

# UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE COMPUTAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DA COMPUTAÇÃO

## JEFFERSON LOURENÇO GURGURI

# ESTUDO POLIÉDRICO DE DECOMPOSIÇÃO EM ÁRVORE

FORTALEZA 2016

## JEFFERSON LOURENÇO GURGURI

# ESTUDO POLIÉDRICO DE DECOMPOSIÇÃO EM ÁRVORE

Dissertação de Mestrado apresentada ao Programa de Mestrado e Doutorado em Computação da Universidade Federal do Ceará, como requisito parcial para obtenção do título de Mestre em Computação.

Área de concentração: Matemática Computacional

Orientador: Prof. Dr. Victor Almeida Campos.

FORTALEZA 2016

Dados Internacionais de Catalogação na Publicação Universidade Federal do Ceará Biblioteca do Curso de Matemática

G987eGurguri, Jefferson LourençoEstudo poliédrico de decomposição em árvore / Jefferson Lourenço Gurguri. - 2015.66 f.

Dissertação (mestrado) – Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Programa de Pós-Graduação em Ciência da Computação, Fortaleza, 2015. Área de Concentração: Matemática Computacional. Orientação: Prof. Dr. Victor Almeida Campos.

1. Largura em árvore. 2. Formulação por ordem de eliminação. 3. Facetas e combinatória poliédrica. I. Título.

CDD 004

## JEFFERSON LOURENÇO GURGURI

## ESTUDO POLIÉDRICO DE DECOMPOSIÇÃO EM ÁRVORE

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Ciências da Computação da Universidade Federal do Ceará, como requisito parcial para obtenção do Título de Mestre em Computação. Área de concentração: Matemática Computacional Orientador: Prof. Dr. Victor Almeida Campos

Aprovada em: \_\_\_ /\_\_\_ /\_\_\_.

## BANCA EXAMINADORA:

Prof. Dr. Victor Almeida Campos (Orientador) Universidade Federal do Ceará (UFC)

Prof<sup>a</sup>. Dr<sup>a</sup>. Ana Shirley F. da Silva Universidade Federal do Ceará (UFC)

Prof. Dr. Manoel Bezerra Campelo Neto Universidade Federal do Ceará (UFC)

Prof. Dr. Yuri Abitbol de Menezes Frota Universidade Federal Fluminense (UFF)

## AGRADECIMENTOS

A Deus, por me amparar em todos os momentos, dar força interior para superar as dificuldades, mostrar os caminhos nas horas incertas e me oferecer o suficiente em todas as minhas necessidades.

Ao meu orientador Victor Almeida Campos, por acreditar em mim, por estar disponível para ouvir meus questionamentos e me instruir com bons comentários e sugestões fundamentais para a pesquisa.

A todos professores do ParGO, pela docência exemplar, pelo incentivo, apoio e paciência, em especial aos professores Victor Campos, Ana Shirley e Manoel Campelo.

A minha família, que é a base da minha sustentação e que me acompanha com carinho e amor em toda minha formação pessoal e profissional.

A minha companheira, Ingrid, pela paciência, carinho e compreensão nos meus momentos de ausência, enquanto estava mergulhado na pesquisa.

Finalmente, a CAPES - Comissão de Aperfeiçoamento de Pessoal do Nível Superior - pelo financiamento da bolsa de estudos para a realização da presente dissertação.

"Quantas noites cortei? É importante dizer Que é preciso amar, é preciso lutar E resistir até morrer. Quanta dor cabe num peito Ou numa vida só? É preciso não ter medo. É preciso ser maior." (Leandro Roque de Oliveira)

## **RESUMO**

O conceito de largura em árvore ("treewidth") foi introduzido por Robertson e Seymour. A largura em árvore de um grafo G é o mínimo k tal que G pode ser decomposto em uma Decomposição em Árvore (DEA) com cada subconjunto de vértice com no máximo k + 1vértices.

Resultados recentes demonstram que vários problemas NP-Completos podem ser resolvidos em tempo polinomial, ou ainda linear, quando restritos a grafos com largura em árvore pequena.

Em nossa pesquisa bibliográfica, focamos a atenção no cálculo de limites inferiores para a largura em árvore e descrevemos, em nossa dissertação, alguns dos resultados já disponíveis na literatura.

Nós percebemos que formulações lineares-inteiras para a determinação da largura em árvore são limitadas na literatura e não há estudos disponíveis sobre os poliedros associados a elas.

A Formulação por Ordem de Eliminação (EOF) foi proposta por Koster e Bodlaender. Ela é baseada na eliminação ordenada de vértices e na relação entre a largura em árvore de um grafo e suas cordalizações.

Como resultado de nosso estudo, apresentamos uma simplificação da formulação EOF, demonstramos que o poliedro associado a simplificação é afim-isomórfico ao da formulação EOF, verificamos a dimensão do poliedro associado à simplificação, apresentamos brevemente um rol de facetas muito simples desse poliedro e, em seguinte, introduzimos, analisamos e demonstramos ser faceta algumas desigualdades mais complexas.

**PALAVRAS-CHAVE:** Largura em árvore. Formulação por Ordem de Eliminação. Facetas e Combinatória Poliédrica.

## ABSTRACT

The concept of treewidth was introduced by Robertson and Seymour. Treewidth may be defined as the size of the largest vertex set in a tree decomposition.

Recent results show that several NP-Complete problems can be solved in polynomial time, or linear, when restricted to graphs with small treewidth.

In our bibliographic research, we focus attention on the calculation of lower bounds for the treewidth and we described, in our dissertation, some of the main results already available in the literature.

We realized that linear-integer formulations for determining the treewidth are very limited in the literature and there are no studies available on the polyhedra associated with them. The Elimination Order Formulation (EOF) has been proposed by Koster and Bodlaender. It is based on orderly disposal of vertices and the relationship between the treewidth of a graph and its chordalizations.

As a result of our study, we present a simplification of EOF formulation, we show that the polyhedron associated with this simplification is affine isomorphic to the EOF formulation. We determine the dimension of the polyhedron associated with the simplification, we briefly present a set of very simple facets and we introduce, analyze and demonstrate be a facet, some more complex inequalities.

**KEYWORDS:** Treewidth. Elimination Order Formulation. Facets and Polyhedral Combinatorics.

# LISTA DE ILUSTRAÇÕES

| Exemplo de DEA                    | . 1            | 13             |
|-----------------------------------|----------------|----------------|
| $H \in G_{\rho}$                  | . 4            | 23             |
| $\operatorname{Cord}(s)$          | . 4            | 24             |
| Restrição (3.13)                  | . 4            | 25             |
| $\operatorname{Cord}(s)$          | . 2            | 29             |
| Observações sobre $v_1$           | . :            | 33             |
| $P_4$                             | . :            | 36             |
| Casos 1, 2 e 3                    |                | 37             |
| Cordalizações para buracos        |                | 39             |
| H[V(C)]                           |                | 39             |
| Caminhos entre $v_i, v_j \in v_k$ | • 4            | 40             |
| Caminho de $u$ a $v$              | • 4            | 42             |
| Representação das $s^1 \in s^2$   | • 4            | 15             |
| Casos                             | • 4            | 15             |
|                                   | Exemplo de DEA | Exemplo de DEA |

# SUMÁRIO

|            | LISTA DE ILUSTRAÇÕES                                                                                                         |
|------------|------------------------------------------------------------------------------------------------------------------------------|
|            | SUMÁRIO                                                                                                                      |
| 1          | INTRODUÇÃO                                                                                                                   |
| 1.1        | Largura em Árvore e organização do texto 9                                                                                   |
| 2          | FUNDAMENTAÇÃO TEÓRICA 11                                                                                                     |
| 2.1        | Conceitos em Teoria dos Grafos                                                                                               |
| 2.2        | Conceitos em Combinatória Poliédrica                                                                                         |
| 3          | LIMITES INFERIORES 17                                                                                                        |
| 3.1        | Baseados em graus                                                                                                            |
| 3.2        | Baseados na tomada de subgrafos e/ou menores $\ldots \ldots \ldots 18$                                                       |
| 3.3        | Baseados em grafos melhorados                                                                                                |
| <b>3.4</b> | Maximum Cardinality Search                                                                                                   |
| 3.5        | Baseados em Esquemas Perfeitos                                                                                               |
| 3.6        | Formulação por Ordem de Eliminação                                                                                           |
| 4          | ESTUDO POLIÉDRICO 26                                                                                                         |
| 4.1        | Uma simplificação para a formulação EOF                                                                                      |
| 4.2        | Introdução ao estudo poliédrico                                                                                              |
| 4.3        | $Dimensão \dots \dots$ |
| 4.4        | Facetas básicas $\ldots \ldots 31$                     |
| 4.5        | Facetas geradas por Caminhos Induzidos                                                                                       |
| 4.6        | Facetas geradas por Buracos                                                                                                  |
| 5          | $CONCLUSÃO \dots 47$                                                                                                         |
|            | REFERÊNCIAS 48                                                                                                               |
|            | <b>APÊNDICE A – DEMONSTRAÇÕES DE FACETAS BÁSICAS 51</b>                                                                      |

## 1 INTRODUÇÃO

#### 1.1 Largura em Árvore e organização do texto

O conceito de Largura em Árvore ("treewidth") foi introduzido por Robertson e Seymour [1,2] em sua série de artigos sobre menores de grafos.

A largura em árvore de um grafo G é o mínimo k tal que G pode ser decomposto em uma Decomposição Em Árvore (DEA) com cada subconjunto de vértices com no máximo k + 1 vértices.

Para problemas computacionalmente complexos, e.g. problemas NP-Completos, é importante saber para quais instâncias estão disponíveis algoritmos eficientes. Vários problemas NP-Completos podem ser resolvidos em tempo polinomial, ou ainda linear, quando restritos a grafos com largura em árvore pequena, veja em [3,4]. De acordo com Bodlaender [5], grafos com lárgura em árvore limitada ocorrem com frequência em problemas práticos como: Sistemas especialistas, Resistência de redes elétricas, Processamento de linguagem natural, etc.

Determinar a largura em árvore de um grafo arbitrário é um problema NP-Difícil [4], assim o que podemos esperar é obter bons limites. Obter limites superiores é relativamente simples, por exemplo, escolhendo uma triangulação para G e avaliando o número-clique de G menos uma unidade ( $\omega(G) - 1$ ) [6]; entretanto, obter bons limites inferiores vem sendo uma tarefa mais desafiadora.

Determinar bons limites inferiores para largura em árvore de um grafo tem diversas aplicações como: Limites inferiores podem ser usado como subrotinas para algoritmos de Branch-And-Bound; Na resolução de problemas combinatórios, um limite inferior alto para largura em árvore pode indicar a inviabilidade no tempo de computação utilizando DEA; Limites inferiores podem indicar a qualidade de limites superiores por um "gap" reduzido.

