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RESUMO

O armazenamento distribuído em chave-valor (KVS) é uma abordagem bem estabelecida para

aplicações com uso intensivo de dados na nuvem. Contudo, este tipo armazenamento não

foi projetado para considerar cargas de trabalho com acesso desbalanceado aos dados devido

principalmente a dados populares. Na presente pesquisa, foi feita uma análise do problema de

alocação de réplicas no KVS para cargas de trabalho com acesso desbalanceado aos dados. O

problema é definido formalmente como um problema de otimização multiobjetivo, pois além do

custo de desequilíbrio de carga, também existem os custos de manutenção e reconfiguração de

réplicas, que afetam o desempenho do sistema. Para resolver o problema de alocação da réplica,

nós propomos o componente de alocação de réplicas PopRing. Esse componente, baseado em

algoritmos genéticos, busca de forma eficiente novas alocações de réplica. Em seguida, a estrutura

PopRing foi estendida com um componente de otimização de hiper-parâmetros baseado em

otimização bayesiana, de modo a encontrar com eficiência a importância adequada das funções

objetivas de desbalanceamento de carga, manutenção de réplica e reconfiguração de acordo com

a latência do sistema. Para validar o PopRing, foi implementado um protótipo completo a fim

de gerar novos esquemas de alocação de réplica no formato da interface distributed hash table

(DHT) de armazenamento de objetos OpenStack-Swift. Em seguida, em nosso ambiente de

experimentação, foi configurado um cluster distribuído do OpenStack-Swift, um nó de referência

do benchmark e o protótipo PopRing para executar alguns experimentos. A partir da avaliação

dos resultados, verificou-se que a solução conseguiu reduzir a latência do sistema para diferentes

níveis de desbalanceamento de acesso a dados sem intervenção humana, ou seja, ajustou seus

parâmetros automaticamente para encontrar um esquema de alocação de réplica apropriado para

um dado cenário.

Palavras-chave: Armazenamento Chave-valor Distribuído. Alocação de Réplica. Balancea-

mento de Carga. Algoritmo Genético. Otimização Bayesiana.



ABSTRACT

Distributed key-value stores (KVS) are a well-established approach for cloud data-intensive

applications, but they were not designed to consider workloads with data access skew, mainly

caused by popular data. In this work, we analyze the problem of replica placement on KVS

for workloads with data access skew. We formally define our problem as a multi-objective

optimization problem because not only load imbalance cost, but replica maintenance and re-

configuration costs affect system performance as well. To solve the replica placement problem,

we present the PopRing replica placement component based on Genetic algorithms to find new

replica placements efficiently. Next, we extend PopRing framework with a hyper-parameter

optimization component based on Bayesian optimization in order to efficiently find the proper

importance of load imbalance, replica maintenance, and reconfiguration objectives according to

the system latency. To validate our PopRing engine in practice, we implemented a full prototype

of PopRing to generate new replica placement schemes in the format of the distributed hash table

(DHT) interface of the popular object store OpenStack-Swift. Then, in our lab environment,

we deployed a distributed cluster of the OpenStack-Swift, a benchmark node and the PopRing

prototype to run some experiments. From results evaluation, we verified that our solution was

able to reduce system latency for different levels of data access skew without human intervention,

i.e., PopRing auto-tuned its parameters to find a proper replica placement scheme to a given

scenario.

Keywords: Distributed Key-value Store. Replica Placement. Load Balancing. Genetic Algo-

rithm. Bayesian Optimization.
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1 INTRODUCTION

Distributed key-value stores (KVS) are a well-established approach for cloud data-

intensive applications. Their success came from the ability to manage huge data traffic driven by

the explosive growth of social networks, e-commerce, enterprise and so on.

In this work, we focus on the particular type of KVS which can ingest and query any

type of data, such as photo, image and video. This type of KVS is also called object store, such

as Dynamo (DECANDIA et al., 2007) and OpenStack-Swift (CHEKAM et al., 2016). These

systems evolved to take advantage of Peer-to-peer (P2P) networks and replication techniques to

guarantee scalability and availability. However, they are not efficient for dynamic workloads

with data access skew, once their partitioning technique, based on Distributed hash table (DHT)

and Consistent hashing table (CHT), assumes uniformity for data access (DECANDIA et al.,

2007) (MAKRIS et al., 2017b).

Data access skew is mainly a consequence of popular data (hot data) due to high

request frequency. Previous works, such as (MAKRIS et al., 2017b) and its references, suggest

that popular data is one of the key reasons for high data access latency and/or data unavailability

in cloud storage systems. The authors (MANSOURI et al., 2017) affirm that a data placement

algorithm should dynamically load balance skewed data access distribution so that all servers

handle workloads almost equally. To overcome that limitation, the reconfiguration of replica

placement is necessary, although it requires data movement throughout the network. Minimizing

load imbalance and replica reconfiguration are NP-hard (ZHUO et al., 2002).

Additionally to the aforementioned challenges, there is the replica maintenance of

cold data where considerable storage and bandwidth resources may be wasted at keeping too

many replicas of data with low request frequency, i.e., unnecessary replicas. To make matters

worse, the authors (CHEKAM et al., 2016) affirm that the data synchronization of too many

replicas is not a good choice due to network overhead.

1.1 Contributions

The major contributions of this work are grouped in two works as described in

Sections 1.1.1 and Section 1.1.2:
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1.1.1 PopRing: A Popularity-aware Replica Placement for Distributed Key-Value Store

• A modeling of the multi-objective problem of minimizing load imbalance, replica place-

ment maintenance and replica placement reconfiguration costs for KVS based on DHT

with virtual nodes and consistent hashing;

• A PopRing replica placement component based on Genetic algorithm (GA) to solve our

multi-objective replica placement problem;

• An implementation and experimentation of the PopRing replica placement component in a

simulated-based environment;

• An investigation of the trade-off regarding the minimization of load imbalance, replica

placement maintenance and replica placement reconfiguration objectives;

1.1.2 PopRing Hyper-parameter Optimization

• A modeling of the optimization problem of minimizing system latency while manipulating

our replica placement hyper-parameters, i.e., the importance of the load imbalance, replica

placement maintenance and reconfiguration objectives;

• A PopRing hyper-parameter optimization component based on Bayesian optimization

(BO) to solve our objective of hyper-parameter optimization problem;

• An implementation and evaluation of the PopRing hyper-parameter component in our

cloud environment by deploying an OpenStack-Swift cluster;

• An investigation of the minimization of the system latency under different levels of data

access skew;

1.2 Scientific Papers

During the development of this work, two papers were published according to Table

1.

Table 1 – Published Papers.
Conference Title
CLOSER 2018 HIOBS: A Block Storage Scheduling Approach to

Reduce Performance Fragmentation in Heteroge-
neous Cloud Environments

CLOSER 2018 PopRing: A Popularity-aware Replica Placement for
Distributed Key-Value Store
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1.3 Dissertation Structure

Organization: This paper is organized as follows: Section 2 provides background

information. Section 3 discusses related work. Section 4 proposes the replica placement

component of the PopRing and evaluates the approach. Section 5 proposes the hyper-parameter

optimization component of the PopRing and evaluates the approach. Section 6 presents the final

conclusions of the PopRing approach and suggests future work.
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2 BACKGROUND

This section 2 aims to prepare the reader with background information for under-

standing our problem context and formulation as well as our solutions. Firstly, we give an

introduction to DHT systems which form the core technology behind distributed key-value stores.

Next, we discuss the concept of "load", associated terms and load balancing approaches for DHT

systems.

After the minimum background about DHT systems, we specialize our background

section to key aspects of distributed key-value store systems. This type of system is the one

used to validate our work and its peculiarities regarding partitioning, replication and architecture

beyond being important for understanding our problem formulations. Finally, we introduce the

usage of artificial intelligence algorithms for optimization problems in which we focus on GA

and BO because they are the underlying technology of our solutions.

2.1 Distributed Hash Table

P2P systems represent a radical shift from the classical client-server paradigm, in

which a centralized server processes requests from all clients (FELBER et al., 2014). DHT is a

type of structured P2P systems which have the property of associating a unique identify (key) to

a node of the system, thus making a DHT mapping of keys and nodes.

The space of keys of a DHT is partitioned among the nodes, thus decentralizing

the responsibility of data placement look-up. As a result of the DHT management, an overlay

network is built on top of the physical network on which the nodes are linked. These links may

be based on IP-based P2P systems, wherein a peer may communicate directly with every other

peer. While IP-based P2P systems are researched in this work, mobile ad-hoc networks are out

of scope. To support this overlay, the DHT component must support two functions:

• Put (key, data): Store data into the node associated with a key;

• Get (key, data): Retrieve data from the node associated with a key.

2.1.1 Object and Request Load

Our understanding of object, request load and resources are similar to the concepts

defined by the authors (FELBER et al., 2014):

• Object: a piece of information stored in the system. An object has at least its identification
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and size as meta-data. The popularity of an object is the frequency at which it is accessed.

• Request load: a number of object requests per time unit in which each object request

consumes storage space, processing time, bandwidth and disk throughput resources of the

system during the request and after the request is completed.

• Resources: system resources have limited capacity in terms of available storage space,

processing time, bandwidth and disk throughput. This work refers Get requests for

retrieving data and Put requests for inserting data to the system through a web API

component.

2.1.2 Load balancing in DHT systems

The decentralized structure of DHT overlays requires careful design of load balancing

algorithms to fairly distribute the load among all participating nodes. For systems based on DHT,

name-space, request rate, routing at overlay and underlay are important aspects to understand

how DHT designs are affected by load balancing issues and approaches as described in Table

2. Sections 2.1.2.1 and 2.1.2.2 discuss in detail each aspect of our work regarding the literature

of load balancing approaches for DHT systems according to the classification proposed by

(FELBER et al., 2014):

Table 2 – Important aspects for DHT load balancing.
Aspect Meaning
Name-space It refers to how objects are mapped to keys
Request rate It refers to how request load is distributed over the

keys
Overlay routing It refers to how keys are mapped to the nodes of the

system.
Underlay routing It refers to how the proximity distance of the underlay

nodes matches with the proximity distance of overlay
nodes.

