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ABSTRACT

This work presents a scale-space based approach to assist dynamic resource provisioning.

The application of this theory makes it possible to eliminate the presence of irrelevant

information from a signal that can potentially induce wrong or late decision making.

Dynamic provisioning involves increasing or decreasing the amount of resources

allocated to an application in response to workload changes. While monitoring both

resource consumption and application-speci�c metrics is fundamental in this process since

the latter is of great importance to infer information about the former, dealing with

these pieces of information to provision resources in dynamic environments poses a big

challenge. The presence of unwanted characteristics, or noise, in a signal that represents

the monitored metrics favors misleading interpretations and is known to a�ect forecast

models.

Even though some forecast models are robust to noise, reducing its in�uence may

decrease training time and increase e�ciency. Because a dynamic environment demands

decision making and predictions on a quickly changing landscape, approximations are

necessary. Thus it is important to realize how approximations give rise to limitations

in the forecasting process. On the other hand, being aware of when detail is needed,

and when it is not, is crucial to perform e�cient dynamic forecastings. In a cloud en-

vironment, resource provisioning plays a key role for ensuring that providers adequately

accomplish their obligation to customers while maximizing the utilization of the under-

lying infrastructure. Experiments are shown considering simulation of both reactive and

proactive strategies scenarios with a real-world trace that corresponds to access rate. Re-

sults show that embodying scale-space theory in the decision making stage of dynamic

provisioning strategies is very promising. It both improves workload analysis, making it

more meaningful to our purposes, and lead to better predictions.

Keywords: workload analysis, forecast, scale-space.
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CHAPTER 1

INTRODUCTION

This master's thesis presents Scale-Space based Workload Analysis and Prediction (S-

SWAP), an approach based on the scale-space theory to assist dynamic resource provi-

sioning strategies. It intends to provide means to extract relevant information out of the

analysed data and to obtain good performance from the adopted forecasting techniques.

In this chapter we present the motivation to the development of this work and list the

objectives we intend to achieve.

1.1 MOTIVATION AND PROBLEM CHARACTERIZATION

Capacity planning has been around for quite some time, with roots in everything from

economics to engineering. In a basic sense, capacity planning is resource management.

It determines what your system needs and when it needs it [11]. In order for service

providers, which may include from distributed systems, to web applications and cloud

environments, to assure high performance and availability to their customers, e�ective and

careful capacity planning must be performed. It aims utilizing resources e�ciently while

simultaneously supporting a large customer base and meeting Quality of Service (QoS)

requirements. In that sense, application-speci�c metrics, like response time, throughput

and access rate, to name a few, are also important to be considered in dynamic sys-

tems, since they usually present strong correlation with the demand for resources in such

environments.

Since services in a cloud environment are o�ered on a pay-per-usage basis, cus-

tomers are more stringent to have their demands met. Cloud providers are thus sup-

posed to meet service level objectives (SLO), which may be composed of one or more

QoS measurements, agreed with the customer through a Service Level Agreement (SLA),

being subject to penalties for service unavailability. As such, a platform that provides

cloud computing services must be able to dynamically provision its various resources (e.g.

computing, storage and networking) to its various users according to their instantaneous

1



1.1. Motivation and Problem Characterization 2

needs and in compliance with negotiated SLAs. It is their goal to maximize revenues

by minimizing both the number of resources available and the incurred penalties. The

necessity of �nding the proper tradeo� between having an ammount of resource available

to meet SLA requirements and maximizing revenues makes e�cient resource provisioning

a special need to the cloud computing paradigm. It plays a key role ensuring that the

service providers adequately accomplish their obligation to costumers while maximizing

the utilization of underlying infrastructure [12]. In this scenario, it is clear that one

needs to avoid both under-provisioning, which leads to application slowdown, and over-

provisioning, which leads to unnecessary resource costs [13]. Service providers can reduce

the ine�ciency caused by these situations by optimizing the number of active servers to

support a given user base [14].

Dynamic provisioning techniques are designed to handle workload �uctuations

[8] so that SLA violations and their associated contractual penalties can be avoided

or limited, and reduce cost. These techniques usually take actions based on workload

observation and can be classi�ed as either reactive or proactive. Proactive solutions apply

sophisticated system models for prediction [15] and use resulting forecasts for triggering

allocations in advance of expected need. In contrast, reactive approaches do not use

prediction, but rather detect and react to existing resource bottlenecks by means of

prede�ned thresholds for application-level or system metrics. In the last years, researchers

have been employing both these techniques in order to deal with the resource provisioning

issue [9][8][16][13] [1][3][2][4][6][5].

Even though releasing resources is usually not such a complex task, acquiring

resources incurs performance overheads [17], speci�cally their setup time, but also, in

case of the database tier, the time needed to handle replication and synchronization of

the associated disk state of the database in order to preserve data integrity [18]. Once

these actions take certain time to be e�ectively performed, it is suitable to tackle the

resource demand problem from the time series analysis perspective, in which data are

represented in a line graph that records the values of a given set of variables (datapoints)

that describes the system's state within a period of time. This representation plays a

central role in the development of resource provisioning approaches.

Thus, independently on which approach is used, reactive or proactive, being able

to determine the degree of relevance of an observed datapoint and, consequently, also

being able to eliminate the in�uence of irrelevant ones are desirable features. In our

context, being a relevant datapoint means whether it is in a peak or in a depression

2
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in the observed signal that lasts a period of time long enough to justify the addition or

removal of resources. If it is not the case, then it is irrelevant and might misguide system's

decisions if kept for consideration. This may lead to the addition (removal) of resources

that will most likely be removed (added) in a short period of time, thus causing unecessary

overheads. An important observation is that irrelevant datapoints also include noisy data,

which are often indicative either of measurement error or some system instability that

may have occurred during monitoring. Instabilities in the studied phenomena may also

happen due to a monitoring strategy that interferes with the system's normal operation

stressing or altering it.

1.2 OBJECTIVES AND CONTRIBUTIONS

In this research work, we apply scale-space theory [19] to assist dynamic resource provi-

sioning strategies. This theory is a qualitative signal description in multi-scale measure-

ment [20], thus enabling multiple interpretations of the data. Also, it allows us to derive

such multi-scale representations in a mathematically sound way [21]. By means of choos-

ing the right scale, it is a powerful technique for eliminating, or considerably diminishing,

the presence of irrelevant information from a signal that can potentially induce wrong

or late decision making by both proactive and reactive methods. More importantly, it

does so with mathematical guarantees that no additional structures, i.e. new peaks and

depressions, are introduced in the process as the original sampling is kept unchanged over

time. This is a signi�cant di�erence between this approach and similar representations

usually applied elsewhere. We also apply this technique to two widely used forecasting

methods, Support Vector Machines for Regression (SVM) and Autoregressive Integrated

Moving Average (ARIMA), which are representative, respectively, from machine learning

and from statistical time-series analysis. We compare both theses methods reactions to

the appliaction of scale-space smoothing. As such, we make an e�ort in trying to get

the most out of them in order to maximize the bene�ts that may be extracted from our

approach.

Thus, our main contributions are:

� we speci�cally carry out time-series analysis in order to eliminate irrelevant infor-

mation and thus obtain a signal that better explains the underlying behavior of

interest;

3
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� we apply scale-space theory in the context of dynamic provisioning of resources,

which, to the best of our knowledge, has not yet been experimented. Thus, infor-

mation provided might be used in decision-making for provisioning algorithms;

� we show that the Support Vector Machine for Regression (SVR) ε-SVR [22] and

the Autoregressive Integrated Moving Average (ARIMA) [23] forecasting models

bene�t from our approach and yield reasonable results;

� we implement an extensible workload analysis and prediction framework that can

be used in dynamic environments.

The appoach is robust to noise and may be used together with both reactive and

proactive solutions. This time-series analysis constitutes the core of our work and we can

easily extend it to other time-series of interest even in the multivariate context.

1.3 PUBLICATIONS

The e�orts during the research process for this thesis made it possible the following

publication:

� SANTOS, G. A. C. ; MAIA, J. G. R. ; MOREIRA, L. O. ; SOUSA, F. R. C. ;

MACHADO, J. C. �Scale-Space Filtering for Workload Analysis and Forecast�. In:

IEEE 6th International Conference on Cloud Computing (IEEE CLOUD), 2013.

Although the following publications are not direct related to this research work,

many concepts and ideas have been developed together with this master thesis:

� MOREIRA, L. O. ; SOUSA, F. R. C. ; MAIA, J. G. R. ; FARIAS, V. A. E. ; SAN-

TOS, G. A. C. ; MACHADO, J. C. �A Live Migration Approach for Multi-Tenant

RDBMS in the Cloud". In: 28th Brazilian Symposium on Databases (SBBD), 2013.

� FARIAS, V. A. E. ; MAIA, J. G. R. ; SOUSA, F. R. C. ; MOREIRA, L. O. ;

SANTOS, G. A. C. ; MACHADO, J. C. �A Machine Learning Approach for SQL

Queries Response Time Estimation in the Cloud". In: 28th Brazilian Symposium

on Databases (SBBD), 2013.
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� SOUSA, F. R. C. ; MOREIRA, L. O. ; SANTOS, G. A C. ; MACHADO, J. C.

�Quality of Service for Database in the Cloud". In: 2st International Conference

on Cloud Computing and Services Science (CLOSER), 2012.

1.4 STRUCTURE OF THE THESIS

The next chapters of this thesis are structured as follows:

� Chapter 2 - presents the key concepts involved in this work. It addresses the sub-

jects of Scale-Space Theory, Predictive Analytics, Time-Series Forecasting, ARIMA,

Machine Learning and SVM.

� Chapter 3 - analyzes related works.

� Chapter 4 - brings the characteristcs of our solution. The workload, objectives,

architecture, implementation details and a study concerning the obtention of good

SVM parametrization are presented.

� Chapter 5 - consists in the experiments.

� Chapter 6 - makes the �nal considerations of this research and outlines the possi-

bilities that may be followed by future works.

5



CHAPTER 2

THEORETICAL BACKGROUND

This chapter brings the theoretical backgroung related to our work. Here, in the following

sections, we present Scale-Space Theory, Predictive Analytics, Time-Series Forecasting,

ARIMA, Machine Learning and SVM.

2.1 SCALE-SPACE

As stated in [24], the main idea of creating a multi-scale representation of a signal, as

shown in Figure 2.1, is by generating a family of one-parameter (scale) derived signals,

each of them based on the original one and presenting a decreasing level of detail as

the scale increases. As a result, unnecessary features and noise are removed or strongly

attenuated at a wider scale so the signal processing may be concentrated over features

shown at that scale.

Figure 2.1 A multi-scale representation of a signal.

The procedure, as it is formulated for one-dimensional continuous signals is as

follows:

6



2.1. Scale-Space 7

Given a signal f : R→ R, the scale-space representation L : R×R+ → R is de�ned such

that the representation at �zero scale� is equal to the origial signal

L(·; 0) = f(·), (2.1)

and the representations at coarser scales are given by convolution of the given signal with

Gaussian kernels of successively increasing width

L(·; s) = g(·; s) ∗ f. (2.2)

In terms of explicit integrals, the result of the convolution operation '∗' is written

L(x, s) = f(x) ∗ g(x, s) =

∫ +∞

−∞
f(u)

1

s(2π)
1
2

e
−(x−u)2

2s2 du (2.3)

The Gaussian function is used because it is the unique kernel satisfying the Scaling

Theorem [25]. It states that Gaussian is the only kernel for which local maxima either

remains the same or decrease and local minima either remains the same or increase as

the bandwidth of the �lter 's' is increased, i.e., with increasing scale. The reverse is

also veri�ed: if a convolution kernel never introduces additional structure, then it must

be gaussian. Therefore, no additional structures are introduced by this process [26].

Moreover, most of the structures in the signal with a characteristic length less than 's'

are removed after convolving a signal by g(·; s). Hence, the bandwidth of the �lter controls
the type of high frequency information we want to eliminate from the signal.

Consequently, we can also minimize the e�ect of data points that, although are not

noisy objects or outliers, are still irrelevant or only weakly-relevant [27] to the underlying

data analysis. In our context, such datapoints are extrema whose duration might be

considered irrelevant to be taken into account by provisioning strategies.

However, as we apply higher values of 's', the interval between the original and

the obtained extrema increases. Although the resulting signal does capture the system's

behavior, it becomes less useful in expressing the system's real demands, since the ob-

served values will be somewhere below the expected ones, which should be as close as

possible to the original value. Such behavior is expected, given that for small values of

's' the Gaussian convolution approaches the un-smoothed signal and for large 's' the

signal's mean [19].

7
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We overcome this problem by using linear interpolation [28], which allows us to

restore the amplitudes of the smoothed signal to their original values. This is depicted

in Figure 2.2.

Figure 2.2 Interpolating the signal obtained by a high value of 's' in the scale-space algorithm
with the original one helps bringing the extrema close to their original amplitude. This is very
helpful, since the detection of extrema plays a key role in resource provisioning.

The �rst step is the generation of an interpolation weight that describes how

points in the source signal, the smoothed one, are related to points in the destination

signal (the original one). Instead of a constant interpolation weight, in order not to alter

the signal structure, interpolation weights are calculated from equation 2.4. The second

stage is the application of the interpolation formula, equation 2.5, to produce the values

on the destination signal.

w(xi) =
g(xi)−min(gx)

max(gx)−min(gx)
(2.4)

f(xi) = w(i) ∗ 1

2
[max(fx) +max(gx)] + [1− w(i)] ∗min(gx) (2.5)

where 'f ' is the function that represents the original signal and 'g', the smoothed

one.

With the application of both scale-space smoothing on the signal that represents

8
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the monitored metrics and interpolation on the obtained smoothed signal we end up with

a dataset that is either free of noise or contains an easily treatable amount of it and in

which the relevant extrema correspond to their counterparts in the original signal.