Técnicas conhecidas para achar limites inferiores simples podem ser encontradas em Koster et al [7], Ramachandramurthi [8] e Lucena [9]. Foi demonstrado, também, que todo limite inferior pode ser modificado de forma a ser tomado como o máximo limite inferior sobre todos os subgrafos ou menores de grafo [10,11].

Contudo, estudos sobre a largura em árvore com abordagens de Programação Linear Inteira (PLI) são limitados na literatura. Observando essa carência, nós apresentamos novos resultados sobre formulação por Ordem de Eliminação, em inglês "Elimination Order Formulation" (EOF). Determinamos a dimensão e demonstramos novas classes de facetas para o poliedro associado a esta formulação.

No Capítulo 2, apresentamos brevemente a notação em Teoria dos Grafos utilizada e as definições específicas para a compreensão desde trabalho. Além disso, apresentamos algumas definições e proposições clássicas em Combinatória Poliédrica que serão utilizadas no Capítulo 4.

No Capítulo 3, exploramos os limites inferiores disponíveis na literatura, finalizamos ao apresentar a formulação linear inteira denominada formulação por ordem de eliminação a qual é o alvo do nosso estudo poliédrico.

No Capítulo 4, apresentamos uma simplificação da formulação EOF, demonstramos que o poliedro associado a simplificação é afim-isomórfico ao da formulação EOF. Verificamos a dimensão do poliedro associado à simplificação, apresentamos brevemente um rol de facetas muito simples desse poliedro e, em seguida, introduzimos, analisamos e demonstramos ser faceta algumas desigualdades mais complexas.

Finalmente, no Capítulo 5, listamos nossas conclusões e propomos alguns trabalhos futuros.

## 2 FUNDAMENTAÇÃO TEÓRICA

Nesta capítulo iremos expor alguns conceitos básicos, notações e propriedades utilizadas no restante do texto, contudo, para sermos objetivos, assumimos que o leitor possui alguma familiaridade com Teoria dos Grafos, Combinatória Poliédrica e Teoria da Computação.

#### 2.1 Conceitos em Teoria dos Grafos

A notação que adotamos em Teoria dos Grafos provém de (Diestel [12]).

Vamos denotar por G = (V(G), E(G)) um grafo simples, n = |V(G)| o número de vértices de G e m = |E(G)| o número de arestas de G. Denotamos, também,  $\bar{E}(G)$  o conjunto de não-arestas de G, ou seja,  $\bar{E}(G) = \{uv : u, v \in V(G) \in uv \notin E(G)\}$  e  $\bar{m} = |\bar{E}(G)|$ .

Um grafo direcionado ou digrafo D = (V(D), A(D)) consiste em um grafo onde as arestas são orientadas, e são ditas arcos. Um arco  $(u, v) \in A(D)$  é representado por uma seta partindo de u em direção a v e o denotamos por conveniência, também, por uv.

Um grafo orientado D = (V(D), A(D)) difere de um digrafo apenas por não possuir arcos simétricos, ou seja, temos no máximo um dos arcos  $uv \in vu \in A(D)$ .

Para o grafo G = (V, E) e um conjunto de vértices  $W \subseteq V$ , o subgrafo de G induzido por W é denotado por  $G[W] = (W, \{uv \in E \mid u, v \in W\}).$ 

Um passeio em um grafo simples G é uma sequência finita e não-nula  $P = [v_0, v_1, \ldots, v_n]$ tal que para  $1 \le i \le n$ ,  $e_i = v_{(i-1)}v_i$  é uma aresta em G. O tamanho (comprimento) de um passeio é o número de arestas contidas nele.

Um caminho é um passeio que não contém vértices repetidos. Sejam  $u, v \in V, u \neq v$ . Um uv-caminho é um caminho que começa em u e termina em v. Sejam P, Q dois uv-caminhos.  $P \in Q$  são disjuntos em vértices se eles não possuem vértices internos em comum.

Se  $C = [v_0, v_1, \ldots, v_n]$  é um passeio com todos os vértices distintos, exceto por  $v_0 = v_n$ , dizemos que C é um *ciclo*.

A vizinhança de um vértice v em G será denotada por  $N_G(v)$  e para  $S \subseteq V(G)$  temos  $N_G(S) = \left(\bigcup_{v \in S} N_G(v)\right) \setminus S$ . O grau de um vértice v em G é denotado por  $d_G(v)$ .

Quando G estiver implícito iremos suprimi-lo nos subscritos em nossa notação.

Um buraco é um ciclo induzido de tamanho pelos menos 4. Denotamos por  $C_n$  o ciclo induzido com n vértices. Um grafo é completo se todos os vértices deste grafos são adjacentes entre si. O grafo completo com n vértices é denotado por  $K_n$ . Uma clique de um grafo G é um subconjunto  $S \subseteq V(G)$  tal que G[S] é um subgrafo completo de G. O número clique de G, denotado por  $\omega(G)$ , é o tamanho da maior clique em G. Uma partição de um conjunto S é uma família de subconjuntos não-vazios, também ditos partes ou classes,  $\Pi = \{S_i : i \in I\}$ , tais que  $\bigcup_{i \in I} S_i = S$  e  $S_i \cap S_j = \emptyset$ , para todo  $\{i, j\} \subseteq I$ .

Um grafo G é *bipartido* se seu conjunto de vértices pode ser particionado em dois subconjuntos X e Y tais que toda aresta tem uma extremidade em X e outra em Y. Se todo vértice de X é adjacente a todo vértice em Y, então G é um grafo bipartido completo e é denotado por  $K_{r,s}$  com r = |X| e s = |Y|.

Uma relação binária R é uma ordem parcial sobre um conjunto U se : R é reflexiva, ou seja, para todo  $u \in U$  temos  $(u, u) \in R$ ; R é antisimétrica, ou seja, para todo  $uv \in U$ se  $(u, v) \in R$  e  $(v, u) \in R$ , então u = v; e R é transitiva, ou seja, para todo  $u, v, w \in U$  se  $(u, v) \in R$  e  $(v, w) \in R$ , então  $(u, w) \in R$ . Seja R uma ordem parcial sobre U e  $u, v \in U$ com  $(u, v) \in R$ , dizemos que u precede v ou, equivalentemente, v sucede (ou é posterior) a u. Se  $(u, v) \notin R$  e  $(v, u) \notin R$ , dizemos que u e v são incomparáveis. Podemos usar a notação aRb significando que  $(a, b) \in R$ .f

Iremos representar uma ordem parcial  $\rho$  sobre V através da sequência  $\rho = \langle S_1, \ldots, S_k \rangle$ . Os termos dessa sequência são subconjuntos de V multuamente disjuntos. Os vértices em  $S_i$ , para  $i \in \{1, \ldots, k\}$ , são incomparáveis entre si. Se  $S_i$  precede  $S_j$  na sequência, então todos os vértices em  $S_i$  precedem os vértices em  $S_j$ . Seja  $S = \bigcup_{i \in \{1, \ldots, k\}} S_i$ . Os vértices em  $V \setminus S$  são incomparáveis entre si e sucedem os vértices em S.

Seja  $\rho$  uma ordem parcial sobre V. Se para todo  $a, b \in V$  temos aRb ou bRa dizemos que  $\rho$  é uma ordem total. Usamos a notação  $v \prec_{\rho} w$  para expressar  $(v, w) \in \rho$ . Quando a ordem  $\rho$  estiver implícita denotaremos simplesmente  $v \prec w$ .

Dizemos que uma ordem (total)  $\rho^*$  respeita uma ordem parcial  $\rho$ , quando  $\rho \subseteq \rho^*$ .

Seja  $\delta$  uma ordem dos vértices de G tal que se  $d_G(v) \leq d_G(w)$ , então  $v \prec_{\delta} w$ , ou seja, os vértices são ordenados pelo valor de seu graus em ordem não-decrescente e vamos denotar por  $\delta_k(G)$  o k-ésimo vértice nessa ordem.

**Definição 2.1.1** (Contração). Uma contração (de arestas) é uma relação entre um grafo G = (V, E), uma aresta  $e = uv \in E$  e um novo grafo G' = (V', E'), denotado por G/e. Para obtermos G/e a partir de G, nós substituimos os vértices u e v por um novo vértice  $v_e$  que é feito adjacente a todos os vizinhos de u e v em G, ou seja,  $V' = (V \setminus \{u, v\}) \cup \{v_e\}$  $e E' = \{wt \in E : \{w, t\} \cap \{u, v\} = \emptyset\} \cup \{v_e w : uw \in E - e\} \cup \{v_e w : vw \in E - e\}$ .

**Definição 2.1.2** (Menor). Um menor de G é um grafo H, obtido por operações de: eliminação de vértices e/ou arestas e contrações de arestas sobre G.

**Definição 2.1.3** (Grafo Cordal). Um grafo é cordal se, e somente se, não contém qualquer buraco.

**Definição 2.1.4** (Cordalização). Um grafo H = (V, E') é uma cordalização de um grafo G = (V, E) se G é subgrafo gerador de H e H é cordal.  $E' \setminus E$  é dito uma triangulação

de G. H é dito uma k-cordalização de G se é uma cordalização cujo tamanho da maior clique é no máximo k.

**Definição 2.1.5** (Decomposição Em Árvore). Um par  $({X_i | i \in I}, T = (I, F))$  é chamado Decomposição Em Árvore (DEA) para um grafo G = (V, E), onde  ${X_i | i \in I}$  é uma família de subconjuntos (mochilas) de V, e T uma árvore com conjuntos de nós I e arestas F tal que:

- a)  $\bigcup_{i \in I} X_i = V.$
- b)  $\forall uv \in E, \exists i \in I : u, v \in X_i$
- c) Para todo  $v \in V$ , o conjunto  $I_v = \{i \in I | v \in X_i\}$  induz uma subárvore de T, ou equivalentemente,  $\forall i, j, k \in I : Se \ j \ está \ em \ algum \ caminho \ de \ i \ para \ k \ em \ T, \ temos X_i \cap X_k \subseteq X_j.$





Podemos ver um exemplo de DEA na Figura 1. A parte superior apresenta o grafo que está sendo decomposto e a parte inferior apresenta as mochilas dispostas de acordo com os nós da árvore de decomposição aos quais estão associados.

**Definição 2.1.6** (Largura em árvore). A largura em árvore ("treewidth") de uma decomposição  $D = (\{X_i \mid i \in I\}, T = (I, F))$  para G = (V, E) é definida como  $tw_D(G) :=$  $\max_{i \in I} \{|X_i| - 1\}$  e a largura em árvore de G é a largura mínima dentre todas as decomposições em árvore possíveis para G. Logo, temos  $tw(G) = \min\{tw_D(G) \mid D \text{ uma DEA de } G\}$ .