2.1.2.1 Load balancing issues

• Name-space balancing: When nodes and keys are not uniformly distributed over the

identifier space, objects are expected to be shared between nodes in a skewed manner, thus

causing heavy load on some nodes. One classical approach to achieving this property is

the name-space balancing (e.g., hashing the IP address of a node or an object name). The

DHT adopted in this work uses consistent hashing for name-space balancing.
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• Request Rate: The overlays are generally designed to be well balanced under a uniform

flow of requests, i.e., with objects having equal popularity, all nodes receive a similar

amount of requests. In practice, many workloads have not equal popularity as mentioned

in Section 1. By this means, skewed request rate is the main issue which our work aims to

solve.

• Overlay routing: each node maintains in its "routing table" the list of outgoing links

leading to its immediate neighbors. Nodes with a huge number of incoming links are

thus expected to receive on more requests than other nodes, thus causing load imbalance

as well. In order to fairly share the traffic load in the overlay, the routing tables should

be organized in such a way that the number of incoming links per node is balanced. In

our context, replicas means multiple links to the same key, thus the request load on each

replica is fairly distributed.

• Underlay routing: the underlying topology is also an important aspect for building the

routing tables (e.g., immediate neighbors in the overlay routing which are placed in distant

regions in the underlay may cause an unexpected delay for those that are not aware of this

discrepancy. Underlay routing is out of scope of our work.

2.1.2.2 Load balancing approaches

According to the literature, there are many approaches to handle load balance issues

regarding name-space, request rate, overlay and underlay routing as described in Figure 1. Our

work focuses on the replication mechanism for solving the object placement.

Object placement basically deals with node and key placement in the identifier space,

key to node mapping, the physical location of objects, and the size and popularity of objects. In

this work, we generalized the term object placement to replica placement and focus our efforts to

improve the replica placement of our system.

2.1.3 Consistent hashing

It is a method of name-space balancing presented by (KARGER et al., 1997). It

introduces an appropriate hashing function (e.g., SHA-1) uniformly distributing identifiers and

keys over the identifier space. Every node independently uses this function to choose its own

identifier. The basic idea of consistent hashing is relatively simple, since each node or object gets

its ID by means of the predefined hashing function, e.g., SHA-1. Unfortunately, the usage of
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Figure 1 – Load balance solutions for DHT. Source: (FELBER et al., 2014)

only consistent hashing may have the side-effect of having a long interval of keys being managed

by a single node. To overcome that, the literature has proposed the usage of consistent hashing

with virtual servers.

2.1.4 Virtual servers

Virtual servers or virtual nodes were first introduced by (STOICA et al., 2001) to

uniformly distribute identifiers over the addressing space, because the probability of a node to be

responsible for a long interval of keys decreases. Beyond that virtual servers give the capacity of

activating an arbitrary number of virtual servers per physical node, which is proportional to the

peer capacity.

2.2 Distributed Key-Value Store

2.2.1 Partitioning and Replication

The partitioning of the adopted KVS system in this work is based on consistent hash

with replicated virtual nodes as shown in Fig. 2. A virtual node or virtual server represents a set

of objects mapped to a unique key in the DHT. This way, objects are directly mapped to virtual
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nodes rather than physical nodes.

Our virtual nodes also have the same concept of the virtual nodes in Dynamo KVS

and the partitions in OpenStack-Swift KVS, i.e., they form an abstract layer of data management

in which parts of system data can be managed without affecting other data. The placement of

every data object is mapped to one virtual node through the consistent hash function mapping.

This mapping is the process of hashing the identification of a data object regarding the total

number of virtual nodes defined by the system admin. Our hash function outputs hashed values

uniformly distributed, thus balancing the number of objects on every virtual node. The hash

function mapping between an object and a virtual node is fixed because the hash function is the

same during all system operation.

In our system, the system administrator sets the total number of virtual nodes to

a large value at the first deployment of the system and never changes it. Otherwise, it would

break the property of the consistent hashing technique by creating the side-effect of huge data

movements.

Figure 2 – Objects, virtual nodes and storage nodes mappings.

A virtual node can be replicated multiple times into different storage nodes. This

mapping of the virtual node replicas and storage nodes is called replica placement scheme where

it describes the replication factor and the placement of every virtual node replica as shown in

Fig. 2. That scheme enables data management operations such as replica creation, migration

and deletion. This way, a physical node hosts one or more virtual nodes. As example of load

balancing by migration, virtual nodes may be migrated from heavily loaded physical nodes to

lightly loaded physical nodes.
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2.2.2 Object Hash Collision

As mentioned before, the consistent hashing function maps objects to virtual nodes

through hash operation. The hash operation produces hash collision of a set of different objects

mapped to the same virtual node key. To proper handle those hash collisions, each storage node

is based on traditional file-systems and block storage layers. This way, different objects with the

same key are mapped to the same virtual node and stored into storage nodes without issues.

2.2.3 Architecture

The targeted system architecture of our work is composed of three types of nodes:

service node, storage node and coordinator node. The service nodes handle data access requests

as a reverse proxy to storage nodes by using the replica placement scheme for data location.

The service nodes accepts write/read operations of data objects by supporting Put

requests for creating objects creation and Get requests for accessing data objects. An object is

any unstructured data, i.e., a photo, a text, a video and so on. The system is able to handle any

object size and is “write-once, read-many”. In this work, each service node not only receives a

similar number of Get requests from the service users. A service node also spread equally the

Get requests submitted to a virtual node, i.e., each replica of a virtual node is demanded equally.

The coordinator node is a centralized controller responsible for generating new

replica placement schemes as well as deploying them into the other nodes. It maintains a copy of

the replica placement scheme in-use by the other nodes. It also monitors the total number of Get

requests per virtual node served by the service nodes as well as the available storage capacity of

the storage nodes. The coordinator node works independently of the other nodes and it is not

required for the meeting of the new scheme, i.e., the other nodes uses only its copy of the new

replica placement scheme to meet the new replica placement. An instance of the architecture is

shown in Fig. 3 in which the generated a new replica placement scheme based on

A new replica placement scheme is synchronized by a peer-to-peer asynchronous

process in the storage nodes different from the process to serve data access requests. This process

aims to synchronize all replicas units of the current replica placement scheme. Every storage

node knows exactly which replicas it manages because every node has a copy of the replica

placement scheme.

The data availability of the system is maintained by the minimum number of replicas
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Figure 3 – System architecture.

of a virtual node and by the minimum number of replicas not to reconfigure. This minimum

number of replicas not to reconfigure may be used to avoid data unavailability due to aggressive

replica placement reconfiguration, i.e., a new scheme which requires all replicas of a highly

accessed virtual node to be migrated at the same time.

2.2.4 Consistency Model

Ideally, a distributed system should be an improved version of a centralized system

in which fault-tolerance and scalability are proper handled. In fact, this goal is obtained because

data may be replicated all over the system, but within the limitations set by the CAP Theorem

(GILBERT; LYNCH, 2002). Briefly, CAP Theorem stated that in a distributed system, only two

of three following aspects can be met simultaneously: consistency, availability, and partition

tolerance. In the case of the type of systems targeted in this work, non-transactional distributed

key-value store systems, high availability and partition tolerance are prioritized.

The design decision of prioritizing high availability and partition tolerance may raise

a question: how much consistency is sacrificed? According to the literature, there are at least the

following levels of consistency:

• Strong Consistency: The gold standard and the central consistency model for non-

transactional systems is linearizability, defined by (HERLIHY; WING, 1990). Roughly

speaking, linearizability is a correctness condition that establishes that each operation shall

appear to be applied instantaneously at a certain point in time between its invocation and
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its response (VIOTTI; VUKOLIĆ, 2016).

• Weak Consistency: It is the contrary of strong consistency, which does not guarantee that

reads return the most recent value written. Last, but no least important, it does not provide

ordering guarantees hence, no synchronization protocol is actually required. For example:

relaxed caching policies that can be applied across various tiers of a web application, or

even the cache implemented in web browsers (VIOTTI; VUKOLIĆ, 2016).

• Eventual Consistency: replicas converge toward identical copies in the absence of further

updates. In other words, if no new write operations are performed on the object, all read

operations will eventually return the same value (TERRY et al., 1994) (VOGELS, 2008)

(VIOTTI; VUKOLIĆ, 2016).

2.2.4.1 Eventual Consistency Implications

As mentioned before, in order to offer high data availability and durability, KVS-like

systems such as OpenStack-Swift and Amazon DinamoDB typically replicate each data object

across multiple storage nodes, thus leading to the need of maintaining consistency among the

replicas.

The eventual consistency is embodied by leveraging an object synchronization

protocol to check different replica versions of each object. Consequently, this synchronization

process introduces network overhead for already existent replicas as well as replica movement

throughout storage nodes due to new reconfiguration of replica placement schemes.

After a new scheme is deployed, virtual nodes may be remapped to different storage

nodes, thus requiring the synchronization of virtual nodes. In case of too much data being

synchronized, the system may suffer destabilization.

2.2.5 Optimal Replica Placement

The partitioning, replication and architecture supported by the adopted KVS system

support virtual server replication and migration. The literature says that only the optimal virtual

server relocation problem is NP-Complete (FELBER et al., 2014). This way, global optimization

techniques are important techniques for dealing with these type of problems. Next, we present

background information on global optimization.
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2.3 Global Optimization

We formalize the continuous global optimization problem given by Equation 2.1

min f (~x)

s.t. ~a≤~x≤~b
(2.1)

where f : ℜn→ℜ is referred to as the objective function while ~a and~b define the

lower and upper bounds of the search space, respectively.