2.2 PREDICTIVE ANALYTICS

Predictive analytics involves the use of data mining, mathematical modeling, and statis-

tical analysis to provide actionable predictions based on trends, patterns, relations and

correlations in data to help driving the decision-making process. It considerably enriches

decision-making by providing intelligent predictions as the basis for the process. Pre-

dictive analytics is becoming more mainstream as a result of advanced machine learning

capabilities, technology advancements and availability of large volumes of data [29].

The approaches and techniques used to conduct predictive analytics include de-

cision trees, time-series forecasting, neural networks, genetic algorithms, support vector

machines, and other mathematical algorithms, to name a few [30] [31].

2.2.1 Time-Series Forecasting

Whatever we observe or measure is bound to be di�erent at di�errent points in time

[32]. When we collect a set of such measurements with the objective of drawing con-

clusions from their observation considering the time they were measured, we're dealing

with a problem with a temporal aspect. This means that in the input data there is a

time-dependency. In other words, an input at one timestep does not contain enough in-

formation to get the correct output. The output is thus dependent on a number of input

patterns [33]. Thus, time series data has a natural temporal ordering. It di�ers from

typical data mining/machine learning applications where each data point is an indepen-

dent example of the concept to be learned, and the ordering of data points within a data

set does not matter. Examples of time series applications include: capacity planning,

inventory replenishment, sales forecasting and future sta�ng levels [34].

A time series is a set of observations xt, each one being recorded at a speci�ed

time t. A discrete-time series is one in which the set T0 of times at which observations

are made is a discrete set, as is the case for example when observations are made at

�xed time intervals. Continuous-time series are obtained when observations are recorded

9
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continuously over some time interval, e.g. when T0 = [0, 1] [35]. It is a record of a

phenomenon irregularly varying over time [36] and, as such, the excitations that are

imposed on the system under observation are not under the observer's control, and are,

in many cases, unknown to him or her [37].

Time series analysis is the process of using statistical techniques to model and

explain a time-dependent series of data points [34]. It accounts for the fact that data

points taken over time may have an internal structure, such as autocorrelation, trend

or seasonal variation, that should be accounted for [38], and it also provides tools for

selecting a model that can be used to forecast future events.

The general problem of time series forecasting can be rephrased as the problem

of �nding a model able to forecast the future evolution of a time series given its past

evolution. Most of the time, the forecasting problem is limited to a short-term time

series prediction. In other words, as one tries to model the future evolution of a time

series, the usual goal is to be able to perform a onestep ahead prediction. The main reason

motivating such approach is reliability of the predicted values. One-step ahead predictions

can be reasonably reliable, while the uncertainty on future values increases with the time

horizon [39], i.e., during the �rst step of a multi-step prediction, the predicted value

depends entirely on measurement data, and is therefore more likely to be accurate than

in subsequent steps, when the predictions depend on previously predicted data points

that are by themselves associated with a degree of uncertainty already [37].

Plummer [40] lists some di�culties that may arise when performing time series

forecasting:

1. limited quantity of data, which may be the foremost di�culty;

2. noise, i.e., any unwanted anomaly in the data, which can be caused by:

� errouneous data points;

� components that obscure the underlying form of the data series.

3. nonstationarity, i.e., data that do not have the same statistical properties, like mean

and variance, at each point in time;

4. forecasting technique selection from a multitude of options from statistics to arti�-

cial intelligence. One of the simplest techniques is to search data series for similar

10
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past events and use the matches to make a forecast. One of the most complex ones

is to train a model on the series and use the model to make a forescast.

2.2.1.1 ARIMA Auto Regressive Integrated Moving-Average (ARIMA) models are

a form of regression analysis that use lagged values of the dependent variable and/or

random disturbance term as explanatory variables. The approach was �rst popularized

by Box and Jenkins [41], and ARIMA models are often referred to as Box-Jenkins models.

It is generally referred to as an ARIMA(p, d, q) model where:

� p is the number of autoregressive terms,

� d is the number of non-seasonal di�erences, and

� q is the number of lagged forecast errors in the prediction equation.

To identify the appropriate ARIMA model for a time series, one begins by iden-

tifying the order(s) of di�erencing needed to stationarize the series and remove the gross

features of seasonality. Thus, one has to take as many di�erences of the original series

as are needed to reduce it to stationarity. A strong reason for using a stationary data

sequence instead of a non-stationary sequence is that non-stationary sequences, usually,

are more complex and take more calculations when forecasting is applied to a data series.

When the di�erencing of the series is done successfully it is proposed that the

di�erenced series can be treated in the same way as a stationary series, which has had

no need of di�erencing.

This leads to a wider family of models which are ARMA models after di�erencing.

As such, ARIMA models are a generalization of ARMA models obtained by introduc-

ing the di�erencing into the model, with I indicating "integrated" and referencing the

di�erencing procedure.

With a stationary series in place (d = 0), a basic model can now be identi�ed.

After obtaining both the AR order p and MA order q, we are led to one of three basic

models: AR (autoregressive), MA (moving average) and a combined ARMA.

� When both p 6= 0 and q 6= 0 we have the usual ARMAmodel, that isARIMA(p, 0, q) =

ARMA(p, q).

11
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� When only p 6= 0, we have ARIMA(p, 0, 0) = AR(p).

� Finally, when only q 6= 0, ARIMA(0, 0, q) = MA(q).

Next, one has to estimate the coe�cients of the model, which consists on �nding

both ϕ and θ in the �rst case, or only ϕ in the second case and θ in the third one. These

models are given by:

AR(p) : Xt = C +

p∑
i=1

ϕiXt−i + εt (2.6)

MA(q) : Xt = µ+ εt +

q∑
i=1

θiεt−i (2.7)

ARMA(p, q) : Xt = C + εt +

p∑
i=1

ϕiXt−i +

q∑
i=1

θiεt−i (2.8)

where ϕi and θi are parameters, the random variable ε is white noise error, C is a constant

and µ is the expectation of Xt (often assumed to be 0). In practice, estimation is fairly

transparent to the user.

Fianally, the model has to be checked. This step is also called diagnostic checking,

or veri�cation [42]. Two important elements of checking are: (1) to ensure that the

residuals of the model are random; and (2) to ensure that the estimated parameters are

statistically signi�cant. Usually the �tting process is guided by the principal of parsimony,

by which the best model is the simplest possible one, i.e., that with the fewest parameters,

which adequately describes the data.

2.2.2 Machine Learning

Machine learning is programming computers to optimize a performance criterion using

example data or past experience [43]. To be intelligent a system that is in a changing

environment should have the ability to learn. If the system can learn and adapt to such

changes, the system designer does not need to foresee and provide solutions for all possible

situations. Instead, the system should be capable to infer hypotheses from given data or

experience, which results in some model that generalizes the data and hopefully draws

correct conclusions.

The aim of machine learning is rarely to replicate the training data but the

12
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prediction for new cases, which means to generate the right output for an input instance

outside the training set, one for which the correct output is not given in the training set.

How well a model trained on the training set predicts the right output for new instances

is called generalization [43].

This modeling approach with the ability to learn from experience is very useful for

many practical problems since it is often easier to have data than to have good theoretical

guesses about the underlying laws governing the systems from which data are generated

[44].

2.2.2.1 Support Vector Machines Support Vector Machines (SVM) comprise a

new class of supervised learning algorithms, motivated by results of statistical learning

theory. Originally developed for pattern recognition, they represent the decision boundary

in terms of a typically small subset of all training examples, called the support vectors.

In order for this sparseness property to carry over to the case of Support Vectors for

Regression (SVR), Vapnik devised the so-called ε-insensitive loss function,

Lε (f (xi) , yi) =

0 if |yi − f (xi)| ≤ ε

|yi − f (xi)| − ε otherwise
(2.9)

which does not penalize errors below some ε > 0, chosen a priori [45]. Thus, SVR learns

samples based on the ε-loss function foundation. It makes an ε-tube around the training

samples so that the samples within the ε-tube are not counted as errors, while samples

outside of the ε-tube become support vectors (SVs) that will be used for test. Hence, in

some sense, support vectors are an ideal subset to be selected [46].

The basic idea of SVR is to map the input data x into a higher dimensional feature

space F via a nonlinear mapping φ and then a linear regression problem is obtained and

solved in this feature space. Considering a data set D = {(xi, yi)}li=1, with x ∈ Rd

(d-dimensional input space) and y ∈ R, the goal is to �nd a function

f(x) =
l∑

i=1

wiφi(x) + b (2.10)

where {φi(x)}li=1 are the features of the inputs, {wi}li=1 and b are coe�cients, that has

at most ε deviation from the actually obtained targets yi for all the training data, and
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Figure 2.3 A schematic illustration, obtained from [10], of SVR using ε-sensitive loss function.

at the same time is as �at as possible, to prevent over�tting. Flatness, om the case of

(2.10) means that one seeks a small w. One way to ensure this is to minimize the norm,

i.e., ‖w‖2 = wTw. We can write this problem as a convex optimization problem:

min
w

1

2
wT · w

s.t.


yi −

(
wT · φ (xi) + b

)
≤ ε

(
wT · φ (xi) + b

)
− yi ≤ ε

(2.11)

The tacit assumption in (2.11) was that such a function f actually exists that

approximates all pairs (xi, yi) with ε precision, or in other words, that the convex opti-

mization problem is feasible [47]. If we want to allow some errors we should introduce
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some slack-variables that enlarge the tolerance of the machine:

min
w

1

2
wT · w + C

l∑
i=1

(ξi + ξ∗i )

s.t.



yi −
(
wT · φ (xi) + b

)
≤ ε+ ξi

(
wT · φ (xi) + b

)
− yi ≤ ε+ ξ∗i

ξ
(∗)
i ≥ 0 i = 1..l

(2.12)

Everything above ε is captured in slack variables ξ(∗)i , which are penalized in the

objective function via a regularization constant C, chosen a priori.

The constrained optimization problem given by (2.12) can be reformulated into

dual problem formalism by introducing Lagrange multipliers. This allows us to rewrite

the Support Vector algorithm as follows:

max
α,α∗


−1

2

∑l
i,j=1 (αi − α∗i )

(
αj − α∗j

)
φ (xi)

T φ (xj)

−ε
∑l

i=1 (αi + α∗i ) +
∑l

i=1 yi (αi − α∗i )

s.t


∑l

i=1 (αi − α∗i ) = 0

α
(∗)
i ∈ [0, C]

(2.13)

Given the solution of equation (2.13), the regression function (2.10) can be written

as:

f (x) =
l∑

i=1

(αi − α∗i )φ (xi)
T φ (xj) + b (2.14)

Although simply preprocessing the training patterns xi by a map φ : Rd → F into

some feature space F, and then applying the standard SVR algorithm could be achieved,
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this approach is not feasible at all and, thus, a computationally cheaper way has to be

used, the so-called kernel trick:

max
α,α∗


−1

2

∑l
i,j=1 (αi − α∗i )

(
αj − α∗j

)
k (xi, xj)

−ε
∑l

i=1 (αi + α∗i ) +
∑l

i=1 yi (αi − α∗i )

s.t


∑l

i=1 (αi − α∗i ) = 0

α
(∗)
i ∈ [0, C]

(2.15)

and equation (2.14), the regression function, becomes equal to:

f (x) =
l∑

i=1

(αi − α∗i ) k (xi, x) + b (2.16)

where k (xi, xj) = φ (xi)
T φ (xj) is called the kernel function. An interesting fact

is that for many choices of the set {φi (x)}li=1, including in�nite dimensional sets, the

form of k is is analytically known and very simple, and the features φi never need to be

computed in practice because the algorithm relies only on computation of scalar products

in the feature space [48]. Any function that satis�es Mercer's theorem can be used as a

kernel function [49]. Though new kernels are being proposed by researchers, the typical

examples of the kernel function are as follows:

Linear: k (xi, xj) = xTi xj

Polynomial: k (xi, xj) =
(
γxTi xj + r

)d
, γ > 0

Radial Basis Function (RBF): k (xi, xj) = exp
(
−γ ‖xi − xj‖2

)
, γ > 0

Sigmoid: k (xi, xj) = tanh
(
γxTi xj + r

)
(2.17)
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Here, γ, r and d are kernel parameters. They should be carefully chosen as it

implicitly de�nes the structure of the high dimensional feature space φ (x) and thus

controls the complexity of the �nal solution [50].

Thus, the kernel function transforms the nonlinear input space into a high dimen-

sional feature space in which the solution of the problem can be represented as being a

straight linear problem [51]. Note that, in the nonlinear setting, the optimization problem

corresponds to �nding the �attest function in feature space, not in input space.

Note that the parameter ε can be useful if the desired accuracy of the approxi-

mation can be speci�ed beforehand. In some cases, however, we want the estimate to be

as accurate as possible without having to commit ourselves to a specifc level of accuracy

a priori [45]. In their work, they describe a modi�cation of the ε-SVR algorithm, called

ν-SVR, which automatically minimizes ε.