**Lema 2.1.7** (Bodlaender e Koster [13]). Seja G = (V, E) um grafo com largura em árvore no máximo k. G possui uma decomposição em árvore  $(\{X_i \mid i \in I\}, T = (I, F))$ com largura no máximo k tal que para toda aresta  $ij \in F : X_i \not\subseteq X_j$  ou  $X_j \not\subseteq X_i$ . As decomposições com tal propriedade são ditas próprias.

#### 2.2 Conceitos em Combinatória Poliédrica

Nesta secão, apresentamos algumas definições e proposições bem conhecidas em Combinatória Poliédrica. Um material mais profundo sobre Combinatória Poliédrica pode ser obtido em [14].

Seja m > 0,  $S = \{x_1, \ldots, x_m\} \subseteq \mathbb{R}^m$  e  $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$ . Uma combinação linear  $\sum_{i=1}^m \alpha_i x_i$  é dita uma combinação afim se  $\sum_{i=1}^m \alpha_i = 1$ , ou ainda, combinação convexa se  $\sum_{i=1}^m \alpha_i = 1$  e  $\alpha_i \ge 0$ , para  $i = 1, \ldots, m$ .

O fecho afim (convexo) de S é definido como o conjunto de todas as combinações afins (convexas) de elementos de S e o denotamos por aff(S) ( conv(S)).

O conjunto S é dito linearmente indepedente (LI) se  $\sum_{i=1}^{m} \alpha_i x_i = 0$  implica que  $\alpha_i = 0$  para  $i = 1, \ldots, m$ . Caso contrário, ele é dito linearmente dependente (LD).

O conjunto S é dito afim independente (AI) se  $\sum_{i=1}^{m} \alpha_i x_i = 0$  e  $\sum_{i=1}^{m} \alpha_i = 0$  implicam que  $\alpha_i = 0$ , para i = 1, ..., m. Caso contrário, ele é dito afim dependente (AD).

O Lema 2.2.1 afirma que podemos utilizar um conjunto afim-independente em  $\mathbb{R}^n$  para obter um conjunto afim-independente em  $\mathbb{R}^{n+1}$  de mesma dimensão.

**Lema 2.2.1.** Se  $S = \{s_1, \ldots, s_n\}$  é um conjunto afim-independente, então para qualquer  $y \in \mathbb{R}^n$  temos que o conjunto  $S^+ = \{(s_i^\top, y_i)^\top : i = 1, \ldots, n\}$  é afim-independente.

Demonstração. Vamos determinar as soluções para o sistema a seguir:

$$\begin{cases} \sum_{i=1,\dots,n} \alpha_i \begin{pmatrix} s_i \\ y_i \end{pmatrix} = 0\\ \sum_{i=1,\dots,n} \alpha_i = 0 \end{cases}$$
(2.1)

Como S é um conjunto afim-independente, temos que a única solução para  $\alpha$  no subsistema  $\sum_{i=1}^{n} \alpha_i s_i = 0$  e  $\sum_{i=1}^{n} \alpha_i$  é  $\alpha = \vec{0}$ .

O posto (resp. posto-afim) de S um conjunto não vazio é o maior número de vetores linearmente independentes (resp. afim independentes) em S e o denotamos por rank(S) (resp. arank(S)).

Para  $a \in \mathbb{R}^n \setminus \{0\}$  e  $a_0 \in \mathbb{R}$  o conjunto  $\{x \in \mathbb{R}^n : a^\top x = a_0\}$  e chamado hiperplano. Um hiperplano define um semiespaço  $\{x \in \mathbb{R}^n : a^\top x \leq a_0\}$ . Um poliedro é definido como a intersecção de um número finito de semiespaços ou equivalentemente ao conjunto de soluções de um sistema finito de inequações lineares.

Mais precisamente, P é um poliedro, se existem uma matriz  $A \in \mathbb{R}^{m \times n}$  e um vetor  $b \in \mathbb{R}^m$  tal que  $P = \{x : Ax \leq b\}$ . Observe que algumas inequações em  $Ax \leq b$  podem atuar conjuntamente como equações. Vamos definir o sistema Mx = d como o sistema de equações presentes em  $Ax \leq b$  e para enfatizar essas equações vamos escrever  $P = \{x : Ax \leq b, Mx = d\}.$ 

A dimensão de um conjunto S é definido como  $\dim(S) = \operatorname{arank}(S) - 1$  (o conjunto vazio possui dimensão -1).

Seja  $P = \{x : Ax \leq b, Mx = d\} \subseteq \mathbb{R}^n$  um poliedro. Podemos determinar a dimensão de P como dim(P) = n - posto(M) [15], onde posto(M) é o número máximo de colunas linearmente independentes de M.

Um poliedro  $P \subseteq \mathbb{R}^n$  possui dimensão plena se dim(P) = n. Caso um poliedro possua dimensão plena, não existe qualquer equação  $a^{\top}x = a_0$ , com  $a \neq \mathbf{0}$ , que seja satisfeita em todos os pontos de P [15].

Uma desigualdade  $a^{\top}x \leq a_0$ ,  $a \neq \mathbf{0}$ , é válida para um poliedro P se  $P \subseteq \{x : a^{\top}x \leq a_0\}$ . Se  $a^{\top} \leq a_0$  é válida para P, o conjunto  $F = \{x \in P : a^{\top}x = a_0\}$  é dito uma face de P. Uma face é denominada própria se  $\emptyset \neq F \subset P$ . Uma face de dimensão k é dita uma k-face.

A face F é denominada faceta se dim $(F) = \dim(P) - 1$  e dizemos que a desigualdade  $a^{\top}x \leq a_0$  induz faceta em P.

Para um poliedro de dimensão plena se duas desigualdades  $a^{\top}x \leq a_0 e b^{\top}x \leq b_0$ induzem a mesma faceta, então elas diferem por um múltiplo positivo como pode ser visto no teorema seguinte.

**Teorema 2.2.2** (Martí e Reinelt [15]). Seja P um poliedro de dimensão plena e  $a^{\top}x \leq a_0$ uma desigualdade válida tal que sua face  $F = \{x \in P : a^{\top}x = a_0\}$  seja própria. As seguintes proposições são equivalentes.

- a) F é faceta de P.
- b)  $\dim(F) = \dim(P) 1$ .
- c) Se  $F \subseteq \{x \in P : b^{\top}x = b_0\}$  onde  $b^{\top}x = b_0$  é desigualdade válida para P, então  $(a^{\top}, a_0) = \alpha(b^{\top}, b_0)$ , para  $\alpha \ge 0$ .

Uma transformação afim  $f : U \to W$  consiste de uma transformação linear (**A**x) seguida de uma translação por um vetor (**b**), ou seja,  $f(x) = \mathbf{A}x + \mathbf{b}$ .

Dois poliedros  $P \subseteq \mathbb{R}^n, Q \subseteq \mathbb{R}^m$  são ditos afim-isomórficos se existem transformações afins  $f : \mathbb{R}^n \to \mathbb{R}^m, g : \mathbb{R}^m \to \mathbb{R}^n$  que definem uma bijeção entre os pontos dos dois poliedros. Ou seja, se existem

$$f: x \mapsto Fx + F_0, \ F \in \mathbb{R}^{m \times n}, F_0 \in \mathbb{R}^m,$$
$$g: y \mapsto Gy + G_0, \ G \in \mathbb{R}^{n \times m}, G_0 \in \mathbb{R}^n,$$

tais que

$$\begin{aligned} f(x) &\in Q, & \forall x \in P \\ g(y) &\in P, & \forall y \in Q \\ g(f(x)) &= x, & \forall x \in P \\ f(g(y)) &= y, & \forall y \in Q \end{aligned}$$

Intuitivamente, dois poliedros são afim-isomórficos se podemos obter um a partir do outro atráves de transformações afins como translação, rotação, escala, reflexão ou projeção ortogonal. O afim-isomorfismo é uma relação de equivalência entre dois poliedros. Se dois poliedros são afim-isomórficos, nós podemos relacionar de forma imediata suas desigualdades válidas (resp. faces, facetas) atráves das proposições a seguir, as demonstrações podem ser vistas em [16].

**Proposição 2.2.3.** Se  $x^1, \ldots, x^p \in P$  são afim independentes, então  $f(x^1), \ldots, f(x^p) \in Q$  são afim independentes.

Proposição 2.2.4. P e Q possuem a mesma dimensão.

**Proposição 2.2.5.** Se a desigualdade  $\pi^{\top}x \leq \pi_0$  é válida para P, então a desigualdade  $\pi^{\top}Gy \leq \pi_0 - \pi^{\top}G_0$  é válida para Q.

**Proposição 2.2.6.** Se  $R = \{x \in P : \pi^{\top}x = \pi_0\}$ , então  $f(R) = \{y \in Q : \pi^{\top}Gy = \pi_0 - \pi^{\top}G_0\}$ .

**Proposição 2.2.7.** Se R é uma k-face de P, então f(R) é uma k-face de Q.

**Proposição 2.2.8.** Se  $\pi^{\top}x \leq \pi_0$  induz faceta de P, então  $\pi^{\top}Gy \leq \pi_0 - \pi^{\top}G_0$  em Q.

## **3** LIMITES INFERIORES

Neste capítulo, iremos apresentar alguns limites inferiores disponíveis na literatura. Tentamos, o tanto quanto possível, fazer uma apresentação linear, passando de idéias simples até as mais rebuscadas. Optamos, também, por não apresentar aqui todos os limites inferiores que encontramos disponíveis na literatura ora devido a baixa performance do limite excluído, ora para nos manter no âmbito da Teoria dos Grafos.

#### 3.1 Baseados em graus

O parâmetro de Ramachandramurthi,  $\gamma_R(G)$ , é um limite inferior para a largura em árvore calculado utilizando o grau de vértices específicos e fundamentado pelos seguintes lemas.

**Lema 3.1.1** (Carvalho [17]). Seja D uma DEA de G = (V, E). Se  $W \subseteq V$  é uma clique em G, então W deve estar contido em alguma mochila de D.

**Lema 3.1.2.** Se G = (V, E) é um grafo não completo com largura em árvore no máximo k, então existem dois vértices  $u, v \in V$ , não adjacentes, com grau no máximo k.

Demonstração. Seja uma decomposição  $D = (\{X_i : i \in I\}, T = (I, F))$  com largura em árvore no máximo k. Suponha, sem perda de generalidade, que D seja uma decomposição própria. Se a decomposição possui apenas uma mochila *i*, então o lema vale trivialmente, pois  $X_i = V \in |X_i| \le k + 1$ . Assim, todo vértice  $v \in V$  possui grau no máximo k e como G não é completo, temos que existem ao menos dois desses vértices.

Se a decomposição possui ao menos duas mochilas, então existe uma mochila, i, que é folha na árvore da decomposição e o seu vizinho j. Tome  $v \in X_i \setminus X_j \neq \emptyset$ . Pela definição de DEA temos que v não pode pertencer a qualquer outra mochila, pois não pertence a mochila j. As arestas estão distribuídas entre as mochilas da decomposição, logo todos os vizinhos de v estão na mochila i com  $|X_i| \leq max_{k \in I} |X_k| \leq k + 1$ , portanto  $d(v) \leq k$ .