In the discrete case,~x /∈ℜn, a candidate solution is a discrete data structure, or object

such as ordinal integers, categorical variables, binary variables, permutations, strings, trees or

graphs in general.

Global optimization aims to find globally the best solution of models even in the

presence of multiple local optimums. Global optimization problems may be classified not only as

continuous or discrete, but also as linear or non-linear and convex or non-convex etc. In general,

due to the absence of structural information and the presence of many local extrema, global

optimization problems are extremely difficult to solve exactly (HU et al., 2012).

The literature for solving these type of global problems is vast. To improve the

understanding of many types of solvers, some authors classify them according to Figure 4

in which deterministic methods are not expanded because the focus of this work is on hard

optimization problems. According to the authors of (BOUSSAÏD et al., 2013), hard optimization

problems cannot be solved optimally, or to any guaranteed bound, by any exact (deterministic)

method within a “reasonable” time limit.

Yet in Figure 4, stochastic methods are expanded into instance-based or model-based

algorithms according to the mechanism of generating new candidate solutions. Instance-based

algorithms maintain a single solution or population of candidate solutions, and the construction

of that candidate solutions depends explicitly on the previously generated solutions such as

simulated annealing, genetic algorithms, tabu search, generalized hill climbing, and evolutionary

programming. Genetic algorithms are used by the algorithmic infrastructure proposed in Section

4.

In model-based algorithms, new solutions are generated via an intermediate prob-

abilistic model that is updated or induced from the previously generated solutions. Finally,

surrogate model techniques may be classified into single surrogate, multi-fidelity and ensemble
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surrogate. An example of single surrogate is the Bayesian optimization technique which is used

by the algorithmic infrastructure proposed in Section 5.

Figure 4 – Global Optimization Techniques Classification. Source: (BARTZ-BEIELSTEIN;
ZAEFFERER, 2017).

2.3.1 Exploitation vs Exploration

Due to the difficult to solve a diverse range of hard problems within a “reasonable”

time limit, an optimizer will be successful on a given optimization problem if it can provide a

balance between the exploration (diversification) and the exploitation (intensification). Exploita-

tion is necessary to identify parts of the search space with high quality solutions. Exploitation is

important to intensify the search in some promising areas of the accumulated search experience.

2.3.2 Genetic Algorithms

Genetic algorithms are also classified as meta-heuristics optimization. This class of

solvers are designed to solve approximately a wide range of hard optimization problems without

having to deeply adapt to each problem. Meta-heuristics are generally applied to problems for

which there is no satisfactory problem-specific algorithm to solve them.

Meta-heuristics may be classified in terms of their features with respect to different

aspects concerning the search path they follow, the use of memory, the kind of neighborhood

exploration used or the number of current solutions carried from one iteration to the next,
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single-solution based meta-heuristics and population-based meta-heuristics. The last, but not

least important, the main difference between the existing meta-heuristics concern the particular

way in which they try to achieve the balance between exploitation and exploration according

to (BOUSSAÏD et al., 2013). For example, single-solution based meta-heuristics are more

exploitation oriented whereas population-based meta-heuristics are more exploration oriented.

Genetic algorithm is a meta-heuristic optimization inspired on the process of natural

selection. It works by creating and evolving a population of candidate solutions or individuals.

In general, individuals are composed of a chromosome and a fitness value (obviously, after

evaluation of its objective function). Chromosomes are often represented as binary of zeros and

ones in which binary value is a chromosome. The selection process is guided by evaluating the

fitness of each individual and selecting the individuals according to their fitness values. New

individuals are then generated using crossover and mutation functions. Even though both the

crossover and mutation functions ensure a diversity of solutions, the random property of mutation

guarantees convergence to global optimum. GA are mainly characterized by its operators in

which the literature, such as (LI et al., 2017), has evaluated many different algorithms for each

GA operator as shown in Figure 5.

Figure 5 – Example of algorithms used by the genetic algorithm operators.

2.3.3 Multi-objective Optimization

Researchers have explored multi-objective problems since the 1970’s in various

domains for system control, decision making, circuit design, operations research, networking
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and telecommunications protocol design, and so forth according to the authors (CHO et al.,

2017) (PARDALOS et al., 2017). Once, in Section 4, a multi-objective problem is proposed

and explored, this work generalizes the global optimization problem to a multi-objective global

optimization problem given by 2.1.

min
x∈A

f (~x), f (~x) = ( f1(~x), ..., fm(~x))
T

s.t. g( j)≤ 0, j = 1,2, ...,J
(2.2)

where f (x) : A→ℜm is now referred to as a vector-valued objective function. The

feasible region A⊂ℜd is expressed by a number of inequality constraints: A = {x ∈ℜd|g j ≤

0, j = 1,2, ...,J}. If all the objective functions and the constraint functions are linear, then 2.2 is

called a multi-objective linear programming problem. If at least one of the objective or constraint

functions is nonlinear, then the problem is called a nonlinear multi-objective optimization

problem. If the feasible region and all the objective functions are convex, then 2.2 becomes a

convex multi-objective optimization problem. When at least one of the objective functions or the

feasible region is non-convex, then we have a non-convex multi-objective optimization problem.

2.3.3.1 Scalarization Method

There were attempts to reduce multi-objective optimization problems to single-

objective ones from the very beginning of their investigation (PARDALOS et al., 2017). The

reduction of a problem of multi-objective optimization to a single-objective optimization one

is normally called scalarization in which all objective functions are combined to form a single

function (MARLER; ARORA, 2004) (PARDALOS et al., 2017).

The linear scalarization method is the weighted sum method where the auxiliary

single-objective function is defined by the Equation 2.3:

min F(~x) =
m

∑
i=1

wi fi(x),wi ≥ 0 (2.3)

where the weights wi are parameters. In the case of non-convex objectives, the

selection of a vector w = (w1, ...,wm)
T is not a guaranteed existence of w yielding an arbitrary

element of the Pareto frontier. The Pareto frontier is a subset of w in which no improvement can

be made to one objective function without worsening other objective function.
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2.3.4 Surrogate Model-based

The Response surface methodology (RSM) is typically useful in the context of

continuous optimization problems and focuses on learning input–output relationships to approxi-

mate the underlying simulation by a surface (also known as a meta-model or surrogate model)

(AMARAN et al., 2016).

Classical RSM are local search methods in which there is no guarantee for finding a

global optimum.

2.3.4.1 Bayesian Optimization

Different from classical RSM, BO seeks to build a global response surface and is

classified as a global optimization method to deal with expensive-to-evaluate black-box objective

functions. It is commonly based on techniques such as Gaussian process (GP) regression in

which subsequent samples are chosen based on some sort of improvement metric balancing

exploitation and exploration.

For continuous functions, BO typically works by assuming the unknown function was

sampled from GP and maintains a posterior distribution for this function as different observations

are made (MOCKUS, 2012), (SNOEK et al., 2012) (SHAHRIARI et al., 2016).

To pick the hyper-parameters of the next experiment, one can optimize the Expected

improvement (EI) over the current best result or the GP Upper confidence bound (UCB). EI and

UCB have been shown to be efficient in the number of function evaluations required to find the

global optimum of many multi-modal black-box functions (SNOEK et al., 2012).

Acquisition functions trade off exploration and exploitation; their optima are located

where the uncertainty in the surrogate model is large (exploration) and/or where the model

prediction is high (exploitation) (SHAHRIARI et al., 2016).
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3 RELATED WORK

In this section, we contrast our work with existing works on replica placement

problem by discussing their characteristics as well as their solutions.

3.1 MORM: A Multi-objective Optimized Replication Management strategy for cloud

storage cluster

The authors (LONG et al., 2014) focus on the replica placement problem. They also

formulated their problem as a multi-objective optimization problem of the mean file unavailability,

mean service time, load variance, energy consumption and mean access latency as five objectives.

In comparison to our work, they use a similar load variance as objective. Considering their file

availability objective, instead of using a file availability based on a failure probability, we use a

constraint of minimum replicas, because hand-off techniques can be used to maintain the number

of replicas electing new nodes as temporary replicas.

Additionally, we also differed from (LONG et al., 2014) by proposing the replica

maintenance and reconfiguration objectives. These objectives offer support to a fine-grained

control of the amount of data to maintain in terms of store and the amount of data to move

in order to adapt to a new configuration. Their multi-objective function is modeled using the

weighted-sum scalarization technique. Our replica placement modeling is composed of only

three parameters, but it also aims to minimize the data management issues targeted by (LONG

et al., 2014), the load imbalance and the number of replicas. This way, our modeling is more

efficient because it avoids minimizing redundant objectives based on data access and additionally

to the load imbalance objective, it focuses on minimizing the amount of data to maintain and

reconfigure.

Similar to our work, (LONG et al., 2014) also used GA-based algorithm to find good

replica placements, but some differences can be pointed. For example, during the initialization of

their individuals, they create only random individuals, but eliminate those that do not meet storage

capacity constraint. Other difference from our work is that they do not perform chromosome

repairing during the evolving process to meet the minimal replicas constraint. They also do not

improve the scalability of their evaluation function using sparse matrix technology.

The last difference is the fact that they did not use black-box technique for optimizing

the importance of their five objective functions as we will present in Section 5 in order to improve
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our first work in the Section 4. As result, their solution keeps requiring human-intervention for

setting satisfactory importance parameters for improving the system response time according to

a current scenario.

3.2 A novel object placement protocol for minimizing the average response time of get

operations in distributed key-value stores

The authors (MAKRIS et al., 2017a) reported that response times of Get requests

quickly degrade in the presence of workloads with power-law distributions for data access. Then,

they defined their objective as the minimization of the average response time of the system under

a continuously changing load of Get requests. From the possibilities of replica manipulation:

creation, migration and deletion, they focused on the migration operation.