The ν-SVR optimization problem is given by:

max
α,α∗
−1

2

l∑
i,j=1

(αi − α∗i )
(
αj − α∗j

)
k (xi, xj) +

l∑
i=1

yi (αi − α∗i )

s.t



∑l
i=1 (αi − α∗i ) = 0

α
(∗)
i ∈ [0, C]

∑l
i,j=1 (αi − α∗i ) ≤ C · ν

(2.18)

2.3 ERROR METRICS

In order to evaluate the accuracy of our forecastings, we adopt three metrics, where yi is

the actual output, ŷi is the predicted output and n is the number of observations in the

dataset for which the prediction is made:

1. Root Mean Squared Error (RMSE), which is de�ned as follows:

RMSE =

√∑n
i=1 (ŷi − yi)2

n
(2.19)
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2. Mean Absolute Percentage Error (MAPE), de�ned by the following formula:

MAPE =
1

n

n∑
i=1

|ŷi − yi|
yi

(2.20)

3. PRED(25), given by:

PRED(25) =
Number of observations with relative error ≤ 25%

Number of observations
(2.21)

Where the relative error is given by:

RE =
|y − ŷ|
y

(2.22)

The following observations are relevant, as pointed out by Islam et al. [7] and

Nau [52]:

� a lower value of RMSE indicates a more e�ective prediction scheme;

� a small MAPE value implies a better �t of the prediction model, thus indicating

superior prediction accuracy;

� PRED(25) indicates the percentage of observations whose prediction accuracy falls

within 25% of the actual value. A value closer to 1 indicates a better �t of the

prediction model;

� RMSE is more sensitive than other measures to the occasional large error: the

squaring process gives disproportionate weight to very large errors. If an occasional

large error is not a problem in decision situation, then MAPE may be a more

relevant criterion. In many cases these statistics will vary in unison, i.e., the model

that is best on one of them will also be better on the others. Actually, if one model

is best on one measure and another is best on another measure, they are probably

pretty similar in terms of their average errors. In such cases one probably should

give more weight to some of the other criteria for comparing models;

� it makes no sense to say `The model is good (bad) because the RMSE error is less

(greater) than x', unless you are referring to a speci�c degree of accuracy that is

relevant to one's forecasting application;
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� if one model's RMSE is 30% lower than another's, that is probably very signi�cant.

If it is 10% lower, that is probably somewhat signi�cant. If it is only 2% better,

that is probably not signi�cant. These distinctions are especially important when

we are trading o� model complexity against the error measures.

These points are the reason why we chose three di�erent metrics. That will give

us more solid grounds to compare our results.

2.4 CONCLUSION

In this chapter we presented the theories behind our research work. Scale-space theory

constitutes the core of it. We also covered time-series forecasting and the theory behind

ARIMA, one of the prediction approaches we adopt. Then we brie�y mentioned machine

learning and described SVM theory, the other forecasting method we use in our work.

Besides the good results obtained in the literature for di�erent scenarios, these forecasting

methods are representatives from two di�erent paradigms: statistical time-series analysis

and machine learning. To �nish, we remark on the metrics we employ to measure the

accuracy of our predictions.
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CHAPTER 3

WORKLOAD ANALYSIS

Among the works that propose solutions to meet QoS requirements based on workload

analysis, we may classify them in the two main procedures to cope with this task, the

reactive and proactive:

� in the former, they monitor a signal to detect unwanted situations and reactively

act in order to minimize as much as possible the e�ect of such events;

� in the latter they perform history-based load predictions, which aim to foresee the

workload behavior based on its observation and anticipate actions in an attempt to

avoid unwanted scenarios. Some, in an attempt to minimize even more the negative

e�ects of unexpected surges in workloads, propose solutions that make use of both

procedures.

Next we present works that make use of these techniques and are directly related to

our work. Thus, although we mention all frameworks' capabilities of related works, we

give special attention to the modules that direclty deal with workload preprocessing and

prediction.

3.1 PROACTIVE SOLUTIONS

3.1.1 Prediction of Cloud Data Center Networks Loads Using Stochastic and

Neural Models [1]

In [1] it is presented a prediction model framework that uses auto-regressive linear predic-

tion model with dithering of the observation sequence to smooth out numerical anomalies

and neural network prediction methods to forecast the future load demand pro�les. Per-

formance of the methods against two sets of data at multiple look-ahead times is also
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presented. The results of the simulation showed that the Linear Predictor modeled the

reference data more closely than did the Neural Network, at all prediction intervals.

Sample network tra�c data was used to train then simulate the forecasting of

network loads for each of the two models. The data used represents URL resource requests

of a WWW server at NASA and WWW server at EPA, and the incoming requests

were time stamped to the second. The values for the look-ahead intervals used in the

simulations were 1s, 5s, 10s, 15s, 20s, 30s, 60s and 90s. For the neural network, the �rst

one-thousand (1000) samples were separated from the data and used to train the network.

The Linear Predictor uses a data window of 65 samples, which allowed training to occur

with a very small number of the available ones. Both the Mean Squared Error (MSE)

and the Root Mean Squared Error (RMSE) were calculated for the predicted results.

According to the authors, both models can e�ectively predict future network

loads, with the Linear Predictor providing the most accurate results. Also they observe an

inverse linear relationship between the ability to forecast network loads and the distance

into the future the load is being forecasted.

3.1.2 PRESS [2]

The goal in [2] is to develop a light-weight elastic resource allocation scheme while not

requiring advance application pro�ling, model calibration, or deep understanding of the

application. It continuously tracks the dynamic resource requirements of applications in

an unobtrusive way and predicts resource demands in the near future using two comple-

mentary techniques to do so.

For workloads with repeating patterns, PRESS derives a signature for the pattern

of historic resource usage, and uses that signature in its prediction. To avoid making

assumptions about the length of the repeating pattern, PRESS uses signal processing

techniques, namely Fast Fourier Transform (FFT), to discover the signature, or to decide

that one does not exist. Since workload signatures may vary over time, this calculation

is performed anew each time a prediction is made. For applications without repeating

patterns, PRESS uses a discrete-time Markov chain with a �nite number of states to

build a short-term prediction of future metric values. The resource prediction models are

repeatedly updated when resource consumption patterns change.

Evaluation in the PRESS system was conducted using the RUBiS online auction
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benchmark (PHP version). Two real-world web traces, per-minute average rates observed

in the ClarkNet web server trace and per-minute average rates observed in the web access

logs from the World Cup 98 o�cial web site, were used to modulate the request rate of

our synthetic RUBiS benchmark. The prediction algorithms were also evaluated using

a small sample of real application workload trace data of about 6 hours from a Google

cluster, which led them to use shorter training windows. For simplicity of exposition,

authors focus on CPU usage, although it is claimed that PRESS is capable of managing

memory, I/O, and network usage, too. By default, PRESS makes a prediction every

minute, and uses the prediction to scale the resources allocated to the application for the

next minute.

Authors state that the prediction algorithms used by PRESS are indi�erent to

the sampling rate, as long as the input window size is large enough to encompass the most

important patterns to track, and there aren't too many samples to analyze. It has been

noticed that the further into the future, the weaker the correlation between the model

and the actual demand. But, since PRESS only needs to make predictions for the near

future, this is not an issue in practice.

3.1.3 RPPS [3]

This paper presents the design, implementation and evaluation of RPPS (Cloud Resource

Prediction and Provisioning Scheme), a framework that automatically predict future de-

mand and perform proactive resource provisioning for cloud applications. RPPS employs

a load prediction algorithm based on ARIMA model to gradually adapt resource accord-

ing to the future demand. The resource usage time series are fed into the load predictor

model to predict a short-term resource demands. According to authors, since for resource

provisioning focus should be on short-term load prediction, they conduct their studies

over a period from half an hour to several hours. It also combines both coarse-grained and

�ne-grained resource scaling under di�erent situations, and adopts a VM complementary

migration strategy.

Thus, RPPS architecture is composed of three main parts: The predictor is re-

sponsible for forecasting incoming load. History workload is obtained from the monitor.

After running the predictor, the controller has got the future demand which can help

resource provisioning ahead by managing the state of the cloud nodes. It reacts to new

requests or changes in workload by provisioning �ne-grained CPU, memory resources or
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coarse-grained new VMs and allocating physical resources. The allocator is responsible

for resource allocation based on prediction results and real history data.

In the experiments, they use two types of workloads: own-collected workload by

typical applications and request rate from a real data center. In the �rst case, the trace

used is part of the several months of data collection. It shows a consistent pattern of

load shifts by day. According to authors, a qualitatively similar pattern appears in other

internet service traces, with daily peak-to-trough and signi�cant seasonal variations, such

as Messenger. In the second, to illustrate a more real load �uctuation, accesses to the

Beijing Unicom site in a typical week is analyzed. Experiments are conducted using the

CPU usage.

During the experiments, authors point out that it is hard to predict the peak

points. They found that RPPS is weak in sharp transient spikes. According to them, if

they solve this problem with the pre-reserved resource, they may cause another problem:

they should take back these resources in a short time because the spikes not last long.

The average error is used in the whole time to evaluate the performance. The experiment

results show RPPS works well in the real data center trace.

3.1.4 Marlowe [4]

Marlowe is an automated server provisioning system that aims to meet workload demand

while minimizing energy consumption in data centers. It integrates load prediction, sys-

tem and load management functions, and cost-bene�t analysis. Servers are automatically

provisioned to meet workload demand while minimizing the energy cost and the reliability

cost due to duty cycling.

The framework design has two key components: a load predictor for proactive

provisioning and an optimizer framework that uses workload prediction to manage tran-

sitions into and out of power states to meet demand while saving energy and reducing

the reliability cost.

First, the input workload is characterized and then they employ forecast-based

technique based on regression analysis to predict load in the near future. They quantize

time into discrete time steps, which may be a few seconds to several minutes, depending

on the load variation and the transition delays associated with changing server power

states. Authors derive a simple and intuitive linear prediction scheme because they claim
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it is easy to implement, has a sound theoretical basis, and works extremely well on their

workload traces. Nonetheless, they emphasize the discussion applies no matter which

prediction scheme is used.

Second, to optimize state transitions to meet demand while saving energy, they

build a Markov state diagram of power state transition for each server by measuring the

power draw in each power state and the transition latencies in and out of these states.

Marlowe was evaluated on three workloads: Windows Azure, Live Messenger, and

a shared computing cluster (SCC) comprising about 1000 servers. The Live Messenger

trace contains login rate and number of connections per server which authors scaled

to 25M connections across 300 servers over two weeks; a prior study presented many

aspects of load and user behavior for this system. The Azure and SCC traces contain

cluster utilization data collected from about 500 servers over three months and from 1008

servers over a week, respectively. They analyze load patterns, auto-correlations, and

cluster utilization for these traces.

Results show that Marlowe adapts to o�ered load and can quickly identify the

optimal assignment of servers to power schemes thereby signi�cantly saving energy while

meeting workload demand. They compute the standard deviation of the relative error

(|PredictedActual|/Actual) as goodness of �t metric.

3.1.5 Predictive Data Grouping and Placement for Cloud-based Elastic Server

Infrastructures [5]

This paper aims to explore the bene�ts of leveraging access patterns and workload history

in predicting the load and organizing content in an Internet service infrastructure in order

to achieve high resource utilization, locality and elasticity. Authors apply autoregressive

models for history-based load prediction. This model, according to them, is able to predict

growth trends and seasonal patterns and allows for proactive resource provisioning.

First, they propose a forecasting model based on time series, which is used to

predict workload based on access history. In order to predict the load in the system at time

t, a multiplicative seasonal autoregressive moving average (ARMA) model is adopted.

Second, two complementary data grouping and data placement algorithms targeting to

increase the locality, while preserving a high server utilization are presented. Third,
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they propose algorithms for scaling the system up and down, depending on expected

workloads.

They analyze a dynamic workload of the on-line music portal LastFM. Data was

crawled through LastFM API by using a distributed crawler deployed in cluster over

20 machines. They traversed the friendship graph in a breadth �rst search manner and

extracted the pro�les of a set of 250,000 users including the listened artists, daily, for

the period between January 1st to May 22nd, 2009 (142 days). According to them, a

limitation of their trace is the fact that they can reconstruct only the aggregate daily

load of the system, given that LastFM does not make available the access history at

a granularity lower than a day. Therefore, the trace does not contain load variation at

minute and hour granularities. The �rst 14 days are used for training, then no forecasting

is done until day 15.

Experiments demonstrate the suitability of applying autoregressive models to

global load forecasting for a 142 day trace from LastFM, a music on-line service. Errors

metrics used were relative error and normalized root mean square deviation. In addition,

they conclude that the utilization of a prediction algorithm allows to scale up and down

the number of required servers.

3.1.6 SmartSLA [6]

SmartSLA is a cost aware resource management system that consists of two main com-

ponents: the system modeling module and the resource allocation decision module. The

system modeling module uses machine learning techniques to learn a model that describes

the potential pro�t margins for each client under di�erent resource allocations. Based

on the learned model, the resource allocation decision module dynamically adjusts the

resource allocations in order to optimize expected pro�ts.

A series of mature machine learning techniques are investigated. They start

with a standard simple linear regression model. However, the accuracy turns out to be

unsatisfactory, which they show to be due to the nonlinear relationship between the cost

and some of the resources. Then, they show that the prediction accuracy is improved by

the regression tree model, which takes the nonlinearity into account. To further improve

the prediction accuracy, they use a boosting approach, called additive regression method,

using regression tree as the underlining weak learner. They use those mature regression
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methods in WEKA package, because as they state, the focus of the work is how to

apply machine learning techniques in virtualized resource management, not to invent

new models.

They develop workload generators to emulate clients where new queries are gen-

erated independently to the completion of previous queries. The arrival rate of queries

follows a Poisson distribution with the rate set in each test. They choose Poisson dis-

tribution because it is widely used to model independent arrival requests to a website.

They assume that the system is monitored continuously and the resource allocations can

be changed periodically in each time interval. In all experiments, they set the time in-

terval to be 3 minutes. They state this value was chosen because too short intervals

cannot capture the randomness of query types while too long intervals make SmartSLA

less responsive.

Authors focus mainly on CPU-bound queries and CPU and memory resources.

Queries are CPU-bound when the database can reside in the memory. Therefore the

whole database size is set to about 280MB to make sure it can �t in the memory. Also,

in order to obtain a high-level overview of the relationship between system resources and

database system performance, they conduct several experiments and statistical analysis

on how the parameters, such as CPU share, memory size, client workload, and replica

number, a�ect the system performance.

SmartSLA is evaluated by using the TPC-W benchmark with workload charac-

teristics derived from real-life systems. The performance results indicate that SmartSLA

can successfully compute predictive models under di�erent hardware resource allocations,

such as CPU and memory, as well as database speci�c resources, such as the number of

replicas in the database systems.