Como toda árvore possui ao menos duas folhas, temos dois vértices não adjacentes com grau no máximo k.

Baseado nisso, Ramachandramurthi definiu  $\gamma_R(G)$  como n-1 se G é completo ou o mínimo entre todos os pares de vértices não adjacentes do máximo grau dos vértices, caso contrário. Formalmente,

**Definição 3.1.3.** Seja G = (V, E) um grafo. Nós definimos por  $\gamma_R(G)$  como

$$\gamma_R(G) := \begin{cases} |V| - 1, & Se \ G \ for \ clique\\ \min_{uv \in \bar{E}} \max(d(u), d(v)), & c.c. \end{cases}$$

**Lema 3.1.4** (Ramachandramurthi [8]). Para todo grafo G = (V, E), temos

 $\delta_1(G) \le \delta_2(G) \le \gamma_R(G) \le tw(G)$ 

É trivial o cálculo de  $\delta_1(G), \delta_2(G)$  e também é possível calcular  $\gamma_R(G)$  em tempo  $\mathcal{O}(n+m)$ .

#### 3.2 Baseados na tomada de subgrafos e/ou menores

Os limites inferiores baseados em graus são sensíveis à vértices com baixo grau. Sabese pelo Lema 3.2.1 (Lema 3.2.4), a seguir, que podemos utilizar uma decomposição ótima de um grafo como base para construir decomposições para os seus subgrafos (menores) de modo a não aumentar a lárgura em árvore. Logo, podemos utilizar da estratégia de tomar subgrafos (menores) do grafo original e utilizar o máximo do limite inferior sobre eles.

**Lema 3.2.1.** Seja G = (V, E) um grafo  $e W \subseteq V$ . Temos que  $tw(G[W]) \leq tw(G)$ .

Demonstração. Seja  $D = (\{X_i \mid i \in I\}, T = (I, F))$  a decomposição em árvore ótima para G, podemos construir a decomposição  $(\{Y_i = X_i \cap W | i \in I\}, T = (I, F))$  para G[W].  $\Box$ 

**Definição 3.2.2** (Degeneração). Seja G = (V, E)

- a) A degeneração de G, denotado por  $\delta D(G)$ , é o máximo  $\delta_1(H)$  para qualquer H subgrafo de G.
- b) A  $\delta_2$ -degeneração de G, denotado por  $\delta_2 D(G)$ , é o máximo  $\delta_2(H)$  para qualquer H subgrafo de G.
- c) A  $\gamma_R$ -degeneração de G, denotado por  $\gamma_R D(G)$ , é o máximo  $\gamma_R(H)$  para qualquer H subgrafo de G.

**Lema 3.2.3.** Para qualquer grafo G = (V, E),  $tw(G) \ge \gamma_R D(G) \ge \delta_2 D(G) \ge \delta D(G)$ .

Foi demonstrado por Koster, Wolle e Bodlaender em [7] que  $\delta D(G), \delta_2 D(G)$  podem ser computados em tempo O(nm) e que, para um grafo G = (V, E) e um dado k, é NP-completo decidir se  $\gamma_R D(G)$  é no mínimo k.

**Lema 3.2.4.** Seja H = (W, E') um menor de G = (V, E). Temos que  $tw(H) \le tw(G)$ .

*Demonstração*. Pela definição de menor (2.1.2), basta mostrar que as operações: eliminação de aresta; eliminação de vértice; contração de aresta. Não aumentam a lárgura em árvore de um grafo.

Seja  $D = (\{X_i \mid i \in I\}, T = (I, F))$  a decomposição em árvore ótima para G.

Observe que a eliminação de arestas sobre G, obtendo H, não altera a usabilidade de D como DEA para H, visto que as arestas restantes continuam distribuídas entre as mochilas da decomposição.

Suponha que realizamos apenas eliminações de vértices sobre G, obtendo H. Assim, H é subgrafo induzido de G. Pelo Lema 3.2.1, podemos obter uma DEA D' com largura em árvore no máximo  $tw_D(G)$ . Podemos ainda operar eliminações de arestas sobre H. Logo, basta demonstrar que a largura em árvore de G não aumenta com a contração de arestas.

Suponha a contração da aresta uv em E gerando o vértice x. Vamos construir uma decomposição D' para o menor obtido H. Vamos substituir a ocorrência de u ou v nas mochilas (subconjuntos) por x e definir  $X'_i = X_i$  se  $X_i \cap \{u, v\} = \emptyset$  e  $X'_i = (X_i \cup \{x\}) - \{u, v\}$  se  $X_i \cap \{u, v\} \neq \emptyset$ . Como a cardinalidade das mochilas não aumentam, temos que tw<sub>D'</sub>(H)  $\leq$  tw<sub>D</sub>(G).

Assim, podemos calcular os limites inferiores baseados em graus como o máximo limite sobre todos os menores de um grafo.

**Definição 3.2.5.** Seja G = (V, E) um grafo.

- a) A degeneração por contração de G, denotado por  $\delta C(G)$ , é o máximo de  $\delta_1(H)$  para qualquer H menor de G.
- b) A  $\delta_2$ -degeneração por contração de G, denotado por  $\delta_2 C(G)$ , é o máximo de  $\delta_2(H)$ para qualquer H menor de G.
- c) A  $\gamma_R$ -degeneração por contração de G, denotado por  $\gamma_R C(G)$ , é o máximo de  $\gamma_R(H)$ para qualquer H menor de G.

**Lema 3.2.6.** Para qualquer grafo G = (V, E),  $tw(G) \ge \gamma_R C(G) \ge \delta_2 C(G) \ge \delta C(G)$ .

#### 3.3 Baseados em grafos melhorados

Ainda buscando superar a fragilidade dos limites inferiores apresentados, iremos expor uma condição que permite adicionar arestas ao grafo sem alterar a sua largura em árvore.

Identificar tais condições é interessante, já que nos permitem aumentar a densidade do grafo e possivelmente aumentar o valor de nossos limites inferiores.

A seguir, temos o lema que detalha a condição sugerida.

**Lema 3.3.1** (Em [18, 19]). Seja G = (V, E) um grafo com  $tw(G) \le k$ . Seja v, w dois vértices não-adjacentes em G. Suponha que existe ao menos k + 1 caminhos disjuntos em vértices de v até w. Então, o grafo obtido pelo acréscimo da aresta vw em  $G, G' = (V, E \cup \{vw\})$ , possui largura em árvore no máximo k.

Considere o seguinte procedimento, dado um grafo G = (V, E) e um inteiro k. Enquanto existirem vértices  $v \in w$  não-adjacentes ligados por pelo menos k + 1 caminhos disjuntos em vértices, adicionamos a aresta vw no grafo G corrente. O grafo resultante é denominado grafo (k + 1)-caminho melhorado.

Portanto, a largura em árvore de G é no máximo k se, e somente se, a largura em árvore do (k + 1)-caminho melhorado de G tem largura em árvore no máximo k. Mais estritamente, temos o seguinte resultado:

**Teorema 3.3.2.** Seja  $G_n$  o grafo (k + 1)-caminho melhorado de G = (V, E). Então,

$$tw(G) \le k \iff tw(G_n) \le k. \tag{3.1}$$

Baseado no Teorema 3.3.2, Clautiaux et al. [19] desenvolveram o Algoritmo LBP. O algoritmo utiliza outro algoritmo X para calcular limites inferiores como subrotina.

| Algorithm 1: $LBP(X)$ (Grafo)                                                               |
|---------------------------------------------------------------------------------------------|
| <b>Entrada</b> : $G = (V, E)$ : um grafo, X: Algoritmo para limites inferiores para $tw(G)$ |
| Saída: $low$ : limite inferior                                                              |
| $1 \ low \leftarrow \lceil X(G) \rceil;$                                                    |
| 2 repita                                                                                    |
| <b>3</b> $H \leftarrow (low + 1)$ -caminho melhorado de $G$ ;                               |
| $4  lowH \leftarrow \lceil X(H) \rceil;$                                                    |
| 5 $changed \leftarrow false;$                                                               |
| 6 se $lowH > low$ então                                                                     |
| 7 $low \leftarrow low + 1;$                                                                 |
| $\mathbf{s} \qquad \  \  \left\lfloor changed \leftarrow true; \right.$                     |
| 9 até not(changed);                                                                         |

Vamos argumentar a corretude do Algoritmo LBP (Algoritmo 1). Em cada iteração, nós calculamos o limite inferior para a largura em árvore do grafo (low + 1)-caminho melhorado de G. Como tw $(H) \ge \lceil X(H) \rceil$ . Se  $\lceil X(H) \rceil$  for maior que *low*, temos que a largura em árvore de H é maior que *low*. Assim, pelo teorema 3.3.2 temos que tw(G) >*low*. Logo, podemos adicionar uma unidade a *low*.

#### 3.4 Maximum Cardinality Search

O algoritmo Maximum Cardinality Search (MCS) foi introduzido por Tarjan e Yannakakis [20] para o reconhecimento de grafos cordais. Ele é utilizado frequentemente como heurística para limites superiores para a largura em árvore, contudo, pode ser utilizado como mecanismo de cálculo para limites inferiores como demonstrado por Lucena [9,21].

O MCS é um algoritmo de percurso sobre grafos. O algoritmo inicia sem nenhum vértice visitado. Ele, iterativamente, visita algum vértice não visitado, tendo como critério

de escolha o vértice não visitado como o maior número de vizinho já visitados. Observe que o algoritmo gera uma ordem sobre os vértices de G.

Essas ordens geradas pelo algoritmo MCS são denominadas MCS-ordens de G = (V, E). Lucena demonstrou que qualquer MCS-ordem produz um limite inferior para a largura em árvore de G.

**Lema 3.4.1** (Lucena [9]). Suponha que o algoritmo "Maximum Cardinality Search" sobre o grafo G = (V, E) visita um vértice  $v \in V$  tal que, no instante da visita, N(v) contém k vértices já visitados. Então,  $tw(G) \ge k$ .

Além disso, demonstrou o seguinte limite inferior.

**Teorema 3.4.2** (Lucena [9,21]). Para qualquer grafo G = (V, E) e MCS-ordem  $\pi$  de G, a largura em árvore de G é limitada inferiormente por

$$MCSLB(G,\pi) = \max_{v \in V} |\{vw \in E : w \prec_{\pi} v\}|$$

$$(3.2)$$

Observe que  $MCSLB(G, \pi)$  é o máximo número de vértices já visitados adjacentes ao vértice sendo visitado em cada iteração.

Uma heurística para limites inferiores pode ser baseada na geração de uma MCS-ordem  $\pi$  e a avaliação de MCSLB. Infelizmente, a determinação da MCS-ordem que maximiza MCSLB é um problema NP-Difícil.