The migration operation is then used for moving objects between nodes in run-time

with the goal of minimizing very high (based on a threshold identified empirically) response

times. In their scope, they reduced the object placement problem to the bin packing problem

and formulate their problem as an integer linear optimization problem. To select the keys to be

migrated as well as the under-loaded nodes that will host these keys, they based their solution on

an offline bin packing heuristic algorithm, the First Fit Decreasing (FFD) algorithm.

They also proposed a combination of consistent hashing and a directory-base look-up

for exceptions instead of consistent hashing and virtual nodes. The consistent hashing is a naming

technique used for load balancing as explained in the Section 2 and an assumption of our system.

The second technique aims to overcome the weakness of the consistent hashing technique by

using a second auxiliary directory-base data structure for look-ups. They were aware that such

directory-base look-ups become arbitrarily large being difficult to manage and maintain. This

way, they proposed a Directory for exceptions (DFE) in which the auxiliary routing structure

maps only popular data using the following conditional decision: if a request arrives at a random

node in the cluster and this nodes holds the corresponding key, the node serves the client directly.

Otherwise, it raises an exception to the directory for updating the DFE and redirects the request

to the correct node.
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3.3 On optimizing replica migration in distributed cloud storage systems

(MSEDDI et al., 2015) clarify that replica placement systems may result in a huge

number of data replicas created or migrated over time between and within data centers. Then,

they focused on minimizing the time needed to copy the data to the new replica location by

avoiding network congestion and ensuring a minimal replica unavailability.

Finally, the discussed points of the related work can be summarized according to

Table 3.

Table 3 – Related Work Comparison.

Authors. (LONG et al.,
2014)

(MAKRIS et al.,
2017a)

(CAVALCANTE
et al., 2018)

Cavalcante et al

Research Prob-
lem.

Replica Place-
ment.

Replica Place-
ment limited to
migration

Replica Place-
ment.

Latency-
Adaptive
Replica Place-
ment.

Replica Place-
ment Objectives.

Mean file un-
availability, and
other 4 metrics
manly based on
access such as
load imbalance.

Load imbalance. Load imbalance, Replica
Maintenance and Replica
Reconfiguration.

Data Organiza-
tion / Scalability.

Hierarchical Di-
rectory.

DHT and Hierar-
chical Directory.

Efficient DHT.

Load Balance So-
lution.

Meta-heuristic /
GA operators.

Heuristic / First
Fit decreasing.

Meta-heuristic / GA oper-
ators with chromosome re-
pairing.

Importance Op-
timization of the
Replica Place-
ment Objectives
(hyper-parameter
optimization).

No. No. No Yes. Adopt
Bayesian Op-
timization
technique for
searching satis-
factory replica
placement
parameters.



37

4 POPRING: A POPULARITY-AWARE REPLICA PLACEMENT FOR DIS-

TRIBUTED KEY-VALUE STORE

In this section 4, we introduce system model of the replica placement component.

We also formalize our objectives as a multi-objective optimization problem.

From the discussed issues of hot and cold data in KVS systems addressed in Section

1, the DHT technology used for KVS for balancing data in terms of quantity or size is not effective

for dynamic and skew data access workloads. Our approach is not to create technology from

scratch, but to take advantage of the current DHT properties while aggregating new capacities

able to handle its limitations.

Adopting a strategy of evolving our efforts on demand, the work in Section 4 focuses

on elaboration and experimentation of a replica placement component. A good solution design

would require to answer the following research questions: should data be migrated and/or

replicated? Which node should be the new host of the replicated/migrated data? Which replicas

should be removed? Could replica maintenance and reconfiguration costs be minimized while

still minimizing the load imbalance of Get requests submitted to the system during last observed

time? The investigation of these questions resulted in the work presented in current Section 4.

4.1 System Model and Replica Placement Optimization Problem

4.1.1 System Model

In this section, our system is modeled, thus making clear the scope of our research.

4.1.1.1 Storage Nodes Specification

The system is composed of a set of distributed and independent storage nodes D,

where each d ∈ D is a storage node connected to others by a network. Each storage node can

receive data until the maximum storage capacity in gigabytes max_stord is reached.

4.1.1.2 Workload Specification

The workload submitted to our system is composed of a set Get requests where

virt_node_getp is the total number of Get requests targeted to each virtual node p ∈ P, where P

is the set of virtual nodes.
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4.1.1.3 Replica Placement Scheme Variable

The replica placement scheme S is a binary matrix of sd p ∈ {0,1} values of size

|D||P| where a row represent a storage node d ∈ D and a column represent a virtual node p ∈ P.

A virtual node p ∈ P is replicated into the storage node d ∈ D if the value is 1, otherwise is 0.

The minimum number of replicas of a virtual node p ∈ P is min_replp and the minimum number

of replicas not to be reconfigured of a virtual node p ∈ P is min_not_recon f p, where both are

set by the system administrator.

Our replica placement scheme allows incremental changes to a replica placement

scheme already in-use by a KVS system. A smart solution can improve an existent replica

placement scheme to evaluate dispensable data redundancy and movement while reducing load

imbalance. We use O as a snapshot of a previous replica placement scheme in-use and od p to

represent a cell in O. Both are constant for our model. We also use M as the number of storage

nodes |D| and N as the number of virtual nodes |P|.

4.1.1.4 Replica Placement Maintenance Cost

The replica placement maintenance cost indirectly represents the network

delay/overhead caused by the data synchronization of already existing, yet dispensable, replicas.

To conform with this definition, we give a cost in GB to the enabled cells in the previous scheme

O that are still enabled in the new scheme S according to equation 4.1. This way, during the

evaluation of previous and new schemes, a solution can focus on deleting already existing

replicas.

Cmaintenance =
M−1

∑
i=0

N−1

∑
j=0

(oi jsi j)(repl_size j) (4.1)

4.1.1.5 Replica Placement Reconfiguration Cost

The replica placement reconfiguration cost represents indirectly the network

delay/overhead caused by the movement/synchronization of replica creation and migration. To

conform with this definition, we give a cost in GB to the disabled cells in the previous scheme

O that are now enabled in the new scheme S according to equation 4.2. This way, during the

evaluation of the previous and new schemes, a solution can focus on avoiding replica creation

and migration. The reconfiguration cost of replica placement scheme is defined according to the
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Equation 4.2.

Crecon f ig. =
M−1

∑
i=0

N−1

∑
j=0

(si j−oi jsi j)(repl_size j) (4.2)

To better understand the differences between replica placement maintenance and

reconfiguration costs, we describe examples bellow considering Tables 4 and 5:

Table 4 – Example of Previous Replica Placement Scheme.

O =

p = 0 p = 1 p = 2 ... P
d = 0 1 0 0 ...
d = 1 1 1 1 ...
d = 2 1 1 1 ...
d = 3 0 0 1 ...

... ... ... ... ...
D

Table 5 – Example of New Replica Placement Scheme.

S =

p = 0 p = 1 p = 2 ... P
d = 0 0 1 0 ...
d = 1 1 1 1 ...
d = 2 1 1 1 ...
d = 3 1 0 0 ...

... ... ... ... ...
D

• (Replica Placement Maintenance Example) Considering the previous scheme O in Table

4, the virtual node p = 2 had to periodically synchronize its three replicas at the storage

nodes d = 1, d = 2 and d = 3. Considering the new scheme S in Table 5, the maintenance

cost of the virtual node p = 2 was reduced from 3 to 2;

• (Replica Placement Reconfiguration Example) Considering the previous scheme O in

Table 4 and considering the new scheme S in Table 5, virtual node p = 0 has a replica

moved from storage node d = 0 to d = 3 and virtual node p = 1 has a new one replicated

at storage node d = 0.

4.1.1.6 Load Imbalance Cost

The amount of Get requests submitted to each storage node d ∈ D is measured

according to the Equation 4.3 in which as mentioned before, M is the number of storage nodes
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|D| and N is the number of virtual nodes |P|.

stor_node_geti =
N−1

∑
j=0

si j(virt_node_get j/repl j) (4.3)

As we mentioned early, D has similar performance capacities, then the ideal data

access per storage node is defined according to the Equation 4.4

ideal_get = (
M−1

∑
i=0

stor_node_geti)/M (4.4)

Finally, to reduce the overload/underload of Get requests on every storage node

caused by data access skew, we define the data access cost according to Equation 4.5

Cload_imbalance = (
M−1

∑
i=0
|stor_node_geti− ideal_get|)/M (4.5)

4.2 Optimization Problem

Given the system model as well as the load imbalance, replica maintenance and

replica placement reconfiguration costs that were previously defined, we set the goal of the

system as the minimization of the three object functions according to Equation 4.6:

min
S

Cload_imbalance,Cmaintenance,Crecon f iguration

s.t. used_stord<= max_stord

replp>= min_replp

not_recon fp>= min_not_recon fp

(4.6)

4.3 Solution

PopRing is a replica placement strategy for distributed key-value stores with the

ability to automatically create, migrate and delete replicas. PopRing aims to minimize the

load imbalance, replica placement maintenance and replica placement costs in which different

objectives may conflict with each other as shown in Table 6. By this means, they require optimal

trade-off analyses among the objectives of a system.

The authors (CHO et al., 2017) surveyed many approaches to solve multi-objective

(MOO) problems. The weighted sum (WS) method is computationally efficient in generating
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Table 6 – Issue / Cost / Modeling.
Issue Cost Modeling
Hot Data Load Imbalance Skewed data access of get

requests.
Data Movement Replica Placement Recon-

figuration
Replica
migration/creation

Cold Data Replica Placement Main-
tenance

Essential replicas and dis-
pensable replicas

a strong non-dominated solution (CHO et al., 2017). We chose WS to minimize the multiple

objective functions defined in the previous section by using the weighted sum method to transform

the multi-objective optimization problem into the minimization of a unique function F .