3.1.7 Empirical Prediction Models for Adaptive Resource Provisioning in the

Cloud [7]

In this paper, authors build up prediction models which are able to forecast sudden in-

crease in resource requirement in advance in order to facilitate dynamic and proactive re-

source management, scheduling and capacity planning. The framework adopts statistical

learning algorithms and sliding-window mechanism which according to them are simple

yet e�ective. The proposed algorithms are Error Correction Neural Network (ECNN)
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and Linear Regression. It is mentioned however that it is also possible to accommodate

other learning methods.

Authors state that the current scope of their work is bound to the development of

performance prediction model and its statistical validation only. Thus, they strive to focus

on the research problem of developing resource prediction models for facilitating proactive

scaling in the cloud so that hosted applications are able to withstand the variation in

workload with least drop in performance and availability. As they state, their research

problem actually relates to time-series analysis.

To obtain the historical data, they customized the TPC-W client implementation

to generate web requests in a linear fashion as it closely resembles the ramp-up phase of

�ash crowd web tra�c. That data was then used for training and testing of the forecasting

models. The efectiveness of the prediction framework was validated based on a number

of metrics: Mean Absolute Percentage Error (MAPE), PRED(25), Root Mean Squared

Error (RMSE) and R2 Prediction Accuracy.

Thus, experimental setup was divided into two steps: historical data collection in

the cloud and training of the prediction system with the historical data. They selected

the prediction interval as 12 minutes because, as they state, the setup time of virtual

machine instances in the cloud is typically around 5-15 minutes; so the scaling system

needs to request for new virtual instances 12-15 minutes ahead of time in order to meet

up the surge in resource requirement in the cloud.

According to their tests, the framework is not only able to make accurate projec-

tions but also skilled enough to forecast resource demand ahead of the VM instance setup

time. The use of an input window has a positive e�ect on the accuracy of the prediction

models and Neural Network based models with an optimal window size yield superior

prediction accuracy than Linear Regression ones. However, since the training of Neural

Network models take signicant time, the frequency of the training should be determined

based on the underlying resource usage behavior of the application in the cloud.
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3.2 REACTIVE SOLUTIONS

3.2.1 SLA-Based and Consumer-Centric Dynamic Provisioning for Cloud Databases

[8]

In [8], a framework is designed in order to facilitate adaptive and dynamic provisioning

of the database tier for cloud-hosted software applications. Authors present an end-to-

end framework that enables the software applications to declaratively de�ne the SLA of

the application in terms of goals which are subjected to a number of constraints that are

speci�c on its database transactions. It also enables the software provider to declaratively

de�ne a set of application-speci�c rules (action rules) where the admission control of the

database tier needs to take corresponding actions in order to meet the expected system

performance or to reduce the cost of the allocated cloud resources when they are not

e�ciently utilized.

The framework continuously monitors the database workload, tracks the satis-

faction of the application-de�ned SLA, evaluates the condition of the action rules and

takes the necessary actions when required. It is database platform-agnostic and relies

on virtualization-based database replication mechanism. While this paper focuses on the

SLA metric of transaction execution time, authors claim that other consumer metrics can

be implemented and integrated in the same manner such as freshness of replicated data.

An open source synthetic workload generator which is used to compose their

application workload. Experiments were conducted with 4 di�erent rules for achieving

elasticity and dynamic provisioning for the database tier in the cloud. Two rules are de-

�ned based on the average CPU utilization of allocated virtual machines for the database

server as follows: Scale out the database tier (add one more replica) when the average

CPU utilization of the virtual machines exceeds of 75% for (R1) and 85% (R2) for a

continuous period of 5 minutes. Two other rules are de�ned based on the percentage of

the SLA satisfaction of the workload transactions (the SLA values of the di�erent trans-

actions are de�ned as speci�ed in the Cloudstone benchmark) as follows: Scale out the

database tier when the percentage of SLA satisfaction is less than 97% for (R3) and 90%

(R4) for a continuous period of 5 minutes.

Their evaluation metrics are the overall percentage of SLA satisfaction and the

number of provisioned database replicas during the experimental time. Results show that

the approach provides the cloud consumers with adequate declarative and more �exible
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mechanism for controlling the SLA of their applications than relying on monitoring the

utilization of the allocated cloud computing resources.

3.2.2 RepliC [9]

This paper presents RepliC, an approach to database replication in the cloud with quality

of service, elasticity, and support to multi-tenancy. In RepliC, elasticity adjusts the

system's capacity at runtime by adding and removing replicas without service interruption

in order to handle the workload variation.

The target workload is given by the rate of transactions. The SLA (i.e. response

time) gives the objectives of each database's services. A penalty is applied to the trans-

actions that exceed the SLA value. The main problem is how to ensure the SLA for a set

of database services according to the current workload while using resources e�ciently

with small SLA violations. For their monitoring strategy, the collect process is performed

six times with an interval of 10 seconds. For each collect process, RepliC calculates the

median and standard deviation. Two medians with lower deviation are selected as the

�nal values to be stored. To these values, it is applied an exponentially weighted moving

average. If the monitored value is not in accordance with the de�ned SLA, more resources

are added. On the other hand, if the SLA is satis�ed over time, resources are removed.

The addition and removal of replicas is quickly performed without service inter-

ruption in order to handle the workload variation. Experiments demonstrate that their

approach guarantees quality of service with small SLA violations.

3.3 DISCUSSION AND COMPARISON

The approach presented in this thesis, as in [7], has its scope bounded to time series

analysis and to the use of prediction models and their statistical validation to speculate

the future surge in workload. Contrary to [6][2][4][3][5][8][9], which perform some kind of

resource allocation, we do not focus on the development of a resource allocation module.

Integrating our approach to framewoks that perform this task remains a future work.

At a preprocessing step, the application of scale-space theory to our signal allows

us to obtain more accuracy in our predictions at di�erent time scales. Thus, contrary to
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the presented works on proactive strategy, we are not limited to predictions at a �xed

time stamp. Also, we analyse the use of this mehod so that we can guarantee it will not

distort the original signal by removing important elements to our goals.

Prevost et al. [1] claims to dither the observation sequence to smooth out nu-

merical anomalies in order to apply the linear model. No analysis, however, is performed

with means to evaluate whether this smoothing process eliminates important character-

istics from the original signal. Since, as stated in this work, the linear predictor proves

more accurate results than neural networks, it remains unclear though if this result is

due to dithering or if it might be because of a linear input-output relationship. It is

known that deliberate smoothing might create arti�cially high correlations between any

two smoothed series, and, also, an important consideration in developing linear regres-

sion models is that the relationship one is trying to model might not in fact be linear.

Even if the relationship is not linear, one can still mechanically apply the formulas to

calculate values for the regression-model parameters that will minimize the sum of the

square of the residuals. However, the resulting model will be wrong in the sense that it

will give poor predictions for output values. Furthermore, applying a linear model to a

nonlinear system will give a misleading impression about the system's overall behavior.

Consequently, it is very important to verify that the inputs and outputs appear to be

linearly related [53].

Authors in [4] point out that in order for their prediction approach to be robust

to noise, thay discard small singular values obtained by the singular value decomposition

method to solve the least-squares equations from their linear prediction mehod. However,

no discussion is done as to the type of information being eliminated.

Gong et al. [2] �rst employs Fast Fourier Transform (FFT) to identify repeating

patterns called signatures that are used for its predictions. Guenter et al. [4] also analyze

load patterns, auto-correlations, and cluster utilization for their traces. Although we do

not analyze load patterns, we now understand its importance and load characterization

is part of future work.

Xiong et al. [6] conducts several experiments and statistical analysis on how

the parameters a�ect the system performance. They conclude that some features such as

memory size a�ects the system performance in a nonlinear manner. In their case, however,

they observe that when the arrival rate (number of queries per second) of the analysed

workload becomes higher, the system is under more stress and there is a higher chance
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for a query to have queuing delay and so its average cost grows. Therefore, in order to

avoid frequent saturation, they only vary the rate from 1 to 12 queries per second in the

experiments. Besides, the whole database size is set to about 280MB to make sure it can

�t in the memory. However, systems with highly dynamic workloads may easily overcome

these restrictions, and any method applied to deal with such workloads must be ready to

cope with this task. In our approach, we use the visit rate observed in a real-world trace

to modulate the request rate of the TPC-C benchmark. We make no restrictions about

the rates and the database used in our experiments easily reach the order of gigabytes,

thus approaching our strategy to real scenarios of systems with dynamic behavior.

Prevost et al. [1] considers look-ahead intervals that vary from 1s to 90s, and

Gong et al. [2] performs predictions for the next minute. Considering that for a �xed

observation window size the hability to forecast tends to diminish as the ammount of data

one is trying to forecast is increased, this might lead to behaved situations that might not

re�ect a method's limitations under stressed scenarios. While the interval used by Islam et

al. [7], 12 minutes, is acceptable to the provisioning of stateless systems, stateful systems

such as DBMSs, on the other hand, require higher look-aheads intervals to deal with the

requirement of maintaining consistency of the database that they manage. Guenter et al.

[4] expects load prediction to work reasonably well for intervals of tens of seconds to a few

minutes. Authors in [3] conduct their studies over a period from half an hour to several

hours, but no details as to the size of the prediction window is given. In our work, we test

the methods' accuracy varying the prediction window from 10 to 24 minutes in the case

of short-range predictions and 700 minutes when considering long-range forecastings. As

the history of observed data increases, we then become able to increase the prediction

window to obtain a higher prediction margin in di�erent scales.

As for the size of the observation window, in [2] it is claimed that the input

window size must be large enough to encompass the most important patterns to track.

For the RUBiS trace they use 4320 samples, while for the trace from a Google cluster,

which is shorter, they use training windows of 512 samples. That might bring the risk

to over-speacialization. Fang et al. [3] and Islam et al. [7], the latter in its solution

without sliding-windows, do not explicitly state what the training window size was. It

is only mentioned that observations from a speci�ed trace have been used to train the

model. Authors, in [1], use training windows of 1000 samples to train the network and

that the Linear Predictor uses a data window of 65 samples. Xiong at al. [6] only states

that each experiment runs over 9000 seconds and that it takes about 76 seconds for the
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learner to build the boosting model which can be done o�ine. Although Guenter et al.

[4] quantizes time into discrete time steps, which may be a few seconds to several minutes,

the relation between observation window and prediction window is also not clear. In our

work, we empirically tested the methods habillity to forecast for a given ammount of data

observed. By analysing this relationship, we are able to determine how far we can take

the methods we are working with to avoid ine�ciency by considering too small windows

or, given its application context, to avoid detaining ourselves only to take into account

higher windows sizes, which, to a certain point, tend to provide better results.

Fang et al. [3] also points out that in the trace they consider, there are many

load spikes or �ash crowds and that their solution is weak in sharp transient spikes.

As authors state, solving this problem with the pre-reserved resource, they may cause

another problem: the necessity of taking back these resources in a short time because the

spikes do not last long. We believe our solution is able to easily handle such scenarios,

with the use of the scale-space technique, by removing irrelevant information from the

signal we are analysing in a controlled way.

In Table 3.1, we evidence important aspects related to each of the related works.

3.4 CONCLUSION

In this chapter, we presented some approaches found in the literature which relate to

proactive and reactive techniques. We described their characteristics and provided a

discussion on how certain aspects are taken into account in these works in comparison to

our research. Although many of the listed works already include a provisioning module,

we gave special attention, in these cases, to the ones related to workload analysis and

forecasting.
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PPPPPPPPPWork
Feature

Forecasting E�cacy Metric Forecasting
Granularity

Observed
Metric

Env.

[1] Neural Network;
Autoregressive
Linear Model

MSE; RMSE Seconds URL Re-
source
Requests

Cloud

[2] Signature-Based
Approach;
Discrete-Time
Markov Chain

Over- and Un-
derestimation
Errors

Minutes CPU Usage Cloud

[3] ARIMA Average Error Minutes CPU Usage Cloud

[4] Linear Prediction
Scheme

Standard Devia-
tion of the Rela-
tive Error

Minutes Login Rate
and Number
of Con-
nections;
Cluster
Utilization

Web;
Cloud;
Parallel

[5] ARMA Relative Error;
Normalized
Root Mean
Square Devia-
tion

Days Daily Access Web

[6] Linear Regression
Model; Regression
Tree Model; Ad-
ditive Regression
Method

RMSE; Relative
Absolute Error

Minutes CPU and
Memory

Cloud
(DB
focused)

[7] Linear Regression;
Neural Network

MAPE;
PRED(25);
RMSE; R2

Minutes CPU Usage Cloud

[8] Does Not Apply SLA Satisfac-
tion; Number
of Provisioned
Database Repli-
cas

Does Not
Apply

CPU Usage;
Percentage
of SLA
Satisfaction

Cloud

[9] Does Not Apply SLA Violations Does Not
Apply

Response
Time

Cloud

Table 3.1
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CHAPTER 4

SCALE-SPACE BASED WORKLOAD ANALYSIS

AND PREDICTION

This chapter describes the objectives we intend to achieve with S-SWAP, our Scale-Space

based Workload Analysis and Prediction framework. Before doing that, we describe the

characteristics of the workload used in our analysis. Then we explain the core of S-

SWAP and the techniques we adopt. We also present the architecture we developed

and implementation details. Given that we are not able to determine SVM parameters

automatically, a study on their in�uence in determining SVR generalization capabilities

is also conducted in the last section.

4.1 WORKLOAD

When one thinks about provisioning, what is most important are the metrics which are

chosen to be measured, and the metrics to which particular attention is given, since

unnecessary detail means wasted time and lacking the proper detail can be fatal.