#### 3.5 Baseados em Esquemas Perfeitos

Esta seção apresenta os resultados teóricos que alicercam a formulação por Ordem de Eliminação definida na Seção 3.6, cujo tratamento poliédrico é nosso principal objeto de estudo.

Podemos utilizar relaxações dessa formulação para obter limites inferiores. Iremos exibir duas caracterizações para os grafos cordais, sendo a última utilizada para gerar cordalizações do grafo original.

A caracterização de grafos cordais exibida no Teorema 3.5.1 afirma que podemos construir uma DEA para um grafo cordal através da família de cliques maximais desse grafo.

**Teorema 3.5.1** (Carvalho [17]). Um grafo G = (V, E) é cordal se e somente se admite uma decomposição em árvore ótima D = (X, T), onde X corresponde à família de cliques maximais de G.

Observando conjuntamente os Teoremas 3.1.1 e 3.5.1, notamos que a decomposição em cliques maximais é ótima para um grafo cordal. Portanto, a largura em árvore de um grafo cordal é bem conhecida. **Lema 3.5.2.** Se G é um grafo cordal, então  $tw(G) = \omega(G) - 1$ .

As cordalizações de um grafo podem ser utilizadas para obter limites superiores para a largura em árvore. Além disso, existe uma cordalização "ótima" que determina a largura em árvore do grafo original, como podemos ver no Teorema 3.5.4.

**Lema 3.5.3.** Sejam G um grafo e H uma cordalização de G, então  $tw(G) \le tw(H) = \omega(H) - 1$ .

**Teorema 3.5.4** (Bodlaender [22]). A largura em árvore tw(G) é a mínima largura de uma cordalização de G.

Vamos mostrar como obter uma cordalização de um grafo a partir de uma ordem sobre os seus vértices.

Uma caracterização de grafos cordais de interesse algorítmico envolve uma ordem sobre os vértices do grafo. Um vértice  $v \in G$  é dito simplicial se  $N_G(v)$  induz uma clique em G. Uma ordem  $\rho = \langle v_1, v_2, \ldots, v_n \rangle$  dos vértices de G é denominado esquema de eliminação perfeito (esquema perfeito) se cada  $v_i$  é um vértice simplicial do subgrafo induzido  $G[\{v_i, \ldots, v_n\}]$ .

Os Lemas 3.5.5 e 3.5.6 sugerem que a partir de uma ordem qualquer dos vértices podemos obter um grafo cordal ao garantir que cada vértice seja simplicial no subgrafo induzido pelos vértices que o sucedem na ordem e isso pode ser feito por meio de acréscimos de arestas ao grafo original.

**Lema 3.5.5** (Dirac [23]). Todo grafo cordal G tem um vértice simplicial. Além disso, se G não é completo, então ele tem dois vértices simpliciais não adjacentes.

**Lema 3.5.6** (Carvalho [17]). G é um grafo cordal se, somente se, G admite um esquema de eliminação perfeito. Além disso, qualquer vértice simplicial pode iniciar um esquema perfeito.

Formalmente, podemos obter a partir de um grafo G = (V, E) um supergrafo cordal H = (V, E') por acréscimos de arestas em G. H é dito cordalização de G e  $E' \setminus E$  é dito uma triangulação do grafo G resultando em H. H é dito uma k-cordalização de G se é uma cordalização cujo tamanho da maior clique é no máximo k. Seja  $\rho = \langle v_1, \ldots, v_n \rangle$ uma ordem dos vértices de G, definimos a vizinhança posterior de v em G, por  $\rho$ , como  $N_{\rho}^{\prec}(v) = \{w \in V : vw \in E, v \prec_{\rho} w\}.$ 

O Algoritmo 2 gera uma cordalização minimal, denotado por  $G_{\rho} = (V, E_{\rho})$ , de G = (V, E) que admite a ordem  $\rho$  como esquema perfeito. O conjunto minimal de arestas para

| gerar  | uma   | cordalização            | de um | grafo | a partir | de | uma | ordem | sobre | $\mathbf{OS}$ | vértices | é | descrito |
|--------|-------|-------------------------|-------|-------|----------|----|-----|-------|-------|---------------|----------|---|----------|
| pelo d | conju | nto $E_o \setminus E$ . |       |       |          |    |     |       |       |               |          |   |          |

| <b>Algorithm 2:</b> Cordalização $(G, \rho)$                         |
|----------------------------------------------------------------------|
| <b>Entrada</b> : $G = (V, E)$ : um grafo, $\rho$ : uma ordem sobre V |
| <b>Saída</b> : $G_{\rho} = (V, E_{\rho})$ : uma cordalização de G    |
| <b>1</b> for $i = 1$ to $n - 2$ do                                   |
| <b>2</b> Atualize G tornando $N^{\prec}(\rho(i))$ uma clique em G;   |

**Teorema 3.5.7.** Seja G = (V, E) um grafo,  $\rho$  uma ordem sobre V e  $G_{\rho} = (V, E_{\rho})$  a cordalização obtida pelo Algoritmo 2.

O conjunto  $E_{\rho} \setminus E$  é uma triangulação para G, a largura em árvore de  $G_{\rho}$  é máxima cardinalidade, entre os vértices, de alguma vizinhança posterior. Ou seja, tw $(G_{\rho}) = \max_{v \in V} |N_{\rho}^{\prec}(v)|$ . Pelo teorema 3.5.4 temos que

$$tw(G) = \min_{ordem \ \rho} \left( \max_{v \in V} |N_{\rho}^{\prec}(v)| \right).$$
(3.3)

A seguir, fazemos um comparativo entre as MCS-ordens e os esquemas perfeitos.

Note que o algoritmo MCS pode ser entendido como uma heurística para geração de uma decomposição em cliques maximais. Se alterarmos o algoritmo para que, além dos passos usuais, cada visitação do algoritmo torne a vizinhança já visitada desse vértice em uma clique. Obtemos uma aproximação de uma decomposição de G em cliques maximais o que, pelo Teorema 3.5.1, corresponde a uma cordalização desse grafo.

Tais observações sugerem que há uma forte relação entre as ordens inversas às MCSordens e os esquemas perfeitos. Foi demonstrado que toda ordem que não é esquema perfeito, também não é MCS-ordem. Mais detalhes sobre essa relação podem ser obtido em [24].



Na Figura 2, podemos ver a aproximação da cordalização obtida pela MCS-ordem  $\rho = \langle v_5, v_4, v_3, v_2, v_1 \rangle$ , H, e a cordalização obtida pela ordem inversa à  $\rho$  através do Algoritmo 2,  $G_{\rho}$ .

Observe que para essa ordem os resultados são distintos. Isto decorre do fato de que os esquemas perfeitos avaliam vizinhanças posteriores possivelmente maiores que as respectivas vizinhanças na estratégia MCS, já que arestas podem ser adicionadas no processo de cordalização.

#### 3.6 Formulação por Ordem de Eliminação

Relaxações de programas inteiros para o problema de DEA podem ser utilizadas para obtenção de limites inferiores para tw(G).

A formulação por ordem de eliminação (EOF),  $LP_{EOF}$ , foi introduzida por Campos e Silva [25]. Ela determina a largura em árvore de G identificando uma cordalização ótima.

Uma cordalização orientada é uma cordalização gerada a partir de uma ordem  $\rho$  através da adição de arestas de forma que  $\rho$  seja esquema perfeito. Em uma cordalização orientada, as arestas (arcos) são orientados conforme a precedência entre suas extremidades. Assim, a vizinhança de saída de um vértice em uma cordalização orientada é justamente sua vizinhança posterior por  $\rho$ .

Uma solução viável s para a formulação corresponde a uma cordalização orientada de G [26]. Nós denotaremos  $Cord(s) = (V, F_s)$  essa cordalização orientada.

Na formulação existem 3 subconjuntos de variáveis de decisão. Para todo  $\{u, v\} \subseteq V$ , a variável  $z_{uv}$  modela a precedência entre  $u \in v$  na ordem  $\rho$  e a variável  $x_{uv}$  indica a existência do arco uv na cordalização orientada. A variável  $\omega$  calcula a máxima  $|N_{\rho}^{\prec}(v)|$ entre os vértices.

Por exemplo, seja  $G = C_4$  com  $V = \{v_1, v_2, v_3, v_4\}$  e  $\rho = \langle v_1, v_2, v_3, v_4 \rangle$ . Seja *s* tal que as variáveis  $(z_{v_1v_2}, z_{v_1v_3}, z_{v_2v_3}, z_{v_2v_4}, z_{v_3v_4})$  e  $(x_{v_1v_2}, x_{v_1v_3}, x_{v_2v_3}, x_{v_2v_4}, x_{v_3v_4})$  são iguais a 1,  $\omega = 2$  e as demais variáveis são nulas. Podemos ver na Figura 3 a cordalização orientada representada por *s*, ou seja, Cord(*s*).



Formalmente, podemos descrever as variáveis de decisão como

$$z_{uv} = \begin{cases} 1, & u \prec_{\rho} v \\ 0, & c.c. \end{cases} \qquad \forall \{u, v\} \subseteq V.$$
(3.4)

$$x_{uv} = \begin{cases} 1, & u \prec_{\rho} v \in uv \in \text{cordalização} \\ 0, & c.c. \end{cases} \quad \forall \{u, v\} \subseteq V.$$
(3.5)

A formulação EOF, denotada por  $LP_{EOF}$ , é exibida a seguir.

 $LP_{EOF}: (3.6)$ 

$$\begin{array}{ll}
\min & \omega & (3.7) \\
\text{s.t.} & \omega \ge \sum x_{\text{sum}} & \forall u \in V & (3.8)
\end{array}$$

$$z_{uv} + z_{vu} = 1, \qquad \forall \{u, v\} \subseteq V \tag{3.9}$$

$$z_{uv} + z_{vw} \le z_{uw} + 1, \qquad \forall \{u, v, w\} \subseteq V \qquad (3.10)$$

$$x_{uv} = z_{uv}, \qquad \forall uv \in E \tag{3.11}$$

$$x_{uv} \le z_{uv}, \qquad \forall uv \in E \tag{3.12}$$

$$x_{uv} + x_{uw} - 1 \le x_{vw} + x_{wv}, \qquad \forall u \in V, vw \in E$$

$$(3.13)$$

$$x_{uv} \in \{0,1\}, z_{uv} \in \{0,1\}, \qquad \forall \{u,v\} \subseteq V$$
(3.14)

A função objetivo minimiza  $\omega$ , onde  $\omega$ , pela restrição (3.8), é o máximo dentre os graus de saída dos vértices de  $G_{\rho}$ .