By using the WS method, any user has individual control of the importance of each

objective as shown in Equation 4.7, where C1, C2 and C3 are the importance constants corre-

sponding to the objective functions Cload_imbalance, Cmaintenance and Crecon f iguration., respectively.

This way, it is possible to customize F to adapt the optimization to be computed and applied to

the storage nodes periodically with small time intervals between iterations to reduce huge data

movements, for example.

F =C1Cload_imb.+C2Cmainten.+C3Crecon f ig. (4.7)

4.3.1 Randomized Search

Given a replica placement scheme matrix S with each cell element {0,1} and dimen-

sion size of m×n where m is the number storage nodes and n is the number of virtual nodes,

the worst-case time complexity for performing brute-force search to evaluate all combinations

of F in Equation 4.7 and find the optimum replica placement has exponential time complexity

O(2mn).

To substantially reduce the search time while not getting stuck into local optimum

at minimizing our function F , we decided to use operators of genetic algorithms (G.A.) such

as selection, crossover and mutation to guide the search process. The usage of these operators

simulates the survival of the fittest from Darwin’s evolutionary theory and generates useful

solutions for optimization (LI et al., 2017).

The work (LI et al., 2017) surveyed many different approaches for each genetic

algorithm and ranked them according to the most used by the literature. Considering the most

popular approaches, PopRing uses the binary coding, the tournament, the single-point, the bit
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inversion, the total number generation methods for coding, selection, crossover, mutation and

termination, respectively. These genetic operators are used by PopRing traditionally according to

the literature to randomly generate a population of individuals and update that population during

a number of generations to guide the search process to find the best individual, i.e., a new replica

placement scheme.

4.3.1.1 Initial Population Improvement

An advantage of GA is the possibility of inserting prior knowledge to the initial

population to reduce the convergence time of the search. This way, the initial population formed

mainly by random individuals may have specials individuals created using some knowledge/guess

that clearly guides more rapidly to better results.

In our work, we used two individuals as guesses:

• Previous replica placement scheme. This individual is the actual replica placement scheme

used by the system. It increases the chances of reducing the replica migration/creation

because this individual has the smallest cost for Crecon f .

• Reduced replica placement scheme. This individual is based on the actual replica placement

in which each virtual node has its replicas randomly reduced until the min_replp constraint.

At including this reduced replica placement scheme as individual, the randomized search

increases the chances of reducing the total replicas, because that individual has the smallest

cost for Cmainten..

4.3.1.2 Chromosome repairing

The constraints of an optimization problem may turn the search process very difficult

to find feasible solutions. One way to solve that is to relax and or remove the constraints. Another

way is to use prior knowledge to fix unfeasible individuals by locating and mutating the bad

genes to meet the constraint. This way, the cost function of a fixed individual is reevaluated.

Then, the unfeasible individual is removed while the fixed individual is added to the population.

When individuals are unfeasible because they have virtual nodes with less replicas

than the required by the constraint minimum number of replica min_replp, we proposed a simple

chromosome repairing algorithm that lists all the storage nodes where the virtual node is not

replicated yet, then selects randomly one of them to host a new replica of the virtual node. This

process is repeated until the constraint is met.
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4.3.2 PopRing Replica Placement Algorithm

In this section, we present the main flow of PopRing replica placement component.

When it is the first time the KVS is being deployed and consequently no dataset of data access is

available yet, our algorithm creates a replica placement scheme in which the replicas are spread

uniformly and randomly among the storage nodes.

Assuming the system is already in normal functioning, i.e., a replica placement

scheme is deployed and the system is serving data access operations, the Algorithm 1 can be

performed any time to generate a new replica placement scheme.

At line 1, the individuals generated randomly and the two guesses, described in

Section 4.3.1.1, are used to form the initial population. At lines 3, 4 and 5, genetic algorithm

operators are performed on the current population using Tournament, Two-Point and Bit for

selection, cross-over and mutation operators, respectively.

The function cost F of the PopRing Replica placement component, defined at

Equation 4.7, is then used to evaluate the cost of each individual, i.e., replica placement scheme

candidate as shown at line 6. At lines 7 and 8, any individual candidate that does not meet the

minimal number of replicas constraint is fixed using the chromosome repairing idea described in

Section 4.3.1.2. Finally, the cost of the fixed individual candidate is reevaluated. 1

Algorithm 1: PopRing Algorithm of the Replica Placement Component
Input: (Previous replica placement scheme, current data access, C1, C2 and C3)
Output: New replica placement scheme

1 Perform the population initialization
2 while Maximum number of generations do
3 Perform the Tournament selection algorithm on individuals
4 Perform the Two-Point crossover algorithm on individuals
5 Perform the Bit mutation algorithm on individuals
6 Evaluate F(c1,c2,c3) of the individuals
7 Perform chromosomes repairing of the unfeasible individuals
8 Reevaluate F(c1,c2,c3) of the individuals
9 end

10 Select best individual as new replica placement

1 Note.: In the work presented in the Section 4, we did not perform any chromosome repairing. In contrast, in the
work presented in Section 5, the evaluated scenario required the usage of the repairing technique.
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4.3.2.1 Sparse Matrix Improvement

The matrix calculations necessary to evaluate F in Equation 4.7 for one replica

placement scheme S have O(mn) complexity where m is the number of storage nodes and n is

the number of virtual nodes. The total number of virtual nodes may be too high such as 1024,

65536, 1048576 and so on, thus resulting in huge dimensions for the replica placement scheme.

These huge dimensions slow the evaluation of F in the Equation 4.7 at performing mathematical

operations on matrix/vectors structures.

Our approach reduces dispensable data redundancy and reconfiguration, then the

percentage of the average of non-zeros in S is very low when the population of individuals is

getting closer to the optimum. Near the optimum, the number of enabled replicas is much lower

than the number of virtual nodes |P|.

This way, we converted our matrix to the Compressed Sparse Row (CSR) format

(GROSSMAN et al., 2016) and reduced the time complexity of matrix operations on F in the

Equation 4.7 to O(n).

4.4 PopRing Replica Placement Component

After discussing all the techniques used to build our replica placement solver in

previous sections, we consolidate that techniques into the PopRing replica placement component.

This component is an overview focusing only on the inputs and outputs of our strategy. The pre-

vious replica placement scheme is the last scheme adopted by the KVS. An system administrator

may keep the previous scheme or deploy a new one. The previous data access is the last observed

access of the system objects. The size of the objects in the system is also input to the system, but

they are not shown for simplicity. Finally, the importance of the load imbalance cost C1, replica

maintenance C2 and replica reconfiguration C3 are proper defined by the system administrator

and used as input by the replica placement component as well. The output of the component is

to produce a new replica placement scheme as shown by the Figure 6.

4.5 Experimental evaluation

For evaluating our proposed solution PopRing against the default replica placement

algorithm of the OpenStack-Swift, our simulated environment is described in Section 4.5.1.

Finally, Section 4.5.2 discusses the improvements of our solution under different configurations



45

Figure 6 – PopRing replica placement component.

regarding the importance of the objectives.

(a) OpenStack-Swift. (b) PopRing (1,1,1). (c) PopRing (1,10,100).

(d) PopRing (30,100,10). (e) PopRing (1,100,100). (f) PopRing (1,200,200).
Figure 7 – Total Get Requests Per Storage Node Index.

4.5.1 Simulated Environment

First, we setup the default settings of the OpenStack-Swift as 3 and 1024 for repli-

cation factor and number of virtual nodes, respectively. We simulated 50 as number of storage

nodes. We also simulated the creation of 300 thousand objects using Zipf law with its exponent

1.1 for object size and the submission of 1 million Get requests using Zipf distribution to repre-

sent different data popularity levels according to (LIU et al., 2013). For the problem constraints

described in Section 4.2, we used the maximum storage capacity of storage nodes, the minimum

replication factor of virtual node and minimum replicas not to reconfigure are set to 500 GB, 2, 1

respectively.
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For the setup of the evolutionary parameters of PopRing, we used 1000, 50, 3, 0.5,

0.1 and 0.0005 for generation size, population size, tournament size, cross-over rate, mutation

rate and gene mutation rate, respectively. We used the versions 1.0.2 of DEAP, 0.19.1 of scipy

libraries and Mitaka to perform evolutionary algorithms, matrix calculations and OpenStack-

Swift baseline, respectively. Our algorithm was processed on a desktop computer with core i7

3.40GHz and 16GB memory, but it required much less computer resources than the maximum

capacity and took less than 2 minutes to finish.

Table 7 – PopRing Parameters.

(C1, C2, C3) Importance
(1, 1, 1) Low maintenance and reconfiguration.

(1, 10, 100) Low maintenance and moderate reconfiguration.
(1, 100, 10) Moderate maintenance and low reconfiguration.

(1, 100, 100) Moderate maintenance and reconfiguration.
(1, 200, 200) High maintenance and reconfiguration.

To evaluate our strategy, we experimented PopRing under different configurations.

We observed that for our environment, the Table 7 represents an interval of configurations in

which (1,1,1) is the highest importance for reducing load imbalance while (1,200,200) is the

contrary, i.e., the lowest importance.

Low, moderate and high represent the level of importance of each objective. The

values of function costs are not normalized, thus we adjusted C1, C2 and C3 to represent the

levels described in Table 7.

4.5.2 Results

Fig. 7 shows the percentage of Get requests each storage node has to handle in

comparison to the total Get requests submitted to the system. For our experiment, the ideal load

per storage node is 20000 Get requests according to the Equation 4.4. Fig. 7a shows that the

Swift baseline overloads three storage nodes by submitting to them around 30% of the system

total load while the majority of the storage nodes manages each one less than 1% of total system

load.