To illustrate the latter situation, consider the scenario described by [54], where,

during an experiment, the CPU is only loaded till around 30%. After this point, as

load increases, the response time shoots up even though the CPU is underloaded. The

memory and bandwidth also remain much below its capacity. Although, at �rst, one

might think strange behavior is seen in this experiment, it is evident that there is some

other bottleneck in the system which causes the response time to shoot up. The model

used understandably cannot predict this behavior since the �invisible bottleneck" is not

modeled. Thus it estimates the CPU utilization to increase with load while, in reality, it

saturates around 30%. Finding the root cause of this bottleneck is hard since it might

require investigating immense amount of code and analyzing various scenarios. In a real-

world scenario it could also be caused by third-party libraries, the code for which may

not be available. So, it is important to have in mind that the term saturation should not

be inferred to indicate that a device (e.g., CPU, disk) reached 100 percent utilization,
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because service level agreements can be violated well before the 100 percent utilization

mark.

So, computer systems often have bottlenecks. The key to e�ective capacity plan-

ning is identifying them, and making decisions based on that information. It bears

mentioning that picking the right metric to follow can be di�cult, since not all bottle-

necks are obvious, and the chosen metric can change as the architecture and hardware

limitations vary.

For this reason, to measure higher-level metrics speci�c to the application should

also be considered. As such, to our purposes we will study a common application-speci�c

workload. Since our intention is to build a module that receives metrics to apply our

techniques with means to turn them more e�ective to provisioning strategies, we will not

focus on these monitoring challenges. So, although this type of workload presents strong

correlation with the demand for resources in such environments, by analysing this type of

metric we are not able to detect what resources are bottlenecks, although they are useful

to infer QoS. In future work, we intend to analyse the impact of system resource metrics,

like CPU, memory and virtual machine state, and also other application speci�c ones.

We gathered a workload trace from our institution's academic management sys-

tem during the enrollment period of the undergraduate students for the �rst semester of

2012. It happened from 01/22/2012 to 01/31/2012. The number of accesses during this

period is presented in intervals of one minute, totalizing ten days of collected data. This

can be seen in Figure 4.1

The reason we chose this workload to our tests is that it resembles the type of

workload seen in typical dynamic applications [18][55]. They are usually characterized by

dynamically varying workloads that contain both long-term and short-term �uctuations.

The �rst type, from which one can normally extract a pattern or pinpoint factors that

in�uence it, includes variations that can be a�ected by the season, time of the day, or day

of the week, to name a few. These are usually predictable, but may also trick a forecast

method due to external in�uences like last hour schedule modi�cations, delays or changes

to certain functionalities, which happen in our system from time to time. The latter type

is normally due to �ash crowds and can be very unpredictable. In Figure 4.1 we can see

both these types of �uctuations in (a) and (b) respectively.

Our workload allows us to perform analysis in di�erent time scales (hours, days or

weeks for example). Besides, although not linearly, other metrics' behaviors are related
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Figure 4.1 Workload trace during the enrollment period is shown in (a), which happened from
01/22/2012 to 01/31/2012. In (b), a workload trace of 50min, from the pointed region in (a), is
presented.

to it, and we believe that if we are able to improve our analysis in this scenario, we might

also take more informed decisions in future multivariate studies. Still, we highlight that

any metric or set of metrics may be used, just like any reactive or proactive approaches.

4.2 OBJECTIVE

Both reactive and proactive techniques might be sensitive to the highly pushful nature

observed in dynamic applications' workloads.

Dynamic provisioning involves increasing or decreasing the ammount of resources

allocated to an application in response to workload changes. Thus, it typically involves

two problems: when to trigger a capacity increase (or decrease), and how to achieve
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the desired capacity addition or reduction [18]. Our focus in this thesis aims to help

answering the 'when' problem.

As pointed out in [56], if not addressed carefully, dynamic resource provisioning

may induce multiple concurrent provisioning operations that are actually not necessary,

but only triggered because the system is in a temporarily instable state. This would,

for instance, result in �rst adding more resources than strictly necessary, and then later

on removing the unnecessary resources. As a result, these oscillations would hurt the

overall service performance. This problem is made harder by the fact that, in multi-tier

applications, two concurring provisioning operations do not always act on the same parts

of it, but to di�erent ones. For example, in a three-tier Internet service consisting of a

front-end tier of replicated web servers, a middle tier of application servers, and a back-

end tier of replicated database servers; the back-end tier may become the bottleneck,

which results in an under-load of the front-end tier (which simply waits for responses

from the back-end tier). In such a situation, a provisioning operation may be triggered

on the set of replicas of the back-end tier (because of its over-load) while an unprovisioning

operation may be triggered on the set of replicas of the front-end tier. Obviously, the

latter unprovisioning operation on the front-end tier is not necessary, and is only triggered

because the back-end tier of the application is in an instable state. Careful capacity

planning, in this context, turns out to be of great importance in order to prevent these

unnecessary (un)provisioning operations, which cause system oscillation.

It is known that a challenging issue in resource provisioning is to e�ciently tackle

both situations of gradual load variations and load peaks [56]. This workload variation

re�ects di�erent client usages at di�erent times.

In a cloud environment, for example, resource provisioning plays a key role in en-

suring that the cloud providers adequately accomplish their obligation to costumers while

maximizing the utilization of underlying infrastructure. An e�cient resource management

scheme would require to automatically allocate to each service request, the minimal re-

sources needed for acceptable ful�llment of SLAs, leaving the surplus resources free to

deploy more virtual machines. The provisioning choices must adapt to changes in load

as they occur, and respond gracefully to unanticipated demand surges.

As we mentioned, the focus of this work is not on the resource provisioning itself.

In future work we will de�ne strategies to cope with this task. The main question we

intend to aswer is �How can we accurately predict a given behavior, or react to workload
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surges e�ciently, in order to increase the gap between the moment unwanted situations

happen and the moment information is provided with means to avoid it?".

Because we're looking to make judgments and predictions on a quickly changing

landscape, approximations will be necessary, and it's important to realize what that

means in terms of limitations in the process. Being aware of when detail is needed, and

when it's not, is crucial to forecasting budgets and cost models.

As such, we hope to come up with a helpful tool, intended to be attached to

provisioning frameworks, which will be able to provide means to avoid the necessity to

monitor changes that are not signi�cant to an application's context but which can equally

be able to trigger decisions that will most likely need to be readily undone, and to perform

meaningful forecastings to e�ciently detect peaks.

An overview of the core of our approach is depicted in Figure 4.2. Its �rst

component consists in obtaining a higher level description of a set of signals fi(x), which

respresent monitored workload traces, by applying the scale-space �lter. This provides

us the ability to select a scale or a set of scales by looking at how the interpretation of

the data changes as the scale is varied. It allows us to pick that interpretation which is

more suitable to the granularity level demanded by the case we will be dealing with. The

obtained signal can be stored to be used by reactive provisioning algorithms.

Figure 4.2 Our approach. Scale-space �ltering is optionally applied to a signal fi(x), which
generates another signal Li(x, s) in a new scale. The obtained signal might be used by a reactive
provisioning algorithm. Also it can be used at the prediction module to generate a forecast that
may be used by a proactive provisioning algorithm.

If it is desired to adopt a proactive solution, the prediction module, which wraps

the training and prediction steps using speci�c forecasting models, might receive signals
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which are not preprocessed or the signals in their new scale after application of scale-

space. Forecasts are then performed in order to be used by a proactive provisioning

algorithm.

With means to improve the models accuracy, forecasting analysis are obtained

according to two di�erent approaches: the �rst obtains all the values for the prediction

window at once, based on the observation window, as shown in Figure 4.3; the second,

known as sliding-window, performs several one-step ahead predictions in order to obtain

all the values for the prediction window for a �xed size sliding-window. At each iteration,

the window is moved one step forward to forecast the next point, as depicted in Figure

4.4.

Figure 4.3 Direct forecasting without sliding-window. The desired prediction window is ob-
tained in a sole iteration, in which all its values are obtained

Optionally, at each iteration, we may also move the window x ≥ 1 steps forward

to forecast the next x points.

We also add the possibility of performing sampling. It involves selecting a subset

of all the analysed points, being each point from the sample obtained from intervals of a

�xed size, as exempli�ed in Figure 4.5, for an interval of size four. The choice of which

point to pick in each interval may be based on the minimum or the maximum values, the

median of all the points or the average, to name a few.

We made use of a synthetic workload as f(x), as described in the previous section.

It was obtained by modulating the request rate of the TPC-C benchmark with a trace

that corresponds to the access rate observed in a real-world scenario.
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Figure 4.4 Sliding-window forecasting. The desired prediction window is obtained in multiple
iterations. One new element from it is obtained in each iteration, which then becomes part of
the training set. Also, one element is dropped from the begining as the window slides.

4.3 ARCHITECTURE

Based on the ideas presented in the previous section, we developed a framework to encom-

pass the techniques described as a module that may be used by provisioning strategies.

This module's architecture is presented in Figure 4.6.

In (A), we receive a signal that may come from a database table or from a �le.

The latter option gives us more �exibility and might be usefull in case we want to study

a signal o�ine and wish to apply changes to data more easily. The former, is mainly

intended to the online application of our method. It allows us to collect a signal from a

table in intervals we can easily control through a query. Also, we are able to extend its

capabilities by implementing queries that obtain variations of the collected data to feed

our module with more speci�c metrics. We believe this might be useful when we attach

our module to provisioning strategies in a cloud environment since we are able to include

rules in these queries which may re�ect SLA requirements. To the received signal, we

may apply scale-space smoothing (B). The resulting signal might then be recorded to a

�le or a database table (C), with means to be used by reactive provisioning algorithms.
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Figure 4.5 Sampling technique applied to a time-series in intervals of size 4. At each interval
a sample is chosen by picking the minimum element, the maximum or by taking the average or
the median of the elements in the interval.

If the intention is to use a proactive strategy, either the original signal (D) or

the scale-space smoothed one (E) are sent to the forecasting module. There, we are able

to apply the methods we use, SVR and ARIMA, to the whole signal or to chunks of it.

Although we focus our attention to these two methods, any other can easily be attached

to the architecture. Sliding-window technique may optionally be applied to obtain the

forecasting (F). Should the ammount of points we gathered be too high, we may also

perform sampling to it. We have implemented this technique in a sampling module (G)

through the minimum or the maximum element in the interval, or by the median or the

average of them, which may also be easily extended. Weather these auxiliary techniques

are used or not, we are able to control the sizes of the observation and prediction windows

in all the cases. Finally, an error module (H) provides us the implementeation of metrics

that can be directly applied in order to measure the quality of the obtained predictions.

Any other metric can be included here.

In the end, we are able to record the forecasting result to a �le (I) or to a database

(J). The result might be the time-series of predicted values or, optionally, information

inferred from these predictions. Again, in a cloud environment this might be useful since

instead of feeding a provisioning system with a time-series that needs to be processed,

we are able to send speci�c information, for example concerning SLA vioations in a given

time in the future.
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Figure 4.6 S-SWAP architecture.

4.4 IMPLEMENTATION

We implemented our framework in Python, a very popular interpreted programming

language that combines remarkable power with very clear syntax. The reason we chose

it is mainly due to the fact that it provided easy to use interfaces to necessary external

libraries we needed and also made it very easy to perform string manipulation without

compromising performance.

In our implementation of the scale-space algorithm, we pass as input parameters

the original signal and �s�, which explicitly represents a threshold in time units under

which peaks and depressions are considered irrelevant. The algorithm then obtains the

Gaussian's standard deviation s =
√

2t to perform operations and returns the smoothed

signal. Interpolation is supported.

The forecasting module uses a python inteface to LIBSVM [57], a library for

Support Vector Machine that supports various SVM formulations for classi�cation, re-

gression, and distribution estimation: C-SVM classi�cation, one-class classi�cation, ν-SV

classi�cation, ν-SV regression and ε-SV regression. In this work, we have used ε-SVR.

Also we apply the Radial Basis Function (RBF) kernel. The module also adopts RPy2
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[58], a python interface to the R programming language [59]. To generate ARIMA fore-

casts, we used the auto.arima implementation, with its default behavior, provided by

the Forcast [60] R package. It returns the best found ARIMA model through by using a

variation of the Hyndman and Khandakar algorithm which combines unit root tests, min-

imization of the Akaike Information Criterion (AICc), a measure of the relative quality of

a statistical model, and Maximum-Likelihood Estimation (MLE), a method of estimating

the parameters of a statistical model.

4.5 SVM PARAMETRIZATION

Contrary to ARIMA, to which we had available an implementation in R based on auto-

matic parametrization capability, similar easiness did not apply to SVM, since performing

grid search did not come up with good results. That lead us to try to understand the

relationship between its parameters to be able to empirically determine a group of values

that would give us good performance.

Training an SVM means to determine the parameters αi and b for speci�c in-

put values, which can be recalled from the SVM explanation in Chapter 2. SVR has

another set of parameters called hyperparameters: The soft-margin constant, or cost

paramater, C; the kernel parameters (γ, the inverse-width parameter in the RBF Kernel)

and the ε value in Vapnik's ε-insensitive loss function. The biggest di�cult in setting

SVR generalization capacity resides in the complex interdependence relationship among

these hyperparameters [61]. It is very hard to tell which are the best hyperparameters

values for any dataset or any kind of problem. As [62] reinforces, it is not straightfor-

ward to select those hyperparameters properly and how to determine a set of proper

hyperparameters is still suboptimal and computationally expensive, if not clumsy.

What we can specify are parameters regions that have higher probability to obtain

better results. Parameters variate from problem to problem but, as these parameters

change, one may realize certain behaviors that negatively a�ect the result or that will

not interfere anymore [63]. The curve estimation problem also o�ers important a priori

information that can be naturally used in the model selection task.

To conduct this study we used SVM-TOY, a simple graphical user interface from

the LIBSVM package, which has gtk or qt graphical user interfaces, to display the ob-

tained SVM decision/regression function on the 2−D plan. The trace we adopt has been
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synthetically generated based on the workload used in [64].