As restrições (3.9), (3.10) e (3.14) garantem que z determina uma ordem total, (3.11) orienta as arestas do grafo original, (3.12) garante que podemos adicionar somente arcos que respeitem a orientação e (3.13) impõe que se uv e uw estão na triangulação com u precedendo  $v \in w$ , então deve existir uma aresta vw ou wv como mostrado na Figura 4, ou seja, para todo vértice  $v \in V$  a vizinhança posterior de  $v, N^{\prec}(v)$ , é um orientação de clique.





## 4 ESTUDO POLIÉDRICO

Neste capítulo, estudaremos o poliedro definido pela envoltória convexa dos pontos inteiros da formulação EOF. Por simplicidade, nós denotaremos por  $\mathcal{P}_{EOF}$  esse poliedro.

Vamos apresentar uma simplificação de  $LP_{EOF}$ . Demonstraremos que  $\mathcal{P}_{EOF}$  e o poliedro associado a essa simplificação são afim-isomórfico. Determinaremos a dimensão desses poliedros e iremos apresentar várias classes de desigualdades que induzem faceta nesses poliedros.

#### 4.1 Uma simplificação para a formulação EOF

Observe as restrições de antisimetria (3.9) e orientação de arestas (3.11) em  $LP_{EOF}$ . Elas estabelecem funções entre as suas variáveis.

Por exemplo, a restrição  $x_{uv} = z_{uv}$ , para todo  $uv \in E$ , nos permite deduzir o valor das variáveis  $x_{uv}$  tendo conhecimento apenas das variáveis  $z_{uv}$ , quando  $uv \in E$ . Assim, podemos substituir as variáveis  $x_{uv}$  na formulação pelas variáveis  $z_{uv}$ , quando  $uv \in E$ . A esse processo nós chamamos de eliminação das variáveis  $x_{uv}$  utilizando a restrição  $x_{uv} = z_{uv}$ . Podemos utilizar a mesma estratégia para eliminar exatamente uma variável para cada par  $(z_{uv}, z_{vu})$  utilizando a identidade  $z_{uv} = 1 - z_{vu}$ .

Nossa simplificação, denotada por LP, consiste na formulação resultante do processo de eliminação de variáveis.

Vamos formalizar essas idéias. Seja  $VP_{EOF}$  o conjunto de variáveis do modelo  $LP_{EOF}$  e  $VP \subset VP_{EOF}$ , tal que:

a)  $\omega \in VP$ .

- b)  $x_{uv} \in VP$ , para todo  $uv \in \overline{E}$ .
- c) Exatamente uma entre as variáveis  $z_{uv}$  e  $z_{vu}$  pertence a VP, para todo  $\{u, v\} \subseteq V$ .
- d)  $x_{uv}$  não pertence a VP, para todo  $uv \in E$ .

Vamos definir LP como a formulação obtida a partir do seguinte processo sob a formulação LP<sub>EOF</sub>. Para toda variável  $x_{uv}$  com  $uv \in E$  substitua as ocorrências de  $x_{uv}$  na formulação pela variável  $z_{uv}$ . Em seguinda, para cada variável  $z_{uv}$  que não estiver no conjunto VP, substitua suas ocorrências na formulação pelo valor  $1 - z_{vu}$ . Elimine da formulação as restrições (3.11) e (3.9).

Vamos denotar a envoltória convexa dos pontos inteiros em LP por  $\mathcal{P}$ .

Iremos demonstrar que os poliedros  $\mathcal{P}_{EOF}$  e  $\mathcal{P}$  são afim-isomórficos.

**Teorema 4.1.1.** Os poliedros  $\mathcal{P}_{EOF}$  e  $\mathcal{P}$  são afim-isomórficos.

Demonstração. Vamos exibir duas transformações afins  $F : \mathbb{R}^{|VP_{EOF}|} \to \mathbb{R}^{|VP|} \in G :$  $\mathbb{R}^{|VP|} \to \mathbb{R}^{|VP_{EOF}|}$  e demonstrar que elas definem bijeções entre os pontos de  $\mathcal{P}_{EOF}$  e  $\mathcal{P}$ .

Para  $y \in \mathcal{P}_{EOF}$ , F(y) = s é uma cópia do vetor y restrita as variavéis que estão em VP. Para  $s \in \mathcal{P}$ , G(s) = y é uma cópia do vetor s acrescida das variáveis eliminadas na simplificação. Tais variáveis anteriormente eliminadas são deduzidas utilizando as restrições de antisimetria e orientação de arestas.

Iremos exibir a transformação F (resp. G) atráves das funções afins que determinam cada uma das componentes de F(y) (resp. G(s)) existente em VP (resp. VP<sub>EOF</sub>).

Vamos denotar por  $F(y)_{uv}^x$  (resp.  $F(y)^{\omega}$ ,  $F(y)_{uv}^z$ ) o valor da variável  $x_{uv}$  (resp.  $\omega$ ,  $z_{uv}$ ) de F(y) e denotaremos de forma análoga os valores das variáveis em G(s). Também utilizaremos essa notação para diferenciar os valores da mesma variável em vetores distintos, por exemplo  $y_{uv}^x$  e  $s_{uv}^x$ .

Vamos definir F conforme o sistema afim a seguir.

$$\begin{cases} F(y)^{\omega} = \omega \\ F(y)_{uv}^{z} = z_{uv}, & \text{para todo } z_{uv} \in \text{VP} \\ F(y)_{uv}^{x} = x_{uv} & \text{para todo } x_{uv} \in \text{VP} \end{cases}$$

Vamos definir G conforme o sistema afim a seguir.

$$\begin{cases} G(s)^{\omega} = \omega \\ G(s)^{z}_{uv} = z_{uv} & \text{se } z_{uv} \in \text{VP} \\ G(s)^{z}_{uv} = 1 - z_{vu} & \text{se } z_{uv} \notin \text{VP} \\ G(s)^{x}_{uv} = x_{uv} & \text{se } uv \in \bar{E} \\ G(s)^{x}_{uv} = z_{uv} & \text{se } uv \in E \text{ e } z_{uv} \in \text{VP} \\ G(s)^{x}_{uv} = 1 - z_{vu} & \text{se } uv \in E \text{ e } z_{uv} \notin \text{VP} \end{cases}$$

Vamos demonstrar que essas transformações definem bijeções entre  $\mathcal{P}_{EOF} \in \mathcal{P}$ . Primeiro, vamos demonstrar as contenções  $F(\mathcal{P}_{EOF}) \subseteq \mathcal{P} \in G(\mathcal{P}) \subseteq \mathcal{P}_{EOF}$ .

Observe que a transformação F apenas copia os valores das variáveis de y que estão no conjunto VP. Assim, pela forma que definimos a formulação LP, F(y) pertence a  $\mathcal{P}$ . Portanto, para todo  $y \in \mathcal{P}_{\text{EOF}}$ , temos que  $F(y) \in \mathcal{P}$ .

Observe que G copia os valores das variáveis de s que estão no conjunto VP. Para as variáveis em (VP<sub>EOF</sub> \ VP), G calcula seus valores utilizando as restrições (3.9) e (3.11). Portanto, para todo  $s \in \mathcal{P}$ , temos que  $G(s) \in \mathcal{P}_{EOF}$ .

Agora, vamos demonstrar que as transformações  $F \in G$  são inversas. Para tal vamos mostrar que o valor das respectivas componentes em  $y \in (G \circ F)(y)$ , e também  $s \in (F \circ G)(s)$ , são iguais.

Seja  $y \in \mathcal{P}_{EOF}$ , vamos analisar o valor das componentes do vetor  $(G \circ F)(y)$ .

Para  $\omega$ , temos  $G(F(y))^{\omega} = F(y)^{\omega} = \omega$ . Para  $z_{uv} \in VP$ , temos  $G(F(y))^{z}_{uv} = F(y)^{z}_{uv} = z_{uv}$ . Para  $z_{uv} \notin VP$ , temos  $G(F(y))^{z}_{uv} = 1 - F(y)^{z}_{vu} = 1 - z_{uv}$ . Como  $z_{uv} + z_{vu} = 1$ , temos  $G(F(y))^{z}_{uv} = z_{uv}$ . Para  $uv \in \overline{E}$ , temos  $G(F(y))^{x}_{uv} = F(y)^{x}_{uv} = x_{uv}$ . Para  $uv \in E$  e  $z_{uv} \in VP$ , temos que  $G(F(y))^{x}_{uv} = F(y)^{z}_{uv} = z_{uv}$ . Como  $x_{uv} = z_{uv}$  pela restrição de orientação de arestas, temos  $G(F(y))^{x}_{uv} = x_{uv}$ . Para  $uv \in E$  e  $z_{uv} \notin VP$ , temos que  $G(F(y))^{x}_{uv} = 1 - F(y)^{z}_{vu} = 1 - z_{vu}$ . Como  $x_{uv} = z_{uv}$  e  $z_{uv} + z_{vu} = 1$ , temos  $G(F(y))^{x}_{uv} = x_{uv}$ . Portanto,  $(G \circ F)(y) = y$ . Seja  $s \in \mathcal{P}$ , vamos analisar o valor das componentes do vetor  $(F \circ G)(s)$ . Para  $\omega$ , temos  $F(G(s))^{\omega} = G(s)^{\omega} = \omega$ . Para  $z_{uv} \in VP$ , temos  $F(G(s))^{z}_{uv} = G(s)^{z}_{uv} = z_{uv}$ .

Portanto,  $(\mathbf{F} \circ \mathbf{G})(s) = s$ .

Observe que para escolhas distintas do conjunto VP, obtemos poliedros distintos e afim-isomórficos entre si.

Algumas consequências do afim-isomórfismo entre poliedros são exibidas na Seção 2.2.

#### 4.2 Introdução ao estudo poliédrico

Nas seções a seguir, nós iremos investigar o poliedro  $\mathcal{P}$  e, através da relação de afimisomorfismo, iremos determinar a dimensão, desigualdades válidas e facetas do poliedro  $\mathcal{P}_{EOF}$ .

Justificamos nossa preferência em trabalhar com poliedro  $\mathcal{P}$  pelo menor número de variáveis e a relativa flexibilidade que teremos na escolha de quais variáveis preservar em VP.

No decorrer de nossas demonstrações, iremos adotar o conjunto VP que nos permita maior naturalidade na interpretação das relações matemáticas em estudo. Por exemplo, nas demonstrações de facetas, iremos adotar VP de modo a conter as variáveis existentes na desigualdade em interesse.

Ainda buscando facilidar a exposição dos nossos estudos, em algumas desigualdades para o poliedro  $\mathcal{P}$  que exibiremos, é possível que apareçam variáveis que foram eliminadas, ou seja, não pertencem ao conjunto VP utilizado. Formalmente, deveríamos substituir essas variáveis por expressões em função das variáveis em VP, utilizando as restrições adequadas.