Considering the configuration (1, 1, 1), it is possible to verify that PopRing obtained

a replica placement with only 746.95 Get requests of load imbalance, i.e., almost the ideal line of

Get requests per storage node. This performance on load balance is obtained because PopRing
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configuration is able to dedicate much more importance to the load imbalance problem than the

replica placement maintenance and reconfiguration as shown in Fig. 7b. The configurations (1,

10, 100) and (1, 100, 10) had similar load imbalance of 3980.15 and 3246.52 as shown in figures

7c and 7d. The configurations (1, 100, 100) and (1, 200, 200) obtained 8984.42 and 14667.23

of load imbalance, respectively as shown in figures 7e and 7f. The most conservative PopRing

configuration (1, 200, 200) still had good performance at reducing the three most overloaded

nodes to less than 50% of their previous loading.

Fig. 8 represents the percentage of the amount of data according to their replication

factor. The configuration (1, 1, 1) has the highest increase for replication cost due to the low

importance given to replica maintenance and replica placement reconfiguration costs. The

configuration (1, 10, 100) decreased only less than 5% of virtual nodes to only two replicas and

required less than 10% of virtual nodes to increase their number of replicas. In contrast, the

configuration (1,100,10) reduced almost 20% of virtual nodes to only two replicas and required

almost 20% of virtual nodes to increase their number of replicas.

Figure 8 – Replication Factor Evaluation.

Our system has a minimum replication factor which limits the amount of data

redundancy which can be reduced. It is possible to confirm that limit at comparing (1,100,100)

and (1,200,200), where the performance improvement of data maintenance cost has not changed

significantly.

PopRing reduced the load imbalance in 96%, 79%, 83%, 52% and 22% while
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reducing the maintenance cost of current replicas in 8%, 2%, 36%, 33% and 33% for the

configurations (1, 1, 1), (1, 10, 100), (1, 100, 10), (1, 100, 100) and (1, 200, 200), respectively

as shown at Fig. 9. PopRing also required the reconfiguration of 54%, 5%, 38%, 6%, 1% of

total system data for the configurations (1, 1, 1), (1, 10, 100), (1, 100, 10), (1, 100, 100) and (1,

200, 200), respectively as shown at Fig. 10. These results make possible to understand that the

performance of load imbalance cost is impacted by the other two objectives.

Figure 9 – Relative Costs: How much load imbalance (Get requests) and replica maintenance
costs were reduced in comparison to the original replica placement of the OpenStack-
Swift.

In Fig. 9, it is possible to notice a decline in the load balance performance and a rising

in the replica maintenance performance. The same applies to replica placement reconfiguration

as shown in Fig. 10. The increase in the importance of replica maintenance and replica

reconfiguration make the load imbalance more difficult to minimize. Figures 9 and 10 shown

the trade-offs among load imbalance, replica placement maintenance and replica placement

reconfiguration objectives.

4.6 Conclusion

In this work, we analyzed the problem of replica placement on KVS systems based

on consistent hashing with virtual nodes for workloads with data access skew. We formally

defined our problem as a multi-objective optimization and presented the PopRing approach based

on genetic algorithm to solve the multi-objective optimization.
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Figure 10 – Total data movement relative to the total previous replica placement scheme.

Finally, we compared PopRing against the OpenStack-Swift replica placement under

different configurations. In most configurations, PopRing could balance workloads with data

access skew while reducing unnecessary data redundancy and movement. A moderate PopRing

configuration reduced in 52% the load imbalance and in 32% the replica placement maintenance

while requiring the reconfiguration (data movement) of only 6% of total system data. As future

work, we intend to evaluate PopRing not only on simulated environment, but on real deployments

as well while extending it to consider dynamic workloads with restrictive agreements for service

quality.
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5 POPRING HYPER-PARAMETER OPTIMIZATION

In this section, we introduce system model of the hyper-parameter optimization

component. We also formalize our objective as a single objective hyper-parameter optimization

problem.

5.1 System Model and Optimization Problem

In the previous system described in Section 4, the PopRing parameters C1, C2 and C3

are useful for tuning PopRing to give more importance to one objective(s) rather than other(s).

The replica placement component aimed to obtain satisfactory results considering the trade-off

between the three objectives, but it had limitations that this new work aims to solve proposing

another second component. The limitations of the replica placement component were noted from

the fact that it always requires prior knowledge and human intervention to tune its parameters to

a proper configuration able to improve the performance metrics of the system such as latency of

data access.

This way, new research questions should be necessary answered to support an

autonomous objective function based on latency. These research questions are: given that the

trade-off between the three objectives described in Section 4 may vary according to the current

scenario, how to find a configuration C1, C2 and C3 which is able to improve system latency? Is

it possible to tune these parameters autonomously? And more important, due to the high cost of

evaluating each possible combination, is it possible to evaluate as few scenarios as possible for

finding satisfactory parameters values. The investigation of these questions resulted in the work

presented in Section 5.

Additionally, the main difference in this current work from Section 4 is that it does

not require human intervention with prior knowledge to set proper values for them because our

optimization system will search them autonomously to minimize the system latency for any

given workload.

5.1.1 System Model

In this section, our system is modeled, thus making clear the scope of our research.
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5.1.1.1 Storage and Service Nodes Specification

The system is composed of a set of distributed and independent storage nodes D,

where each d ∈ D is a storage node connected to others by a network. Each storage node stores

data according to replication scheme explained in our prior work at Section 4. Additionally, each

storage node has a maximum capacity in terms of rate of object requests and in case this limit is

exceeded, a significant decrease on its performance occurs.

The system is also composed of a set of distributed and independent service nodes

B. For a given Get request submitted to our distributed key-value store, a service node b ∈ B

communicates with a storage node d ∈ D to retrieve data through the network according to the

replication scheme.

5.1.1.2 Workload Specification

Any workload submitted to our system is composed of a set of Get requests and Put

requests, but even though these are important metrics for the system optimization of our prior

work 4, this current system ignores these metrics and instead considers the metric MRTbd metric.

MRTbd metric is a mean response time data point collected between a service node

b ∈ B and a storage node i ∈ D during a get request. AverageMRT(C1,C2,C3, t) is the average of

all MRTbd collected from all service and storage nodes at a given time t under a replica scheme

setup with the parameters C1, C2 and C3.

5.1.1.3 New Scheme Updating and Stabilization

Figure 11 – Key moments in which a bunch of AverageMRT (C1,C2,C3, t).
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A deployment of a new replication scheme causes the system to perform data

movement during the new scheme deployment. Depending on the new scheme, more or less data

movement may occur and cause performance degradation before any improvement to the system

performance. As soon as the deployment of the new scheme has been finished, a little more

time is given until system performance is stabilized. The amount of AverageMRT (C1,C2,C3,t) ∈ T

data points collected since the new scheme deployment with parameters C1, C2 and C3 until

the system stabilization is defined by the TotalDatapointsCollected. The Figure 11 illustrates

key moments in which a bunch of AverageMRT (C1,C2,C3,t) ∈ T is collected. The x variable in tx

represents a value of t in which the new scheme is totally synchronized. tx is variable, because it

depends of, for example, how much data is migrated.

5.1.1.4 Mean Response Time Cost

The mean response time cost CMeanRT is the objective function of our hyper-

parameter optimization problem. Given a workload, CMeanRT minimization guides the search to

the most adequate PopRing hyper-parameters. CMeanRT is evaluated according to the Equation

5.1.

CMeanRT =
T−1

∑
t=0

(AverageMRT (C1,C2,C3,t))/T,T = TotalDatapointsCollected. (5.1)

5.2 Optimization Problem

Given the system model as well as the mean response time cost previously defined,

we set the goal of the current system as the minimization of the single object function according

to the Equation 5.2:

min
C1,C2,C3

CMeanRT (5.2)

5.3 Solution

In this work, we propose an approach for searching satisfactory C1, C2 and C3

parameters of our replica placement component to find satisfactory values for reducing the

average internal latency of the system.
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Given the set of all possible environment scenarios and the possibility of values

for each parameter C1, C2 and C3 not be discrete, it would take unfeasible time to evaluate the

best parameters combination using brute-force or grid search techniques. Additionally, our cost

function is time consuming and expensive to evaluate because it requires data movement to be

performed among the storage nodes of the KVS. While most optimization techniques assume

that the objective function is quick to evaluate such as the genetic algorithm optimization we

have used in our prior work of the replica placement component, that is not the case for our

hyper-parameter optimization.

A good choice for our case is the BO which is very data efficient, i.e., it requires few

samples to find good results. This is particularly useful in situations like these where evaluations

of the unknown function are costly (SHAHRIARI et al., 2016). For continuous functions,

Bayesian optimization typically works by assuming the unknown function was sampled from a

Gaussian process and maintains a posterior distribution for this function as different C1, C2 and

C3 are observed.

5.3.1 PopRing Hyper-parameters Optimization Algorithm

In this section, we present the main flow of the PopRing Hyper-parameters Opti-

mization Algorithm. At line 1, the BO is configured to optimize the parameters C1, C2 and C3 of

the PopRing replica placement component in which their continuous values are bounded by its

minimum and maximum value defined by C1_boundary, C2_boundary and C3_boundary, respectively.

We also, set the number of initialization points the BO uses to randomly sample the CMeanRT cost

before fitting the Gaussian Process. Finally, the number of BO sample/trials used to verify the

termination condition of the algorithm. This number of trials may not be necessarily sufficient to

find good parameters, but we verify that stop condition for simplification as shown at line 2.

At line 3, we reset the system to the original/previous replica placement scheme,

i.e., the one deployed before any BO process. This way, the BO component may able to find

the best replica placement for the current state. At line 4, our algorithm requests C1, C2 and C3

from the BO in the search of the global optimum that, by definition, is approached by iteratively

maximizing a so-called acquisition function, that balances the exploration and exploitation effect

of the search.