In order to carry out the analysis of the hyperparameters, recall the objective

function from Equation 2.12, which consists of two terms. As [65] points out, the �rst

term, 1
2
‖w‖2, captures the degree of complexity, which is proxied by the ε-insensitive

region between lines yi = wT · φ (xi) + b + ε and yi = wT · φ (xi) + b− ε. If w = 0, then

complexity is minimal since the ε-insensitive region is biggest. All points i = 1, 2, . . . , l

inside the ε-insensitive region have both ξi = 0 and ξ∗i = 0. If a point i lies outside the

ε-insensitive region, then either ξi > 0 and ξ∗i = 0 or ξi = 0 and ξ∗i > 0. So, ε, the width

of the insensitive region of the cost function is the parameter that de�nes the sparseness

of the SVR solution. It also in�uence on the smoothness of the mapping: the larger its

value, the smoother the result, as we observe in Figure 4.7.

Figure 4.7 The in�uence of the hyper-parameter ε for �xed values of C = 1 and γ set to
SVM-TOY's default value, 1

k , where k is the number of attributes in the input. In our case,
γ = 0, 5. Note that, in (d), even increasing the constant C to very high values, the region
remains unchanged, since loss occurs only if a point lies outside the ε-insensitive region.

The manually adjustable soft-margin constant, C, determines the trade-o� be-

tween function's complexity, 1
2
‖w‖2, and the overall loss associated with it,

∑l
i=1 (ξi + ξ∗i ).

Thus, the second term of the objective function, C
∑l

i=1 (ξi + ξ∗i ), stands for the actual
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amount of loss associated with the estimated function, since loss occurs only if a point

lies outside the ε-insensitive region. Notice, in Figure 4.8, that a large value of C will

lead to a behavior similar to that of a hard-margin SVM (no misclassi�cation). It can be

a doubtful choice if the data are known to be noisy. Noisy data (i.e. outliers) are often

better modelled with values of C, which allow for training errors. In the dual formulation,

C de�nes the upper bound of the multipliers αi and hence de�nes the maximal in�uence

the sample can exert on the solution.

Figure 4.8 The in�uence of the hyper-parameter C for �xed values of ε = 0, 03 and γ = 100.

Thus, What the SVR line aims for is to �nd a balance between the amounts

of ��atness� (or complexity), and the amount of training mistakes (or �t). This is the

fundamental idea behind SVR analysis: good generalization ability is achieved when

the best trade-o� between function's complexity and function's accuracy on the training

data is being struck. The parameter ε in the ε-insensitive function and the soft-margin

constant, C, are powerful means for regularization and adaptation to the noise in training

data.

Also, model complexity is (roughly) proportional to the value of γ. Intuitively, if

φ(x) and φ(x) are close together, then we might expect K(x, z) = φ(x)φ(z) to be large.

Conversely, if φ(x) and φ(z) are far apart - say nearly orthogonal to each other - then

K(x, z) = φ(x)Tφ(z) will be small. So, we can think of K(x, z) as some measurement

of how similar are φ(x) and φ(z), or of how similar are x and z. The RBF-Kernel (or

Gaussian) is a resonable measure of x and z's similarity, and is close to 1 when x and z

are close, and near 0 when x and z are far apart as depicted in Figure 4.9 (consider x a

point in the origin and z sliding in (0,±2)).

Lower γ means that the kernel is a "�atter" Gaussian and so the regression

function is "smoother" with a large sphere of in�uence for a given data point. Higher

gamma makes it a "sharper" peak, and so the regression function is more �exible and
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Figure 4.9 Gaussian RBF with centre c = 0 and radius r = 1

able to reproduce strange shapes if they're the right answer. In this case, the sphere of

in�uence is much restricted. In the limit (γ → ∞), a data point is not correlated with

any other data point. See Figure 4.10 for reference.

Figure 4.10 The in�uence of the hyper-parameter γ for �xed values of C = 10 and ε = 0, 03.

To make the prior observations clearer, consider the study carried out by [66],

which consists on the e�ect of the kernel parameter on the feature space. It states the

following two lemmas:
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� Lemma 1: Suppose Θi,j is the angle between two certain feature vectors φ(xi) and

φ(xj) in the Hilbert space H, we have

cosΘi,j =
k(xi, xj)√

k(xi, xi)k(xj, xj)
0 ≤ Θi,j ≤

π

2
(4.1)

� Lemma 2: Suppose Di,j is the distance between two certain feature vectors φ(xi)

and φ(xj) in the Hilbert space H, we have

Di,j =
√
k(xi, xi) + k(xj, xj)− 2k(xi, xj) (4.2)

Incorporate the RBF expression to equations (4.1) and (4.2) respectively, we obtain the

angle and distance expressions in the RBF feature space:

cosΘi,j = exp(−γ ‖xi − xj‖2) 0 ≤ Θi,j ≤
π

2
(4.3)

Di,j =

√
2− 2exp(−γ ‖xi − xj‖2) (4.4)

We randomly choose two samples xi and xj in the sample space and consider two

limit conditions:

1. When γ → 0, cosΘi,j → 1 according to (4.3), then Θi,j → 0. From (4.4) we get

Di,j → 0. It is re�ected that the mapped feature space is a 0 dimension dot;

2. When γ → ∞, cosΘi,j → 0 according to (4.3), then Θi,j → π
2
. From (4.4) we get

Di,j →
√

2. It is re�ected that the dimension of the mapped feature space is l, and

that all the vectors in the feature space are orthogonal and the distances between

each two vectors are equal.

Thus, [66] draws three conclusions:

1. When γ is increased, the Feature Space Dimension (FSD) is increased monotoni-

cally, γ → 0 leads to FSD → 0, and γ → ∞ leads to FSD → l, where l is the

number of samples in the sample sapace.
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2. When γ is increased, the angle Θi,j is increased monotonically, γ → 0 leads to

Θi,j → 0, and γ →∞ leads to Θi,j → π
2
.

3. When γ is increased, the distance Di,j is increased monotonically, γ → 0 leads to

Di,j → 0 and γ →∞ leads to Di,j →
√

2.

The optimal solutions provided by SVM are sparse. It means that a larger part

of the weights αi are zero, due to the speci�c cost functions, while the remaining nonzero

weights contribute to the regression function. Those training data samples that cor-

respond to αi > 0 are called the Support Vectors (SVs). The Support Vectors with

C > αi > 0 are the closest to the ε-insensitive region boundary. Notice, if we remove all

other points except the SVs from the training data set and train SVM on the SVs only,

we will obtain the same boundary, i.e. SVs have the determinant meaning for the given

regression task [67]. Sparsity is a very useful feature typically associated with interesting

properties such as:

� fast evaluation of the model;

� fast optimization, which is exploited in SVM by many algorithmic approaches;

� statistical robustnes, since sparsity is usually associated with good statistical per-

formance;

� or other computational advantages.

4.6 CONCLUSION

In this chapter we presented the objectives of our work. The architecture of S-SWAP was

show and implementation details were provided along with the use of external libraries.

Since we were not able, contrary to ARIMA, obtain automatic parametrization of SVR,

a study was conducted to justify the parameter values we pick for the experiments in

the chapter that follows. The obtained parametrization may not re�ect the best possible

choice, but we believe to be in a region in which good results can be obtained.
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CHAPTER 5

EXPERIMENTAL EVALUATION

This chapter presents an evaluation concerning the use of the scale-space technique under

two main scenarios, which aim to show its e�ciency and weak points when combined with

reactive or proactive provisioning approaches. The auxiliary techniques involved in each

experiment setting are also explored here.

5.1 EXPERIMENTAL SETUP

Over the obtained workload, we performed two main sets of experiments, as shown in

Figure 5.1.

Figure 5.1 Experimental Setup
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The �rst one, section 5.2.1, aims to analyse the e�ect of scale-space over a moni-

tored signal and what advantages it may represent to a reactive scenario. It corroborates

the hypothesis about the advantages of using it to deal with sudden workload variations,

which may lead to the necessity of taking back recently added resources because of spikes

that do not last long enough.

The second one, section 5.2.2, correspond to the proactive scenario, in which we

perform forecasting with both ARIMA and SVR. With the second group of experiments,

two cases are considered:

� Subsection 5.2.2.1 shows the e�ectiveness of scale-space in improving the quality of

short-range predictions. Here, three scenarios are considered:

� (A): The one in which one method performs better than the other. We �rst

have a look at a situation in which ARIMA provides the best results, and then

we show an example that is better dealt by SVR;

� (B): That in which both methods present poor behavior;

� (C): Both methods show good results.

In order to take the most out of the forecasting methods employed in this case, we

also explore the use of sliding-windows, as described in Chapter 4. In this experi-

ment we consider sliding-window steps of size one and two. During the experiments,

it is important to notice that in some of the mentioned scenarios we had to relax

some of the demands of windows sizes in order to obtain reasonable results. This is

due to limitations of the methods for given situations. This shows that no method is

always 100% good, and that opens a plethora possibilities for future investigations.

To �nish, we show the execution of short-range predictions over the period of one

day.

� In subsection 5.2.2.2, we demonstrate that scale-space can also be very e�ective to

aid ARIMA and SVR to obtain long-range predictions, specially if combined with a

sampling approach. In this experiment we consider all the sampling methods listed

in Chapter 4, i.e., minimum, maximum, median and average, each for intervals of

size three, �ve, seven and ten. Results without sampling are also obtained.

In each scenario, whenever relevant, we show the obtained performance levels by

means of the error metrics RMSE, MAPE and Pred(25) and also the methods training

times.

50



5.2. Experiments 51

5.2 EXPERIMENTS

5.2.1 The E�ect of Scale-Space Over a Monitored Signal

In order to conduct this experiment, we must �rst de�ne a time interval under which

all information should be considered irrelevant to a reactive provisioning strategy and

should thus be removed from the observed signal. Based on the time of observation of

related works, we chose this time interval to be of �ve minutes and, as such, we run the

scale-space algorithm in our original signal with s = 5. This is because, as we mentioned

before, most of the structures in the signal with a characteristic length less than �s� units

are removed after convolving a signal by g(·; s). Thus we are able to concentrate on the

features shown at this speci�c scale, which prevents us from detaining our attention on

irrelevant information. In other words, all peaks and depressions over this interval of �ve

minutes are to be considered as irrelevant, thus avoiding unnecessary provisioning due to

transient peaks.

In Figure 5.2 we represent data obtained from Wednesday, January 25th. In (a)

we ran the scale-space algorithm over the interval from 12 : 27 PM to 1 : 17 PM. Observe

that those peaks and depressions that last less than �ve minutes are no longer represented

in the obtained signal. Also notice in (b), which represent data from 12 : 27 PM to 12 : 58

PM, that the behavior of the obtained curve does not change as we execute the algorithm,

with the same parameter, over a shorter range of a speci�c region. This behavior has been

observed in every experiment and it guarantees that, if we run the algorithm on-line, over

the original signal, irrelevant datapoints will not appear in the obtained scale over which

we are focusing our observations. Thus, any variation that appears will be meaningful

and prompt action should be considered by a reactive solution.

If we apply another smoothing technique, like the moving average, in the same

situation presented in Figure 5.2, we may also notice that the behavior of the curve does

not change in the shorter region, as we keep the same window size of �ve in both of them.

This is depicted in Figure 5.3.

Observe, however, two interesting situations. By choosing a window size equal

to �ve in the moving average, the same value used as the scale-space �s� parameter, we

are not able to conclude anything related to the type of information that is removed

from the signal. Thus, there is no relationship between its parameter and a unit of

time that may lead us to have considerable control over the type of information we are
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Figure 5.2 Application of scale-space algorithm over a region of the workload (a) and a shorter
range of it (b). The shorter timespan in (b) is obtained by removing samples from the right of
the interval shown in (a).

supressing from the signal, as we do with scale-space. Besides, and most importantly,

notice that there are some regions where peaks (depressions) appear where before there

was a depression (peak). Thus, structures are being added to the obtained signal, and that

might compromise resource provisioning strategies. With scale-space, however, due to the

Scaling Theorem, as we mentioned before, this never happens in scale-space smoothing.

Figure 5.4 clearly shows the di�erence in the behavior of obtained signals in

di�erent scales after applying the scale-space algorithm to the interval from Wednesday,

25th, 12 : 27 PM to 12 : 39 PM. If we change the value of �s�, from (b) s = 5 to (a)

s = 1.5, the obtained signal will consider relevant those peaks and depressions with more

than one and a half minutes.

This shows us that the mathematical properties of scale-space algorithm gives us

a strict control over the type of information we want a signal to preserve, by means of

the standard deviation parameter, with the guarantee, by the Scaling Theorem, that no

additional information will be added. Also, the scale-space �ltering, by de�nition, is the

convolution of the input curve (length n) with a Gaussian �lter of a chosen scale (size

s). Thus, the complexity for computing each scale is in the order of O(ns), which is not

computationally expensive.
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Figure 5.3 Application of moving average algorithm over a region of the workload (a) and a
shorter range of it (b). The shorter timespan in (b) is obtained by removing samples from the
right of the interval shown in (a).

5.2.2 Forecasting

For these experiments, we applied ARIMA and SVR regression over both the original

signal and the result of scale-space �ltering in order to evaluate how would proactive

strategies bene�t from our approach. We empirically determined a set of values to SVR

hyper-parameters which led us to obtain acceptable generalization levels. These values

were C = 175, γ = 0.010325 and ε = 0.005. ARIMA, on the other hand, is executed

by �tting a model to each observed region by automatically selecting parameters, as

described in the implementation details on chapter 4, since this computation is not so

expensive.

5.2.2.1 Short-Range Forecasting The experiments in this section test ARIMA and

SVR performance over the signal obtained from our workload after applying scale-space

�ltering with means to perform short-range forecasting. Scale-space �s� parameter was

kept at s = 5. Both the size of the observation and prediction windows were empirically

obtained with the goal to maximize the prediction horizon with as few observations as

possible. With the considered workload, we were able to obtain a prediction window of

size 24min for an observation window of size 40min. As expected, both methods react

di�erently to the observed data. In some situations one performs better than the other,

sometimes both perform equally bad or show good performance. There are scenarios,
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Figure 5.4 Application of scale-space algorithm with di�erent values of �s� for the same signal.
In (a) we have s = 1.5 and in (b) s = 5.0.

however, in which we must �exibilize the size of our windows if we want to obtain good

prediction results. In all the cases, prediction with scale-space performs better than

without it.