Por exemplo, seja  $\{u, v, w\} \subseteq V(G)$ , um conjunto VP tal que  $z_{uv}, z_{uw} \notin VP$  e  $z_{vw} \in VP$ . Como  $z_{uv}, z_{uw} \notin VP$ , temos que  $z_{vu}, z_{wu} \in VP$ . Assim, a desigualdade  $z_{uv} + z_{vw} \leq z_{uw} + 1$ é formalmente expressada por  $(1 - z_{vw}) + z_{vw} \leq (1 - z_{wu}) + 1$ .

Vamos particionar as soluções em  $\mathcal{P}_{EOF}$  na forma  $s = (\omega, x, z)^{\top}$ , onde x corresponde as variáveis do tipo  $x_{uv}$  e z as variáveis do tipo  $z_{uv}$ . Uma forma eficiente de exibir uma solução inteira viável  $s = (\omega, x, z)^{\top}$  em  $\mathcal{P}_{EOF}$  é exibir a ordem modelada nas variáveis do tipo z e definir as variáveis em x, como constantes ou em função das variáveis em z. Diremos que uma ordem total  $\rho$  sobre V define z quando, para todo  $u, v \in V$ , se  $u \prec v$  então  $z_{uv} = 1$ . Além disso, diremos que uma ordem parcial  $\rho$  define z, caso exista alguma ordem total  $\rho^t$  tal que  $\rho^t$  define  $z \in \rho \subseteq \rho^t$ .

Por exemplo, seja  $G = C_4 \operatorname{com} V = \{v_1, v_2, v_3, v_4\} e s = (\omega, x, z)^{\top}$  uma solução inteira viável com  $\rho = \langle v_1, v_2, v_3, v_4 \rangle$  definindo  $z, x_{uv} := z_{uv}$  para todo  $uv \neq v_1v_4$  e  $x_{v_1v_4} := 0$ . Podemos ver na Figura 5 a cordalização orientada representada por s, ou seja,  $\operatorname{Cord}(s)$ .



O teorema a seguir afirma que a triangulação mínima para gerar uma cordalização de G que admita uma ordem  $\rho$  como esquema perfeito é fornecida pelo Algoritmo 2, que discutimos na Seção 3.5 página 23.

**Teorema 4.2.1** (Rose, Tarjan e Lueker [27]). Seja G = (V, E) um grafo,  $\rho$  uma ordem sobre  $V \ e \ G_p = (V, E_{\rho})$  a cordalização de G por  $\rho$ , obtida pelo Algoritmo 2 na página 23. Se H = (V, F) é uma cordalização de G onde  $\rho$  é esquema perfeito, temos que  $E_{\rho} \subseteq F$ .

Uma caracterização das arestas em  $G_{\rho}$  pode ser vista no Teorema 4.2.2.

**Teorema 4.2.2** (Rose, Tarjan e Lueker [27]). Um par  $v_1v_i$  é aresta em  $G_{\rho}$  se, somente se, existe um caminho  $P = [v_1, \ldots, v_i]$  cujos vértices internos precedem ambos  $v_1$  e  $v_i$ , ou seja, para todo  $u \in V(P)$ , temos  $u \prec_{\rho} v_1$  e  $u \prec_{\rho} v_i$ .

Assim, se uv é aresta em  $G_{\rho}$ , então qualquer cordalização que admita  $\rho$  como esquema perfeito possui a aresta uv. Logo, em qualquer solução inteira viável  $s = (\omega, x, z) \operatorname{com} \rho$ definindo z, temos que uv deve estar presente em  $\operatorname{Cord}(s)$  na forma dos arcos uv ou vu, dependendo da precedência entre  $u \in v$ , ou seja,  $x_{uv} = z_{uv}$ .

Em várias situações futuras, irá nos interessar apenas identificar variações específicas nos valores de incógnitas presentes em uma face, ou seja, vetores viáveis que se diferenciam apenas por um conjunto apropriado de variáveis. Isso será feito para demonstrar que os coeficientes dessas variáveis, na desigualdade que induz a face, são nulos ou se relacionam por uma determinada equação.

Nas faces consideradas, não tratamos o coeficiente associado a variável  $\omega$ . Isto decorre do fato de que, supondo  $F = \{s \in \mathcal{P}_{EOF} : \pi^{\top}s = \pi_0\}$  a face em questão e  $s = (\omega, x, z)^{\top} \in F$ , podemos obter uma nova solução  $s' = (\omega + 1, x, z)^{\top}$ . Assim, temos  $\pi^{\top}(s'-s) = \pi^{\omega} = 0$ .

Observe que podemos utilizar quaisquer majorantes para  $\omega$  a fim de obter as variações desejadas em  $\omega$ , visto que  $\omega$  possui apenas restrições de limite inferior.

## 4.3 Dimensão

Investiguemos a dimensão do poliedro  $\mathcal{P}$ , ou equivalentemente, do poliedro  $\mathcal{P}_{EOF}$ .

Note que  $|VP| = 2\bar{m} + {n \choose 2} + 1$ . Nós mostraremos que  $\mathcal{P}$  possui dimensão plena e, portanto, a dim  $\mathcal{P} = 2\bar{m} + {n \choose 2} + 1$ .

# Lema 4.3.1. $\mathcal{P} \subseteq \mathbb{R}^{|VP|}$ possui dimensão plena.

Demonstração. Seja  $\prec$  uma ordem qualquer. Iremos tomar VP contendo as variáveis  $z_{uv}$  tal que  $u \prec v$ . Vamos demonstrar que se

$$\mathcal{P} \subseteq H := \left\{ s \in \mathbb{R}^{|\mathsf{VP}|} : \pi^{\mathsf{T}} s = \pi_0 \right\},\tag{4.1}$$

então  $\pi = \vec{0}$  e  $\pi_0 = 0$ , ou seja,  $\mathcal{P}$  não está contido em nenhum hiperplano e, portanto,  $\mathcal{P}$  possui dimensão plena.

a)  $\forall uv \in \overline{E}, \pi^x_{uv} = 0.$ 

Seja z dada pela ordem total  $p = \langle u, v, v_3, \dots, v_n \rangle$ ,  $x_{rs} = z_{rs}$  para toda não aresta diferente de uv. Obtemos duas soluções viáveis para  $\mathcal{P}$  distintas apenas pela variável  $x_{uv}$ , onde  $x_{uv} = 0$  em uma e  $x_{uv} = 1$  em outra. Logo, temos que  $\pi^x_{uv} = 0$ .

b)  $\forall uv (u \prec v), \pi^z_{uv} = 0.$ 

Seja  $p_1 = \langle u, v, v_3, \ldots, v_n \rangle$ , e  $p_2 = \langle v, u, v_3, \ldots, v_n \rangle$ ,  $x_{rs} = z_{rs}$  para  $rs \neq uv$ , com  $s_1^z$  e  $s_2^z$ , dados respectivamentes pelas ordens  $p_1$  e  $p_2$ 

- Se  $uv \in \overline{E}$ , defina  $s_{1uv}^x = s_{2uv}^x = 0$ , assim  $s_1 \in s_2 \in \mathcal{P}$  e diferem em apenas uma componente, pois  $s_{2uv}^z = 0$ . Logo,  $\pi^{\top}(s_1 s_2) = \pi_{uv}^z = 0$ .
- Se  $uv \in E$ , observe que  $s_1 e s_2 \in \mathcal{P}$  e diferem nas componentes  $x_{uv} e z_{uv}$ , contudo  $uv \in E$ , assim  $x_{uv}$  não está presente em  $\mathcal{P}$ . Logo,  $\pi_{uv}^z = 0$ .

Lema 4.3.2. dim  $\mathcal{P}_{EOF} = 2\bar{m} + \binom{n}{2} + 1.$ 

*Demonstração.* Pelo Corolário 2.2, temos que dim  $\mathcal{P}_{EOF} = \dim \mathcal{P}$ . Já que  $\mathcal{P}$  possui dimensão plena, concluímos que

$$\dim \mathcal{P}_{\text{EOF}} = |\operatorname{VP}| = 2\bar{m} + \binom{n}{2} + 1 \tag{4.2}$$

#### 4.4 Facetas básicas

Nesta seção apresentaremos uma coletânea de desigual dades que induzem facetas em  $\mathcal{P}.$ 

Devido a simplicidade dessas desigualdades, nós iremos apresentá-las como um único resultado no Teorema 4.4.1. Mostraremos que estas desigualdades são válidas para  $\mathcal{P}$ . As demonstrações de que elas induzem facetas podem ser obtidas no apêndice.

**Teorema 4.4.1** (Facetas Básicas). As seguintes desigualdades são válidas e induzem faceta em  $\mathcal{P}$ .

- (a)  $x_{uv} \ge 0$  induz faceta, para todo  $uv \in \overline{E}$ .
- (b)  $z_{uv} \ge 0$  induz faceta se, e somente se,  $uv \in E$  e  $N(v) \setminus \{u\} \subseteq N(u)$ .
- (c)  $z_{uv} \leq 1$  induz faceta se  $uv \in E$   $e \ N(u) \setminus \{v\} \subseteq N(v)$ .
- (d)  $z_{uv} + z_{vw} \leq z_{uw} + 1$  induz faceta para todo  $\{u, v, w\} \subseteq V$ .
- (e)  $x_{uv} + x_{uw} 1 \le x_{vw} + x_{wv}$  induz faceta para todo  $uv, uw, vw \in \overline{E}$ .
- (f)  $z_{uv} + x_{uw} 1 \le x_{vw} + x_{wv}$  induz faceta para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ .
- (g)  $z_{uw} + x_{wu} \ge x_{vw}$  induz faceta para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ .
- (h)  $z_{vu} + x_{vw} \ge z_{vw}$  induz faceta para todo  $uv, uw \in E \ e \ vw \in \overline{E}$ .

Vamos argumentar a validade das desigualdades do Teorema 4.4.1.

As desigualdades nos itens (a) à (e) são viáveis, pois são restrições da relaxação linear da formulação  $LP_{EOF}$ .

Como  $x_{uv} = z_{uv}$  para  $uv \in E$ , a desigualdade no item (f) é equivalente a  $x_{uv} + x_{uw} - 1 \le x_{vw} + x_{wv}$ , a qual é uma restrição da formulação LP<sub>EOF</sub>. Portanto, a desigualdade no item (f) é válida.

Analisando as possíveis atribuições 0-1 para as variáveis na desigualdade (g), percebemos que a única atribuição que tornaria a desigualdade inválida é  $(z_{uw}, x_{wu}, x_{vw}) =$ (0, 0, 1). Contudo, essa atribuição não é possível em  $\mathcal{P}_{\text{EOF}}$ , pois teriamos w precedendo ambos  $u \in v \text{ com } x_{vu} = x_{vw} = 1$  e, portanto, pela restrição 3.13, deveriamos ter  $x_{wu} = 1$ ; o que é uma contradição.