At lines 5, we collect the last data required by the PopRing replica placement

component. At line 6, PopRing replica placement component is executed with the following
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inputs: the current C1, C2 and C3 suggested by the PopRing Hyper-parameter optimization

component, the previous data access and previous replica placement scheme. For each workload,

the level of data access skew remained the same during the whole algorithm. Then, at the next

lines, the new scheme generated is deployed and system response time metrics are collected until

system stabilization. Finally, at lines 9 and 10, the cost function of the PopRing Hyper-parameter

is evaluated and used as a sample performance to update the BO model.

After the maximum number of trials, the parameters C′1, C′2, C′3 which obtained the

best cost are used as the final replica placement scheme for the current scenario.

Algorithm 2: PopRing Algorithm of the Hyper-parameter Optimization
Input: (C1_boundary, C2_boundary, C3_boundary, previous_scheme, current_data_access)
Output: C′1, C′2, C′3

1 Initialize BO parameters: boundary of inputs (C1_boundary, C2_boundary, C3_boundary), the number of
initialization points and the number of trials.

2 while number of BO trials do
3 Deploy the previous_scheme to reset system to initial state
4 Request C1, C2, C3 new points from BO model
5 Collect last data access from monitoring node
6 Run PopRing Replica Placement Component using C1, C2, C3, previous_scheme and

current_data_access
7 Deploy new scheme
8 Collect system response time metrics until system stabilization
9 Evaluate C_MeanRT

10 Update BO model with C_MeanRT
11 end
12 Return the parameters of the best trial C′1, C′2, C′3

5.4 PopRing Bayesian optimization component

Now, we consolidate the techniques discussed in previous sections into the new

hyper-parameter optimization component in which the main goal of that component is to solve

in few iterations the optimization problem described in Equation 5.2. This component has as

input the minimum and maximum importance values of the load imbalance, replica maintenance

and replica reconfiguration costs.

The second input is the number of trials/iterations. This input defines how many

times the BO will setup new values for the parameters C1, C2 and C3 to execute the replica

placement component. Then, the new schemes are generate and deploy into the KVS system.

At minimizing the system response time CMeanRT , the hyper-parameter optimizer component
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evaluates combinations of C1, C2 and C3 based only on measured response time of the system.

Our PopRing strategy is a black-box solution because it does not know how the

system response time behaviors given the usage of a replica placement scheme. At the end, our

solution picks the best one and labels a combination of C′1, C′2 and C′3 as the most appropriate for

the current scenario as shown by the Figure 12.

Figure 12 – PopRing with the replica placement component and the new hyper-parameter opti-
mization component.

5.5 Experimental Evaluation

For evaluating our PopRing BO component, we compare different executions of

the whole Bayesian optimization process described in Section 2.3.4.1 under different scenarios

of our experimental environment using real benchmark tool and distributed key-value store

deployments. Finally, the improvements of our solution under different scenarios regarding the

Zipf exponent, i.e., level of data access skew are discussed in Section 4.5.2.

5.5.1 Distributed Key-Value Store

Our PopRing BO component has been evaluated using the OpenStack-Swift. Swift

is a highly available, distributed, eventually consistent object/blob store. Organizations use Swift

to manage lots of data efficiently, safely, and cheaply. Swift was chosen for our experiments due

to our prior knowledge on deployment and upgrading their source code.

Even though other distributed key-value stores such as Cassandra and Dynamo could

have been used for evaluation purpose once they are based on distributed hash table techniques,

they are not strictly required for validating our solution.
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5.5.2 OpenStack-Swift

Swift architecture can hold many different web service nodes and background

processes whereas each component can be scaled multiple times. The web service nodes are

classified in two main categories: proxy server type and storage node type (composed by account

server, container server and object server). The background processes are responsible for data

replication, data reconstruction, data updating and data auditing. The proxy server node takes

requests from a client and forwards them to the account, container and object server nodes

in order to persist/retrieve data objects and its metadata to/from disks. Our architecture and

partitioning techniques adopted in Section 2.2.1 are intended to be represented by our Swift

deployment.

Read and write requests from/to Swift obeys the following rules: for reading requests,

a single node is enough replica to retrieve the object and return success to the client; for writing

requests, it is enough the quorum of half of total nodes plus one to save the object and return

success to the client. For our environment, we configured the replication scheme generated by

OpenStack-Swift baseline to provide three replicas for each stored object.

5.5.3 Benchmark

In order to evaluate our approach, we used Cloud Object Storage Benchmark (COS-

Bench) (ZHENG et al., 2013). COSBench provides support to many different cloud object

storage solutions on the market like Swift, Amazon S3, and Ceph thus making it easier for any

future comparison among those cloud object storage solutions (ZHENG et al., 2013).

COSBench tool provides seven benchmark metrics: operations count, bytes count,

average response time, average process time, throughput, bandwidth and success ratio. In

this paper, we evaluated only system internal metrics for performance evaluation, thus using

COSBench only for stress purpose.

5.5.3.1 Workload

For our workload, we set the read/write ratio to 90/20 and the number of workers to

one. For object sizes, we defined a uniform distribution between 1-1024KB. We also upgraded

COSBench with the Zipf distribution for data access to evaluate different levels of data access

skew, by varying the Zipf exponent to 0.1, 0.5, 1.1., 1.5, 2.0 and 30.0.
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More detailed benchmark configuration is described at the following: we used single

container because replication scheme at container level is out of scope for this current work. We

also used 100 objects, where 50 were exclusively for read requests and other 50 were exclusively

for write requests, respectively. Other benchmark specific properties like Acceptable Failure

Rate (AFR), ramp-up and ramp-down were set to 200000, 15, 15, respectively.

5.5.4 Software/Hardware

For our software configuration, we chose the Ubuntu server 14.04 version for op-

erating system. Mitaka version for OpenStack-Swift and 0.4.0.2.c4 version for COSBench.

For our hardware configuration, we deployed 11 different nodes. One node for COSBench

benchmarking, one for graphite monitoring, one for proxy node and eight storage nodes with

similar performance for a minimalist Swift cluster according to Table 8.

Table 8 – Hardware Configuration

Node RAM (GB) IOPS limit1 CPU Storage Size
COSBench N/A3 N/A3 N/A3 N/A3

Proxy Node N/A3 N/A3 N/A3 N/A3

Graphite N/A3 N/A3 N/A3 N/A3

SN2 1 50 1 N/A3

1. IOPS limit was handled by virtualization technology.
2. Same configuration for all storage nodes.
3. Resource capacity is not considered in current experiment and they were setup to not be bottleneck.

5.5.5 PopRing Configuration

For the setup of the evolutionary parameters of PopRing replica placement com-

ponent, we used the same parameters of our prior work, i.e., 1000, 50, 3, 0.5, 0.1 and 0.0005

for generation size, population size, tournament size, cross-over rate, mutation rate and gene

mutation rate, respectively. Additionally to the replica placement component, this work varies

the importance parameters of PopRing dynamically and without human-intervention using BO.

For evaluating the importance parameters of PopRing, we used BO with 5, 25, Upper

Confidence Bound (UCB) and 2.576, respectively for initialization points, number of iterations,

acquisition function and kappa. Initialization points are the number of randomly chosen points

to sample the target function before fitting the Gaussian process. Number of iterations is the total
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number of times the process is to be repeated. Kappa is a user-defined parameters for specifying

the trade-off between exploration and exploitation. We have used UCB, because it has been

shown to be efficient in the number of function evaluations required to find the global optimum

of many multimodal black-box functions (SNOEK et al., 2012)

5.5.6 Results

For better understanding of our results, we evaluate three executions of each workload

under different aspects. In the Section 5.5.6.1, we discuss Original_AverageMRT in the blue

horizontal line, the distribution of the AverageMRT (C1,C2,C3,t) ∈ T data-points collected during

each iteration of each Bayesian optimization execution while the best/worst C1,C2,C3 parameters

obtained for each execution are compared in Section 5.5.6.2.

In Section 5.5.6.3, we discuss in details the PopRing hyper-parameters C1, C2 and

C3 under the best and worst executions of our Bayesian optimization component where the best

executions are colored in red and the worst executions are colored in blue. We also discuss

the raw values of the best executions as well as the behavior of AverageMRT (C1,C2,C3,t) ∈ T

data-points collected during the deployment process of a new replication scheme. Finally, we

present a table to support an overview of the performance of the best executions of our Bayesian

optimization component.

5.5.6.1 Bayesian Optimization Iterations/Trials

For evaluating the system response time of each combination of C1, C2 and C3

applied by the Bayesian optimization solver, the obtained mean response time cost defined at

Equation 5.2 of the Zipf exponents equal to 0.1, 1.5 and 30.0 are presented in Figures 13, 14

and 15. The other Zipf exponents equal to 0.5, 1.1 and 2.0 are not presented because they had

proportionally similar behavior.

In Figures 13, 14 and 15, it is possible to verify that the previous average response

time of the system Original_AverageMRT was around 75 ms for Zipf exponent equals to 0.1, 80

ms for Zipf exponent equals to 2.0 and 115 ms for Zipf exponent equals to 30.0 as shown by the

blue horizontal line of all three Bayesian optimization executions. The first trial of any execution

rarely obtained the lowest latency, which is reasonable because the first trial is totally random.

From a total number of 10 iterations/trials for each execution under Zipf exponent 0.1, it took

at best five iterations and at worst 7 iterations to find C1, C2 and C3 values able to reduce the
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Figure 13 – Bayesian optimization executions / Zipf exponent 0.1.
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(b) Zipf 1.5 / Exec. 1.
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(c) Zipf 1.5 / Exec. 2.
Figure 14 – Bayesian optimization executions / Zipf exponent 1.5.
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(a) Zipf 30.0 / Exec. 0.
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(b) Zipf 30.0 / Exec. 1.
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(c) Zipf 30.0 / Exec. 2.
Figure 15 – Bayesian optimization executions / Zipf exponent 30.0.

CMeanRT to reach 60 ms. This improvement is interesting because even though the Get requests

are not skew, our solution still could adjust the replication scheme to reduce the CMeanRT .

