases (i.e, the test coverage criteria used)

8. Do you have any comments about the task?

E.5 Pós-Experiment Form

1. Name:

2. The coverage of the tests generated by TestDAS is higher than the coverage of the tests

created manually based on the tester’s experience.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

178

3. The number of tests generated by TestDAS is higher than the number of tests created

manually based on the tester’s experience.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

4. The time spent to generate the testes with TestDAS is less than the time spent to create

tests manually based on the tester’s experience.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

5. The proposed test coverage criteria help in the generation of adaptation test cases.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

6. Which is the best way to specify adaptation test cases?

a) Using the TestDAS and the proposed test criteria

b) Based on the tester experience

7. Do you have any comments about the TestDAS, training or/and tasks?

179

APPENDIX F – INSTRUMENTATION OF THE OBSERVATIONAL STUDY

F.1 Feedback Form - TestDAS Tool

1. Name:

2. For me, it was easy to perform the model checking with the TestDAS tool.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

3. I would like to use the TestDAS tool for DAS model checking.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

4. For me, it was easy to generate the adaptation test cases with the TestDAS tool.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

5. I would like to use the TestDAS tool for DAS testing.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

6. Which are the difficulties for the TestDAS tool use?

7. Which are your suggestions for the improvement of the TestDAS tool?

180

F.2 Feedback Form - CONTroL

1. Name:

2. For me, it was easy to perform the DAS testing using the CONTroL.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

3. I would like to use the CONTroL for DAS testing.

a) Strongly Disagree

b) Disagree

c) Neutral

d) Agree

e) Strongly Agree

4. Which are the difficulties for the CONTroL?

5. Which are your suggestions for the improvement of the CONTroL?

181

APPENDIX G – OTHER PUBLISHED PAPERS DURING THE THESIS WORK PERIOD

1. ARAUJO, I. L.; SANTOS, I. S.; FERREIRA FILHO, J. B.; ANDRADE, R. M. C.;

SANTOS NETO, P. A. . Generating Test Cases and Procedures from Use Cases in

Dynamic Software Product Lines. In: 32nd ACM Symposium on Applied Computing

(SAC), 2017, Marrakech, Morocco. Proceedings of 32nd ACM Symposium on Applied

Computing, 2017.

2. ANDRADE, R. M. C.; SANTOS, I. S.; DANTAS, V. L. L.; OLIVEIRA, K. M.; ROCHA,

A. R. C. . Software Testing Process in a Test Factory: From Ad hoc Activities to an

Organizational Standard. In: 19th International Conference on Enterprise Information

Systems (ICEIS), 2017, Porto, Portugal. Proceedings of International Conference on

Enterprise Information Systems, 2017.

3. ANDRADE, R. M. C.; DANTAS, V. L. L.; CASTRO, R. N. S.; SANTOS, I. S. . Fifteen

Years of Industry and Academia Partnership: Lessons Learned from a Brazilian Research

Group. In: 4th International Workshop on Software Engineering Research and Industrial

Practice - SER&IP, 2017, Buenos Aires, Argentina. Proceedings of ICSE Workshops,

2017.

4. ARAGAO, B.; SANTOS, I. S.; NOGUEIRA, T. P.; MESQUISA, L. B. M.; ANDRADE,

R. M. C. . Modelagem Interativa de um Processo de Desenvolvimento com Base na

Percepção da Equipe: Um Relato de Experiência. In: Simpósio Brasileiro de Sistemas de

Informação, 2017, Lavras, Minas Gerais. Anais do XIII Simpósio Brasileiro de Sistemas

de Informação, 2017.

5. ANDRADE, R. M. C.; SANTOS, I. S.; ARAUJO, I. L.; ARAGAO, B.; SIEWERDT, F. .

Retrospective for the Last 10 years of Teaching Software Engineering in UFC?s Computer

Department. In: Brazilian Simposium of Software Engineering, 2017, Fortaleza, Ceará.

Proceedings of XXXI Brazilian Simposium of Software Engineering, 2017.

6. CUNHA, T. F. V.; SANTOS, I. S.; MACEDO, A. A.; HUGO, A.; ARAGAO, B.; AN-

DRADE, R. M. C. . CAS 2.0: Evolução e Automação do Checklist de Avaliação do Scrum

para Projetos de Software. In: XV Simpósio Brasileiro de Qualidade de Software (SBQS),

2016.

7. SANTOS, R. M.; SANTOS, I. S.; MEIRA, R. G.; AGUIAR, P. A.; ANDRADE, R. M.

C. . Machine Learning and Location Fingerprinting to Improve UX in a Ubiquitous

Application. In: Human-Computer Interaction International (HCII), 2016.

182

8. SANTOS, R. M.; ANDRADE, R. M. C.; OLIVEIRA, K. M.; SANTOS, I. S.; BEZERRA,

C. I. M. . Quality characteristics and measures for human computer interaction evaluation

in ubiquitous systems. Software Quality Journal (SQJ),2016.

9. SANTOS, I. S.; FRANCO, W.; ARAGAO, B.; ANDRADE, R. M. C. . Definição e

Aplicação de um Processo de Testes Ágeis: um Relato de Experiência. In: XIV Simpósio

Brasileiro de Qualidade de Software, 2015 (SBQS), 2015.