(A) One method performs better than the other

For these windows sizes just mentioned, ARIMA proved to be more stable for a

wider range of situations when aided by the sliding-window technique. In Figure

5.5 we depict one such case. Notice how step 1 sliding-window, (b), is able to reach

the peak of the interval, obtaining the best result. In (a) and (c), respectively with

no-sliding window and step 2 sliding-window, ARIMA is not able to reach the peak

height.

In order to verify whether increasing the size of the observation window would take

ARIMA to reach the peak height without the need to apply sliding-window technique

and how this technique in�uentiates ARIMA's behavior in this scenario, we repeated

the experiment keeping the size of the prediction window to 24min and increasing

the size of the observation window to 50min, Figure 5.6, and to 60min, Figure

5.7. In Table 5.1, we present ARIMA's training times in millisecond under all the

considered settings. As expected, step 1 sliding-window demands a higher training

time since, for the case considered, 24 iterations are executed. step 2 sliding-window

performs 12 iterations and, using no sliding-window, it takes only 1 iteration for the

model to be trained, thus demanding less time. Still, in general the training times
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(a) ARIMA (no sliding-window)
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(b) ARIMA (step 1 sliding-window)

Time (in minutes)

 0                10              20              30              40               50              60

   
   

  1
00

   
   

   
  1

5
0 

   
   

   
  2

0
0 

   
   

   
  2

5
0

N
o

. o
f 

ac
ce

ss
es

(c) ARIMA (step 2 sliding-window)

Figure 5.5 ARIMA behavior over a signal with scale-space applied to and considering both no
sliding-window and steps 1 and 2 sliding-windows of size 40

are low, which renders any of the techniques �t to be used by resource provisioning

algorithms.

Observation Window Size
40min 50min 60min

NSW 976 517 544
SW1 7221 7794 9250
SW2 5872 4589 5200

Table 5.1 ARIMA's total training time in milliseconds for observation windows of size 40, 50,
60 with no sliding-window (NSW), step 1 sliding-window (SW1) and step 2 sliding-window
(SW2).

In Table 5.2, we present the errors obtained from these executions. An interesting

thing to notice from these results is that it is not always that a better error value
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(a) ARIMA (no sliding-window)
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(b) ARIMA (step 1 sliding-window)
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(c) ARIMA (step 2 sliding-window)

Figure 5.6 ARIMA behavior over a signal with scale-space applied to and considering both no
sliding-window and steps 1 and 2 sliding-windows of size 50

implies better practical results for a given objective. Ours is detecting peaks with the

best possible curve �tting. Notice that the best result is obtained by step 1 sliding-

window with an observation window of 40min, which happens to coincide with the

best error value we got. However, suppose we had not reached this scenario. Visually,

not applying sliding-window and taking as observatioon intervals 50min and 60min

would be our best choices, since they both reach the peak height. However, in

this scenario, the best error values would come from step 2 sliding-window with an

observatioon interval of 40min, which is clearly worse to our purposes.

For the scenario under consideration, as exempli�ed in Figure 5.8 for an osbservation

window of size 40 and prediction window of size 24, SVR was not able to perform well.

In (a), no sliding-window is applied and, in (b), step 1 sliding-window. Also, both

methods perform poorly when scale-space is not applied to the signal, as depicted in
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(a) ARIMA (no sliding-window)

Time (in minutes)

  0                         20                        40                        60                        80

   
   

   
   

1
00

   
   

   
 1

5
0 

   
   

   
 2

0
0 

   
   

   
25

0
N

o
. o

f 
ac

ce
ss

es

(b) ARIMA (step 1 sliding-window)
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(c) ARIMA (step 2 sliding-window)

Figure 5.7 ARIMA behavior over a signal with scale-space applied to and considering both no
sliding-window and steps 1 and 2 sliding-windows of size 60

Figure 5.8 (c). Here, we also do not apply sliding-window. By empirically changing

its parameters, we were not able to improve SVR performance for those cases. The

obtained error values are presented in Table 5.3.

Observe, mainly through RMSE and Pred(25), that in the case in which we apply

scale-space and step 1 sliding-window to SVR, error values are considerably worse

than the situation in which we do not adopt the sliding-window technique. We have

noticed that applying sliding-window to SVR leads to poorer results than forecasting

without it. In other words, if the prediction obtained with no sliding-window is not

qualitatively satisfactory, applying sliding-window to it will not in general come up

with better results.

Sometimes, to a given parametrization, it is necessary to provide SVR with more

training points in order for it to perform better for a speci�ed prediction window
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Observation Window Size
40min 50min 60min

RMSE 15.88224 15.37646 16.87352
NSW MAPE 0.04191 0.05834 0.06432

PRED(25) 1.0 1.0 1.0
RMSE 8.05982 16.21801 12.68807

SW1 MAPE 0.02928 0.05084 0.04818
PRED(25) 1.0 1.0 1.0
RMSE 9.39771 22.92136 11.82179

SW2 MAPE 0.02963 0.08772 0.04497
PRED(25) 1.0 1.0 1.0

Table 5.2 Errors obtained for ARIMA prediction without sliding-window, (NSW), and with
step 1 sliding-window, (SW1), and step 2 sliding-window, (SW2) for observation windows of
sizes 40min, 50min and 60min.

RMSE MAPE PRED(25)
SS ARIMA 15.88224 0.04191 1.0

NSW SVR 69.08000 0.24563 0.5
SS ARIMA 8.05982 0.02928 1.0
SW1 SVR 87.05221 0.34165 0.375
OS ARIMA 100.21736 0.32429 0.33333
NSW SVR 114.16501 0.39578 0.29166

Table 5.3 Errors obtained for both ARIMA and SVR prediction with an observation window
of size 40min and prediction window size of 24. Values are presented for three di�erent cases:
with scale-space applied and no sliding-window (SS, NSW); with scale-space and step 1 sliding-
window (SS, SW1) and �nally with no scale-space and no sliding-window (OS, NSW)
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Figure 5.8 In (a), we show SVR behavior compared to ARIMA over a signal with scale-space
applied to. No sliding-window is applied, and we consider an observation window of size 40 and
prediction window of size 24. In (b), we include steps 1 sliding-window. In (c), no scale-space
was applied to the signal and also no sliding-window.

size. By increasing the observation window 10min, thus considering now 50min, and

still keeping the prediction at 24min, we were able to �nd situations in which SVR

is able to make good guesses to �nd the peaks heights, as depicted in Figure 5.9.

Notice in the scale-space smoothed signal that, although SVR is not able to �t well

to the curve, and error values are high, as shown in Table 5.4, it might still be useful

if window sizes must be kept, and ARIMA is not accurate at all.

(B) Both methods present poor behavior

There are situations, however, in which even after applying scale-space to the signal

and n-step sliding-window, neither ARIMA nor SVR, for a given parametrization,

will make it possible to obtain accurate forecasting results. This is exempli�ed in
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(b)

Figure 5.9 SVR and ARIMA forecasting for an observation window of size 50 and prediction
window of size 24. In (a) we have scale-space smoothed signal, while in (b) we have the original
one.

ARIMA SVR
RMSE MAPE PRED(25) RMSE MAPE PRED(25)

SS 28.86917 0.10844 1.0 10.91709 0.03641 1.0

OS 64.38914 0.30212 0.625 77.83718 0.32144 0.45833

Table 5.4 Errors obtained for both ARIMA and SVR prediction with an observation window
of 50min and prediction window of 24min. Values are presented for predictions over scale-space
smoothed signal (SS), and the original one (OS).

Figure 5.10.

A curious behavior was observed when SVR performs erroneous forecasts, as we can

also notice in Figure 5.10: it exceeds the value actually observed in the prediction

horizon, but this growth in the workload is observed a little ahead. Thus SVR would

lead to a pessimist proactive provisioning algorithm that will tend to use a bit more

resources than necessary.

(C) Both methods show good results

Finally, there are cases in which the only viable solution in order to obtain good

forecasting will be to diminish the prediction window size. Other than that, whther

increasing the observation window, reducing it or applying sliding-window technique

over the scale-space smoothed signal, will be of no e�ciency. Two situations exem-

plifying it are presented in Figure 5.11, in which we have direct forecasting applied

over a scale-space smoothed signal, with observation windows of size 40 and 50. The

prediction window has been reduced to 12min. Comparison to forecasting over the
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Figure 5.10 Example of a situation in which none of the forecasting methods perform accurate
time-series forecasting.

original signal is provided for the second situation. Obtained errors are show in Table

5.5, and training times are presented in Table 5.6.

ARIMA SVR
RMSE MAPE PRED(25) RMSE MAPE PRED(25)

SS/40min 5.17346 0.01751 1.0 1.31913 0.00445 1.0

SS/50min 0.69494 0.01044 1.0 0.96842 0.01261 1.0

OS/50min 13.05224 0.30035 0.5 26.94465 0.65464 0.16666

Table 5.5 Errors obtained for both ARIMA and SVR prediction with observation windows of
40min and 50min and prediction window of 12min. Values are presented for predictions over
scale-space smoothed signal (SS), and the original one (OS).

Signal/Observation Window Size
SS/40min SS/50min OS/50min

ARIMA 674 955 438
SVR 9 18 2

Table 5.6 ARIMA and SVR training times in milliseconds for observation windows of size 40
and 50. In the �rst case results are show over the scale-space smoothed signal (SS), in the latter
both scale-space smoothed (SS) and original signal (OS) values are shown for comparison.

We also applied the error metrics in a set of predictions over the period of one

day, on January 24th, in order to evaluate the suitability of each SVR and ARIMA to

our workload on a continuous space of time over both the original signal and the scale-

space smoothed one. These predictions were run every ten minutes, based on the last

30 obtained samples, thus representing observation windows of 30min each, with the
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Figure 5.11 Example of a case in which both methods show good accuracy for a diminished
prediction window of 12min. In (a), forecasting is performed over the scale-space smoothed
signal and based on an abservation window of 40min. In (b), observation window is increased
to 50min and the result obtained is, in (c), compared to forecasting over the original signal.

objective to predict the following 10min. The values are presented in Table 5.7. With

the application of scale-space, we were able to considerably reduce the error observed in

our predictions, as we can observe in all the metrics. Notice by PRED(25) that almost

all predicted values fell within a margin of 25% of the actual ones.

SVR ARIMA
RMSE MAPE PRED(25) RMSE MAPE PRED(25)

SS 34,76 0,040 0,994 28,51 0,021 0,997

OS 128.71 0,203 0,738 129,45 0,197 0,762

Table 5.7 Comparison SVR x ARIMA in both the Original Signal (OS) and Scale-Space
smoothed signal (SS) for an interval of one day of short-range predictions.
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In Figure 5.12 we present forecasting results described in Table 5.7 with SVR and

ARIMA over both the scale-space signal and the original one for the considered region.

Time (in minutes)

   0            200          400         600          800        1000        1200       1400

0
   

 2
0

0 
   

4
00

   
60

0 
  8

0
0 

 1
00

0 
 1

20
0 

 1
40

0
N

o
. o

f 
ac

ce
ss

es

(a)

Time (in minutes)

   0            200          400         600          800        1000        1200       1400

0
   

 2
0

0 
  4

00
   

 6
0

0 
   

80
0 

1
00

0 
1

20
0 

1
40

0
N

o
. o

f 
ac

ce
ss

es
(b)

Time (in minutes)

   0            200          400         600          800        1000        1200       1400

 0
   

   
   

   
   

50
0 

   
   

   
  1

0
00

   
   

   
  1

50
0

N
o

. o
f 

ac
ce

ss
es

(c)

Time (in minutes)

   0            200          400         600          800        1000        1200       1400

 0
   

   
   

   
   

50
0 

   
   

   
  1

0
00

   
   

   
  1

50
0

N
o

. o
f 

ac
ce

ss
es

(d)

Figure 5.12 Sequence of short-range forecasting over a period of one day. In (a) and (b),
ARIMA and SVR applied over the scale-space smoothed signal. In (c) and (d), both methods
are applied over the same region in the original signal.

5.2.2.2 Long-Range Forecasting With a simple change we can make our signal

suitable, for example, to a daily based analysis. By appling another value to the �s�

parameter, we are able to elimante information that may be considered irrelevant when

we want to predict the behavior of the signal on a speci�c day based on the observation

of previous ones. As such, the experiments in this section test ARIMA and SVR per-

formance over the signal obtained from our workload after applying scale-space �ltering

with means to perform long-range forecasting. For the tests conducted we considered an

observation window of 5829min, which correspond to about 4 days and a prediction win-
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dow of 700min. The size of the prediction window was chosen based on the highest peak

of the next day following the observtion window. Our objective was to verify whether the

adopted methods would be able to predict the peak's height. In order to obtain the best

results among empirically tested SVR parameters, we used the following values for the

scale-space smoothed signal: C = 200, γ = 0.0005 and ε = 0.5. Scale-space �s� parameter

was set to s = 120 since for that scale of days, information of a few hours are irrelevant.

After applying it, we interpolated the obtained signal in order not to lose infomation on

the peaks heights. This is show in Figure 5.13.

Time (in minutes)

  0            2000       4000        6000        8000        10000      12000     14000

 0
   

   
 1

0
00

   
20

00
   

3
00

0 
  4

00
0 

  5
00

0

N
o

. o
f 

ac
ce

ss
es

Figure 5.13 Interpolating the signal obtained with the scale-space �s� parameter set to s =
120 helps bringing the extrema close to their original amplitude. This is very helpful, since the
detection of extrema plays a key role in resource provisioning.