In summary, at least one trial reduced CMeanRT to a value smaller than the

Original_AverageMRT , which proves that the Bayesian optimization component could optimize

hyper-parameters regardless of the tested scenario.

5.5.6.2 Best/Worst Trials of Each Execution

The Figures 16, 17 and 18 show the best and worst iterations/trials of each Bayesian

optimization execution for Zipf exponents equal to 0.1, 1.5 and 30.0. The other Zipf exponents
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equal to 0.5, 1.1 and 2.0 are not presented because they had proportionally similar behavior. In

the Figures 16, 17 and 18, it is possible to verify that at least in two executions out of three, the

best trials, i.e., the smallest CMeanRT were obtained by similar PopRing C1, C2 and C3 settings.

For Zipf exponent 0.1, it is verified that the parameter C3 is not necessarily high, thus

giving the idea that data movement is not a big issue to the system at minimizing the CMeanRT .

Also, load imbalance cost is small and low data movement is needed for proper handling the a

non-skewed workload as shown in Figure 16.
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Figure 16 – C1,C2,C3 of the best and worst iterations/trials for Zipf exponent: 0.1.

For Zipf exponent 1.5, it is possible to verify that C1 converged to low values. More

interesting is the C3 parameter which converged around the highest value of the possible range

we defined 1000. This result shows that for the skewed workload of our test-bed, it is necessary

to adjust the replication scheme to fix the load imbalance of data access, but it is important to be

cautious about data movement due to the negative impact of lots of data movement.
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Figure 17 – C1,C2,C3 of the best and worst iterations/trials for Zipf exponent: 1.5.

For Zipf exponent 30.0, the cautions on data movement begins to reduce, because the

parameter C1 is getting higher. In the Section 5.5.6.3, we enter in more detail about the results

obtained by our Bayesian optimizer component.

C1

0 200 400 600 800
1000

C2

0
100

200
300
400
500
600700

800

C3

0

200

400

600

800

1000

0

0

1

1

2

2

Figure 18 – C1,C2,C3 of the best and worst iterations/trials for Zipf exponent: 30.0.

5.5.6.3 Detailed Best/Worst Trials

To better understand the impact of the C1, C2 and C3 parameters to the CMeanRT , we

present two analysis:

• The raw values for C1, C2 and C3 and their CMeanRT value in Tables 9, 10 and 11;
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• The AverageMRT ∈ t data-points collected from the new scheme deployment until the

system stabilization in Figures 19, 20 and 21.

In the evaluation of the workload with Zipf exponent equals to 0.1, while the first and

third execution reduced the CMeanRT below of 70 ms, the second execution increased CMeanRT

to 90 ms in the beginning by the Figure 19. This happened because differently from the other

executions, the second one set less importance to the data movement as shown by Table 9. As a

result, node throughput capacity was overloaded causing higher latency.

Table 9 – Summary for Zipf Exponent = 0.1

Execution ID Best CMeanRT C1 C2 C3

0 61.6949 8.9987 30.7529 151.7824
1 70.4973 17.8264 17.4694 6.4869
2 64.0585 10.0192 5.5387 362.4164
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(c) Execution ID = 2.
Figure 19 – System latency behavior of the best iterations for Zipf Exponent = 0.1.

In the evaluation of the workload with Zipf exponent 1.5, different values for PopRing

parameters were found as shown in Table 10. The Bayesian optimizer had to decrease the values

for C1 and increase the values for C3. Despite that modification from the best parameters for Zipf

exponent 0.1, a similar proportional setting C1 <C2 <C3 remained as the best one at collecting
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the smallest AverageMRT ∈ t data-points as shown by the Figure 20. Finally, it is interesting to

note that the first execution maintained the CMeanRT on 80 ms or above. This happened because

differently from the other executions, the importance of the load imbalance was set too high.

Table 10 – Summary for Zipf Exponent = 1.5.

Execution ID Best CMeanRT C1 C2 C3

0 81.1461 679.0934 129.8970 727.4305
1 71.9033 0.5835 14.2799 986.5002
2 69.8881 0.3616 2.5198 975.4972
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Figure 20 – System latency behavior of the best iterations for Zipf Exponent = 1.5.

In the evaluation of the workload with Zipf exponent 30.0, i.e., high skewed workload,

totally different adjustment were required by the Bayesian optimizer as shown in Table 11. Now,

higher values for C1 are required once the load imbalance is degrading the overall response time

of the system. Also that results implies that the negative impact of the data movement is less

important than the negative impact of the load imbalance.



64

Also, it is interesting to note that the second execution set almost zero importance do

C3, thus suffering from high data movement costs, while the other executions had better CMeanRT

while setting similar importance to C1 and C3 as shown by the Fig. 21.

Table 11 – Summary for Zipf Exponent = 30.0

Execution ID Best CMeanRT C1 C2 C3

0 97.7086 911.7298 41.0751 975.2969
1 96.8466 696.3859 504.3661 0.5935
2 93.9902 951.4281 6.6938 998.5954
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Figure 21 – System latency behavior of the best iterations for Zipf Exponent = 30.0.

The summary of the best execution for each level data access skew as shown in Table

12. It is possible to note that, different parameters were found as the best ones for each Zipf

exponent workload. As expected, the best parameters are those that require less data movement

to the extent which the negative impact of load imbalance is more worth than the negative impact

of data movement. On the other hand, it is also true that when data access skew is too high,

such as Zipf equals to 30.0 for our environment, a higher importance should be given to the load

imbalance cost.
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Finally, it is important to remember that the best found parameters are optimized for

reducing the system average latency, which in practise, eliminates internal bottlenecks due to

overloaded/underloaded nodes. Also, it important to remember that the improvement in response

time obtained by our solution should improve the system user as long as no external bottleneck

are acting on the system.

Table 12 – Summary of the best BO executions according to the Zipf exponent used in the
workload.

Zipf Exponent Best CMeanRT C1 C2 C3

0.1 61.6949 8.9987 30.7529 151.7824
0.5 66.2489 24.7884 18.8236 993.3504
1.1 69.8604 3.9913 10.2706 991.4982
1.5 69.8881 0.3616 2.5198 975.4972
2.0 75.4091 15.4536 12.3539 967.3205
30.0 93.9902 951.4281 6.6938 998.5954
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6 CONCLUSION AND FUTURE WORK

6.1 Conclusion

The combinatorial aspect on the huge search space of our replica placement problem

brought theoretical scalability issues for using the brute force algorithm while the non-linearity

and non-convexity reduced the space of techniques able for solving the problem in an efficient

time manner. Fortunately, meta-heuristic techniques, such as GA, were found in the literature

with the property of finding sufficiently good solutions for our type of problem.

The experimental simulations of the PopRing replica placement component, based

on GA in Section 4, have proved that our mathematical modeling is able to support the search

for a replica placement scheme able to load balance the get requests in order to reduce data

access skew. Additionally, our modeling also considered the side-effect of data maintenance and

movement by minimizing replica placement maintenance and reconfiguration objectives. These

last ones represented the cost of already existent replicas and replica movements.

The multi-objective problem of minimizing load imbalance, replica placement main-

tenance and reconfiguration was modeled as single-objective using weighted-sum technique.

This modeling has the advantage of supporting flexible importance for each objective in order to

adapt to different environment necessities. In contrast, this modeling required prior knowledge to

find the proper importance setups for each environment necessity. Also, the optimum is difficult

or even unfeasible to reach when it is not possible to improve one objective function without

worsening other objectives.

To overcome that prior knowledge requirement and optimum difficult, we defined

a new object function based on a system performance metric and proposed a black-box hyper-

parameter optimization component for finding a proper importance setup of the PopRing param-

eters according to a system performance metric. This one, defined as the internal mean response

time of the get requests between the service and storage nodes.

Different from the other three objective functions, the performance-based objective

function was very costly to evaluate since it would be necessary to deploy new replica placement

schemes in order to collect the system performance metric. This way, beyond black-box property,

the optimizer should be sample efficient to reduce the number of trials to find good PopRing

parameters. Fortunately, the literature has been researched black-box optimization techniques,

such as BO, to tune hyper-parameters of a unknown function.
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To verify the new component in practice, a OpenStack-Swift KVS was deployed in

our laboratory environment. Then a PopRing hyper-parameter optimization component based

on BO was used to setup the other three objective functions of the PopRing replica placement

component based on GA to find a new replica placement scheme without any human intervention

under different levels of data access skew.

As result, after few trials of using the replica placement component to generate

different replication schemes, our PopRing hyper-parameter optimization component was able to

find satisfactory parameters to minimize the performance-based objective function as described

in Section 5.

6.2 Future Work

6.2.1 Heterogeneous Storage Node

The PopRing replica placement component uses a load imbalance objective function

to measure the level of the data access skew on the storage nodes. Unfortunately, this measure

considers that all the storage nodes have the same performance capacity. As consequence, in

theory, a heterogeneous setup in which some storage nodes are more robust than others regarding

performance metrics such as IOPS, CPU, memory etc would reduce the efficient of the load

imbalance objective function.

As future work for supporting heterogeneous performance capacity of storage nodes,

the load imbalance objective function could be improved to leverage the characteristics of each

storage node. In the beginning, all storage nodes would have the same weight for the load

imbalance evaluation, but during the functioning of the system, new weight would be learned

and setup for each storage. These new weights could be evaluated using techniques that do not

require prior human knowledge such BO and reinforcement learning.

6.2.2 Efficient Deployment

Other limitation is found in the PopRing hyper-parameter optimization component

in which some trials must be performed before applying the most adequate replica placement

scheme. These trials require unnecessary data movement while trying to find a good replica

placement scheme to the current system state.

As future work for avoiding unnecessary deployment trials, the performance-based
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objective function could be used to label the correct parameters of PopRing replica placement

component for different system states. Then, a model could be trained and generalized from

these labeled samples in order to support the querying of adequate parameters given any system

state.
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