10. ANDRADE, R. M. C.; SANTOS, I. S.; SANTOS, R. M.; ARAUJO, I. L. . Uma Metodolo-

gia para o Ensino Teórico e Prático da Engenharia de Software. In: VIII Fórum de

Educação em Engenharia de Software (FEES), 2015.

11. BEZERRA, C. M.; ANDRADE, R. M. C.; SANTOS, R. M.; ABED, M.; OLIVEIRA,

K. M.; MONTEIRO, J. M.; SANTOS, I. S.; EZZEDINE, H.. Challenges for usability

testing in ubiquitous systems. In: Proceedings of the 26th Conference on l’Interaction

Homme-Machine - IHM ’14, 2014.

12. SANTOS, I. S.; ANDRADE, R. M. C.; SANTOS NETO, P. A. . ChAPTER: Um Método

para Geração de Cenários de Testes para Linhas de Produto de Software Sensíveis ao

Contexto. In: VI Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP), 2014.

13. SANTOS, I. S.; ANDRADE, R. M. C.; SANTOS NETO, P. A. . Um Ambiente para

Geração de Cenários de Testes para Linhas de Produto de Software Sensíveis ao Contexto.

In: XIII Simpósio Brasileiro de Qualidade de Software (SBQS), 2014.

14. BEZERRA, C. I. M.; COUTINHO, E. F.; SANTOS, I. S.; MONTEIRO FILHO, J. M.

S.; ANDRADE, R. M. C. . Evolução do Jogo ItestLearning para o Ensino de Testes

de Software: Do Planejamento ao Projeto. In: XIX Conferência Internacional sobre

Informática na Educação (TISE), 2014.

15. SOUSA, J.; HUGO, A.; OLIVEIRA, A.; SANTOS, I. S.; BRAGA, R.; ANDRADE, R.

M. C.; SILVA, F. . SKAM: Um Processo usando Scrum e Kanban para Customização de

Software em Dispositivos Móveis. In: X Workshop Anual do MPS (WAMPS), 2014.

16. SANTOS, I. S.; BEZERRA, C. I. M.; MONTEIRO, G. S.; ARAUJO, I. L.; OLIVEIRA,

T. A.; SANTOS, R. M.; DANTAS, V. L. L.; ANDRADE, R. M. C. . Uma Avaliação de

Ferramentas para Testes em Sistemas de Informação Móveis baseada no Método DMADV.

In: IX Simpósio Brasileiro de Sistemas de Informação, 2013.

17. SANTOS, R. M.; OLIVEIRA, K. M.; ANDRADE, R. M. C.; SANTOS, I. S.; LIMA, E. R.

R. . A Quality Model for Human-Computer Interaction Evaluation in Ubiquitous Systems.

183

In: Latin American Conference on Human Computer Interaction (CLIHC), 2013.

18. LIMA, E. R. R.; ARAUJO, I. L.; SANTOS, I. S.; OLIVEIRA, T. A.; MONTEIRO, G. S.;

COSTA, C. E. B.; SEGUNDO, Z. F. S.; ANDRADE, R. M. C. . GREat Tour: Um Guia de

Visitas Móvel e Sensível ao Contexto. In: XII Workshop on Tools and Applications. 19th

Brazilian Symposium on Multimedia and the Web, 2013.

19. SANTOS, I. S.; ANDRADE, R. M. C.; SANTOS NETO, P. A. . A Use Case Textual

Description for Context Aware SPL Based on a Controlled Experiment. In: CAiSE’13

FORUM, 2013.

	Title page
	Acknowledgements
	Abstract
	Resumo
	Summary
	Introduction
	Contextualization
	Motivation
	Hypothesis and Research Questions
	Research Goal and Main Contributions
	Research Methodology
	Structure of the Thesis

	Background
	Running Example
	Context Awareness in DAS
	Software Verification
	Software Testing
	Conclusion

	Related Work
	Model Checking for Context Aware Adaptive Software
	Model Checking for Dynamic Software Product Lines
	Testing Context-Aware Adaptive Systems
	Testing Dynamic Software Product Lines
	Discussion
	Conclusion

	TestDAS and Supporting Tools
	TestDAS Overview
	Modeling the DAS Adaptive Behavior
	DAS Model Checking Approach
	Testing the DAS Adaptive Behavior
	Supporting Tools
	Conclusion

	Evaluation
	Assessment of the Faults Identification Effectiveness
	Assessment of the Generated Tests
	Assessment of the Supporting Tools
	Conclusion

	Conclusion
	Overview
	Main Results
	Revisiting the Research Hypothesis and Related Work
	Limitations
	Future Work

	Bibliography
	Promela Basic Grammar
	Promela Codes Used in the Feasibility Study
	Class Diagram for the Context-Aware Feature Model
	List of Generated Mutants
	Experiment Instrumentation
	Background Form
	Task I - Mobiline
	Task II - Smart Home
	Pós-Task Form
	Pós-Experiment Form

	Instrumentation of the Observational Study
	Feedback Form - TestDAS Tool
	Feedback Form - CONTroL

	Other Published Papers During the Thesis Work Period