For the original signal, SVR parameters were set to: C = 200, γ = 0.00043 and

ε = 0.05. With these parameters set, we run the algorithms for both cases. Results

are presented in Figure 5.14. The errors for both situations are show in Table 5.8, and

training times in Table 5.9

Notice, in Figure 5.14, that the sole application of scale-space is already able to

obtain a result from ARIMA, although a very bad one, while with the original signal it

has shown no reaction. SVR, although in both cases it presents a behavior typical to

over�tting, it is able to guess the height of the peak with a good precision. With the

original signal it reaches the value of 684.71, while with scale-space it goest up to 822.04.
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(b) SS/SVR
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(c) OS/ARIMA
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(d) OS/SVR

Figure 5.14 SVR and ARIMA forecasting for an observation window of size 5829 and prediction
window of size 700. In (a) and (b) we have scale-space smoothed signal (SS) with the �s�

parameter set to s = 120, while in (c) and (d) we have the original one (OS).

ARIMA SVR
RMSE MAPE PRED(25) RMSE MAPE PRED(25)

SS 470.21749 0.35138 0.64428 281.63054 0.74556 0.61571

OS 686.16672 1.12503 0.00857 340.50752 10.57002 0.38857

Table 5.8 Comparison SVR x ARIMA in both the Original Signal (OS) and Scale-Space
smoothed signal (SS) for an observation window of 5829min and a prediction window of 700min.

ARIMA SVR

SS 709 69703

OS 1492 2347

Table 5.9 Comparison SVR x ARIMA in both the Original Signal (OS) and Scale-Space
smoothed signal (SS) for an observation window of 5829min and a prediction window of 700min.
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In the latter case, since interpolation has brought the signal up to re�ect a more accurate

peak detection, obscured by the noise in the original signal, chances are that it might be

less prone to cause a situation of underprovisioning.

Notice that the errors are improved with the use of scale-space. SVR training

time however has considerably increased with the application of scale-space. Recall that

the parameters values for both the scale-space smoothed signal and the oringinal one are

di�erent. In the former case, we noticed that if we increased the value of the ε we would

slowly reduce training time. The same e�ect would be obtained more quickly by reducing

the value of the C parameter. However, since both these actions also contribute to reduce

the method's accuracy, we decided to keep the chosen values, after all a training time of

a few minutes does not incurs negative e�ects on long-range predictions for the following

day.

Still, none of the above results are desirable. We wish to obtain good results from

ARIMA and avoid an over�tting situation with SVR. Given our needs, and since we are

only dealing with these two forecasting methods, we decided to verify the in�uence of

the ammount of points considered to the quallity of our predictions through sampling.

Performing sampling is admissible given that the error introduced by this process is not

very signi�cant in the approximation of the original signal. As the number of samples

is reduced, calculations are in general simpli�ed and the overall method is expected to

perform faster.

Thus, we performed some tests with both ARIMA and SVR considering 1
3
rd, 1

5
th,

1
7
th, 1

10
th of the points from the original signal, which correspond respectively to sampling

intervals step 3, step 5, step 7 and step 10. The choice of which points to consider were

based on: the maximum, the minimum, the median and the average of points for each

interval in the considered signal. Results from these experiments are presented, in terms

of the obtained errors, in Figure 5.15, in which we show RMSE values for all the cases, and

Figure 5.16 and Figure 5.17, which contain respectively MAPE and PRED(25) errors.

Training times are also presented in Figure 5.18

By the analysis of the errors in Figures 5.15, 5.16 and 5.17 a few things should

be noticed: scale-space leads to the best results; by looking at the three graphics, SVR,

with 1
5
th of the points, has obtained the best performance together with ARIMA in the

case of median sampling with 1
3
rd and average with 1

5
th of the points. From PRED(25),

in these cases it can be seen that all predicted values fall within a 25% margin of the
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Figure 5.15 RMSE values for long-range predictions with ARIMA and SVR considering min,
max, med and avg sampling methods for 1/3rd, 1/5th, 1/7th and 1/10th of the total points.
Results for both the scale-space smoothed signal and the original one are presented.

actual ones; SVR shows a more behaved pattern given its �xed parameters in each OS

and SS cases. Observed that reducing the ammount of points is only advantageous up

to a certain ammount, in our case 1
5
th of the points, from which forecasting accuracy

starts to fall. Such an analysis is not possible to be extracted from ARIMA, which is

mainly due to the fact that the method tries to obtain the best parameters for every

di�erent scenario, thus changing the model. That allows ARIMA to obtain varied results

out of di�erent combinations of sampling size and method; for the same reason, notice

that SVR is more indi�erent to changes in the sampling method, while for ARIMA that

may produce more perceptible variations; �nally, in the case of SVR and ARIMA with

sampling by the minimum method, both in the original signal, we may observe that

metrics do not vary in unison, i.e. the model that is best on one of them is not on the

other which indicates that they are probably similar in terms of their average errors.

Also, observe that with SVR, as the number of samples is reduced, the overall

method performs faster, indicating that, as we expected, calculations are simpli�ed given

that the ammount of support vectors is also reduced. In the case of ARIMA, this is

not observed. Again, this is a re�ex of the fact that, in each situation, as the model is

automatically calculated in order for the best one to be obtained for a speci�c situation,

di�erent parameters are picked, thus leading to varied infuence over the method's training

times. SVR on the other hand, has �xed parameters for the original signal and for the
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Figure 5.16 MAPE values for long-range predictions with ARIMA and SVR considering min,
max, med and avg sampling methods for 1/3rd, 1/5th, 1/7th and 1/10th of the total points.
Results for both the scale-space smoothed signal and the original one are presented.

scale-space smoothed one. Notice as well that the higher the ammount of points, training

time for the scale-space smoothed data is higher than that for the original one, which

also concerns to parameters values, as we explained when it was as well observed when

we ran the method without sampling.

In Figure 5.19, we compare both SVR and ARIMA with and without scale-space

for the sampling case in which we consider 1
5
th of the points obtained through average.

Notice how ARIMA obtains superior prediction accuracy and how SVR better �ts the

curve compared to the previous case in which no sampling was performed. Errors are

shown in Table 5.10 and training times in table Table 5.11. Notice the in�uence that the

ammount of points has over SVR training times in comparison to Table 5.9.

ARIMA SVR
RMSE MAPE PRED(25) RMSE MAPE PRED(25)

SS 88.34989 0.09460 1.0 94.98720 0.12702 1.0

OS 682.84291 1.07812 0.01428 203.30363 1.24449 0.4

Table 5.10 Comparison SVR x ARIMA in both the original ignal (OS) and scale-space
smoothed signal (SS) for 1/5th of the all the points, which are obtained through average.
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Figure 5.17 PRED(25) values for long-range predictions with ARIMA and SVR considering
min, max, med and avg sampling methods for 1/3rd, 1/5th, 1/7th and 1/10th of the total points.
Results for both the scale-space smoothed signal and the original one are presented.

ARIMA SVR

SS 644 519

OS 1205 160

Table 5.11 Comparison SVR x ARIMA in both the Original Signal (OS) and Scale-Space
smoothed signal (SS) for 1/5th of the all the points, which are obtained through average.

5.3 CONCLUSION

In this chapter we have presented the evaluation of the scale-space technique with means

to be used together with a reactive provisioning strategy and also its e�ciency when

combined with ARIMA and SVR, two widely used forecasting techniques which are com-

monly used with proactive provisioning approaches. Also, we evaluated the use of two

auxiliary techniques with the objective to improve the quality of our results. In the fol-

lowing chapter, we add the conclusions obtained from this work and also discuss about

the future ones that may be derived from it.
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Figure 5.18 Training times obtained with ARIMA and SVR considering min, max, med and
avg sampling methods for 1/3rd, 1/5th, 1/7th and 1/10th of the total points. Results for both
the scale-space smoothed signal and the original one are presented.
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(a) SS/ARIMA
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(b) SS/SVR
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(c) OS/ARIMA
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(d) OS/SVR

Figure 5.19 SVR and ARIMA forecasting for an observation window of size 5829 and prediction
window of size 700. In (a) and (b) we have scale-space smoothed signal (SS) with the �s�

parameter set to s = 120, while in (c) and (d) we have the original one (OS). In all the cases,
we have 1/5th of the points obtained through average
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CHAPTER 6

CONCLUSION

This research work presented S-SWAP, an approach that uses time-series analysis for

resource usage prediction in a dynamic environment. It is based on scale-space theory

and forecasting and constitutes an independent module that can be adopted by reactive

and proactive algorithms in di�erent computational environments, like web, distributed

or cloud applications. We compared the performance obtained by two widely used fore-

casting methods, SVR and ARIMA, which are respectively representatives from machine

learning and from statistical time-series analysis. Further, we evaluated our proposed

approach under the light of a real-world workload.

The implemented architecture is �exible, allowing its components to be easily

extended to meet speci�c needs. We believe that the characteristics covered make it very

attractive to cloud environments, in which elasticity plays a key role.

6.1 RESULTS

To the best of our knowledge, scale-space theory in the context of dynamic provisioning of

resources has never been experimented. Because of the Scaling Theorem, we have shown

that this smoothing technique, unlike others, can be very useful to our purposes. The

control it provides over a time-series to remove irrelevant information is very powerful,

specially when combined with interpolation. The multi-scale representation of a signal

allows an easy interpretation of its behavior at di�erent granularity levels. With these

characteristics we have shown that scale-space smoothing may be of great use to reactive

algorithms.

More than that, given the simpli�ed representation of the signal while still being

able to maintain the extent of relevant extreme points, and the characteristic of not

creating new ones, it has proven to be of great utility to increase forecasting accuracy,

as we con�rmed in the performed experiments. Thus scale-space may also be of great
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interest to proactive algorithms. Again, the multi-scale representation of a signal made it

easy to turn a time-series suitable to forecasting in a given granularity to be also suitable

in di�erent ones, preserving the important qualities in each case. Also, as we have shown,

training times were not high for the scenarios we considered.

The provided evaluation has corroborated both hypothesis and, together with

that, the application of auxiliary techniques like sliding-window and sampling increased

even more chances of obtaining good results as we have also presented in the experiments.

Although our strategy can be used with other types of time-series, it is important

to have in mind that scale-space might not be useful if too small values of �s�, are applied,

since, in the case of a noisy workload, it would not be able to extract the uderlying

behavior. Thus, it is necessary to keep a trade-o� between data collection interval (CI),

and the size of the interval to be considered irrelevant (II). It is important that CI < II.

How much will depend on the application being considered, and must be empirically

determined. Only then will scale-space be able to extract meaningful information from

the signal.

After evaluating the approach, one thing however is still challenging. In the cases

in which none of the techniques are able to lead to good predictions from certain ob-

served signal, we are not able to �gure the reason out, and we are not able to identify,

among the tested strategies, what signal characteristics pressuposes which method would

be more suitable for that speci�c situation. We have seen that starting from a good

parametrization, in the short-range case, if the obtained result is not good for the obser-

vation and prediction windows sizes adopted, applying sliding-window would be the �rst

atempt to obtain better errors for ARIMA, since SVR does not respond well to it. Then,

if that didn't improve much, increasing the size of the observation window around ten

units would be a good choice. If that, with and without sliding-window, does not lead

to better results, it is necessary to reduce the prediction window. Many situations could

be solved following these steps. Still many could not. That opens many possibilites for

future works, as we discuss in the following section.

6.2 FUTURE WORKS

As we have seen, some observations do not lead to accurate predictions even after ap-

plication of scale-space and of auxiliary methods to di�erent observation and prediction
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windows sizes.

It is important to have in mind that procedures for forecasting vary greatly in

complexity, basic assumptions, and accuracy. A few are simple to use, but also provide

little information; others yield substantial quantities of information, but also take more

time and e�ort. In between these extremes are a variety of forecasting methodologies.

Selection of the methodology depends on the importance of the forecast. There is no

single technique widely agreed to be the best one [68], and, as such, many authors consider

the forecasting process both an art and a science. It's an art because it is estimation in

unknown situations, and the accuracy of the forecast will be due in some part to judgment

and experience. But it's also a science as it can be seen as a step-by-step mathematical

process that takes past history and uses it to predict future events.

In the light of that, we believe that although ARIMA and SVR have proven to be

two powerful forecasting methods, we can increase the general accuracy of our approach

by adding to our framework more prediction algorithms with di�erent characteristics,

with means to obtain good results in situations uncovered by other methods. Learning is

an ill-posed problem, and with �nite data, each algorithm converges to a di�erent solution

and fails under di�erent circumstances. The performance of a learner may be �ne-tuned

to get the highest possible accuracy on a validation set, but this �ne-tuning is a complex

task and still there are instances on which even the best learner is not accurate enough

[43]. The idea is that there may be another learner that is accurate on these. By suitably

combining multiple learners then, accuracy can be improved. Performing this study and

considering that we may execute predictions in parallel, would be a great addition to our

approach.

It is important, though, to remember to treat forecasts as what they really are:

educated guesses that need constant re�nement. Being able to comprehend the limitations

of a method but still taking advantage of its strength is crucial in developing stronger

models by the combination of di�erent techniques.

However, dynamic environments deal with a wide range of applications with dif-

ferent QoS requirements. The intrinsic di�erences among these workloads further make

the resource provisioning a challenging task. It is quite di�cult to match the capacities

of various services without the knowledge of their behaviors. As such, e�ective capacity

planning requires an accurate understanding of application behavior [54]. Thus, we intend

to classify the workloads we receive in oder to obtain groups with speci�c characteristics.
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Such workload characterization will allow us to select a set of prediction strategies to act

in each group, allowing executions to adaptively change to each group's speci�cities.

It is also our objective to incorporate to our solution other variables such as

CPU, memory, response time, I/O, and perform multivariable analysis in order to be

more e�cient in detecting bottlenecks that lead to QoS decreasing.

Finally, it is our intention to integrate our approach to di�erent provisioning

modules and test it in the cloud environment, and to study other error metrics with

means to come up with more meaningful analysis in our context.
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