Analisando as possíveis atribuições 0-1 para as variáveis na desigualdade (h), percebemos que a única atribuição que tornaria a desigualdade inválida é  $(z_{vu}, x_{vw}, z_{vw}) = (0, 0, 1)$ . Contudo, essa atribuição não é possível em  $\mathcal{P}_{\text{EOF}}$ , pois teriamos u precedendo ambos v e  $w \text{ com } x_{uv} = x_{uw} = 1$  e, portanto, pela restrição 3.13, deveriamos ter  $x_{vw} = 1$ ; o que é uma contradição.

As demonstrações de que essas desigualdades válidas induzem faceta em  $\mathcal{P}$  estão disponíveis no apêndice (A).

#### 4.5 Facetas geradas por Caminhos Induzidos

Nesta seção e nas seguintes, apresentaremos desigualdades que foram desenvolvidas a partir de observações sobre subgrafos específicos em G. Iremos demonstrar que elas são válidas para  $\mathcal{P}$  e verificaremos o fato de induzirem faceta.

Em cada uma dessas seções, apresentaremos essas observações e as desigualdades consequentes. Além disso, iremos demonstrar que são válidas e que induzem faceta.

Seja  $P = [v_1, v_2, \ldots, v_q]$  um caminho em  $G \in \rho$  uma ordem tal que  $v_2 \prec_{\rho} v_1 \prec_{\rho} v_q$ . Seja  $v_i$  com  $i \in \{3, \ldots, q\}$  o primeiro vértice posterior a  $v_1$  pela ordem  $\rho$  no caminho. Pelo Teorema 4.2.2 temos que a aresta  $v_1 v_i \in G_{\rho}$ . Podemos descrever esta observação pela desigualdade em 4.3.

**Lema 4.5.1.** Seja  $P = [v_1, v_2, \ldots, v_q]$  um caminho em G, a desigualdade

$$\sum_{3 \le i \le q} x_{v_1 v_i} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1 \tag{4.3}$$

 $\acute{e}$  válida para  $\mathcal{P}$ .

Demonstração. Suponha que existe uma solução inteira  $s \in \mathcal{P}$  para qual a desigualdade é inválida. Analisando as atribuições 0-1 possíveis para variáveis na desigualdade, observamos que a única atribuição que torna a desigualdade inválida é  $\sum_{3 \leq i \leq q} x_{v_1v_i} = 0$ e  $z_{v_1v_q} = z_{v_2v_1} = 1$ . Assim, temos que  $v_2 \prec_{\rho} v_1 \prec_{\rho} v_q$  e não existe qualquer arco na forma  $v_1v_i$  com  $i \in \{3, \ldots, q\}$  em Cord(s). Portanto, temos uma contradição, já que pelo Teorema 4.2.2 alguma aresta  $v_1v_i$  para algum  $i \in \{3, \ldots, q\}$  está em  $G_{\rho}$ .

Vamos denotar por  $\mathcal{F}$  a face induzida pela desigualdade 4.3.

$$\mathcal{F} := \left\{ s \in \mathcal{P} : \sum_{3 \le i \le q} x_{v_1 v_i} = z_{v_1 v_q} + z_{v_2 v_1} - 1 \right\}$$
(4.4)

Seja  $P = [v_1, v_2, \ldots, v_q]$  com  $q \ge 3$  um caminho induzido em G. Vamos definir  $\rho(k)$  para  $k \in \{2, \ldots, q\}$  como a ordem sobre V tal que os vértices em V(P) precedem todos os demais vértices de G e estão em ordem crescente dos seus indices, exceto pelo vértice  $v_1$  que é imediatamente posterior ao vértices  $v_k$ . Por exemplo, para q = 4 temos  $\rho(4) = \langle v_2, v_3, v_4, v_1 \rangle$ ,  $\rho(3) = \langle v_2, v_3, v_1, v_4 \rangle \in \rho(2) = \langle v_2, v_1, v_3, v_4 \rangle$ .

Observe que se o vértice  $v_1$  for posterior a todos os demais vértices do caminho, não existe nenhum arco partindo de  $v_1$  para qualquer outro  $v_i$ , com  $i \in \{3 \le i \le q\}$ .

Observe também que se existe no máximo um vértice  $t \in V(P) \setminus \{v_2\}$  que preceda  $v_1$ , não existe nenhum caminho de  $v_1$  a qualquer outro vértice  $v_i$ , com  $i \in \{3 \le i \le q\}$ , cujos vértices internos precedam ambos  $v_1 \in v_i$ , portanto, pelo Lema 4.2.2,  $v_1v_i \notin G_{\rho}$ . A Figura 6 ilustra essas observações.



Figura 6 – Observações sobre  $v_1$ 

No Lema 4.5.2, exibimos alguns vetores baseados nas observações anteriores e nas ordens  $\rho(k)$ . Demonstramos que estão contindos na face  $\mathcal{F}$ , quando P é um caminho induzido em G. Os vetores são construídos de forma que cada solução  $s = (\omega, x, z)^{\mathsf{T}}$  tenha z definido por uma ordem  $\rho$ , dentre as que exibiremos, e que as variáveis em x sejam definidas conforme cada ordem.

**Lema 4.5.2.** Seja  $P = [v_1, v_2, ..., v_q]$  com  $q \ge 3$  um caminho induzido em G. Os vetores descritos pelas seguintes ordenações estão em  $\mathcal{F}$ , caso P seja um caminho induzido em G:

1. Para  $\rho = \langle S_1, S_2 \cup V(P) \setminus \{v_1\}, S_3, v_1 \rangle$  com  $S_1, S_2, S_3 \subseteq V(G) \setminus V(P)$  subconjuntos disjuntos de vértices, definimos

$$x_{uv} := z_{uv}, \qquad \{u, v\} \subseteq V(G) \tag{4.5}$$

2. Para  $\rho = \langle \{v_1, t\}, V(P) \setminus \{v_1, t\} \rangle$  com  $t \in V(P) \setminus \{v_2, v_q\}$ , definimos

$$x_{uv} := \begin{cases} z_{uv}, & \{u, v\} \not\subseteq V(P) \\ z_{uv}, & \{u, v\} \subseteq V(P) \ e \ uv \in G_{\rho} \\ 0, & c.c. \end{cases}$$
(4.6)

3. Para  $\rho(k) \ com \ k \in \{2, \dots, q\}$ , definimos

$$x_{uv} := \begin{cases} z_{uv}, & \{u, v\} \not\subseteq V(P) \\ z_{uv}, & \{u, v\} \subseteq V(P) \ e \ uv \in G_{\rho} \\ 0, & c.c. \end{cases}$$
(4.7)

Demonstração. Primeiro, vamos demonstrar que os vetores descritos pelos itens acima são válidos para  $\mathcal{P}$ .

Observe que os vetores descritos nos itens 1, 2 e 3 têm suas partes z definidas por ordens. Assim,temos que eles respeitam as restrições 3.9 e 3.10.

Para os vetores descritos no item 1, temos um arco entre qualquer par de vértices orientado do vértice de menor precedência para o de maior. Portanto, as restrições 3.11, 3.12 e 3.13 são respeitadas.

Para os vetores descritos nos itens 2 e 3, todas as variáveis  $x_{uv}$  com um dos vértices *u* ou *v* fora do caminho são definidas iguais a  $z_{uv}$ . As variáveis  $x_{uv}$  com ambos *u* e *v* no caminho são definidas iguais a  $z_{uv}$ , se forem arestas de  $G_{\rho}$ , e 0, caso contrário. Portanto, as restrições 3.11 e 3.12 são respeitadas.

Para os vetores descritos nos itens 2 e 3, vamos analisar a restrição 3.13 e mostrar que ela é respeitada. Observe que, na ordem exibida no item 2, todos os vértices no caminho precedem os vértices que estão fora do caminho.

Para os casos seguintes mostraremos que o segundo membro da restrição 3.13 é pelo menos 1. Como o máximo valor do primeiro membro também é 1, a restrição está satisfeita.

Sejam  $u, v, w \in V$  com  $u \prec v \prec w$ . Se  $|\{u, v, w\} \cap V(P)| \leq 2$ , temos  $w \notin V(P)$ , portanto  $x_{vw} = 1$ . Se  $|\{u, v, w\} \cap V(P)| = 3$  e  $x_{uv} = x_{uw} = 1$ , então pelo Teorema 4.2.2 temos que  $vw \in G_{\rho}$ . Logo,  $x_{vw} = z_{vw} = 1$ . Logo, a restrição 3.13 é respeitada.

Finalmente, vamos provar que os vetores descritos pertencem a face  $\mathcal{F}$ , quando P é caminho induzido.

Nos vetores descritos pela ordem no item 1, o vértice  $v_1$  é posterior aos demais vértices no caminho. Assim,  $x_{v_1v_i} = 0$  para todo  $i \in \{3 \le i \le q\}, z_{v_2v_1} = 1$  e  $z_{v_1v_q} = 0$ , logo  $\sum_{3 \le i \le q} x_{v_1v_i} = z_{v_1v_q} + z_{v_2v_1} - 1 = 0.$ 

Nos vetores descritos pelas ordens no item 2, a única aresta em  $G_{\rho}$  na forma  $v_1v_i$  com  $v_1 \prec v_i$  e  $i \in \{3, \ldots, q\}$  é a aresta  $v_1v_2$ . Como  $v_1 \prec v_2$  e  $v_1 \prec v_q$ , temos  $z_{v_2v_1} = 0$  e  $z_{v_1v_q} = 1$  e portanto  $\sum_{3 \leq i \leq q} x_{v_1v_i} = z_{v_1v_q} + z_{v_2v_1} - 1 = 0$ .

Nos vetores descritos pelas ordens no item 3, para k < q, a única aresta em  $G_{\rho}$  na forma  $v_1v_i$  com  $v_1 \prec v_i$  e  $i \in \{3, \ldots, q\}$  é a aresta  $v_1v_k$ . Como  $v_2 \prec v_1$  e  $v_1 \prec v_q$ , temos  $z_{v_2v_1} = 1$  e  $z_{v_1v_q} = 1$  e portanto  $\sum_{3 \le i \le q} x_{v_1v_i} = z_{v_1v_q} + z_{v_2v_1} - 1 = 1$ . Para k = q não existe aresta em  $G_{\rho}$  na forma  $v_1v_i$  com  $v_1 \prec v_i$  e  $i \in \{3, \ldots, q\}$ , temos  $z_{v_2v_1} = 1$  e  $z_{v_1v_q} = 0$  e portanto  $\sum_{3 \le i \le q} x_{v_1v_i} = z_{v_1v_q} + z_{v_2v_1} - 1 = 0$ .

**Teorema 4.5.3** (Caminhos Induzidos). Seja  $P = [v_1, v_2, \ldots, v_q]$  com  $q \ge 3$  um caminho em G, a face

$$\mathcal{F} = \left\{ s \in \mathcal{P} : \sum_{3 \le i \le q} x_{v_1 v_i} = z_{v_1 v_q} + z_{v_2 v_1} - 1 \right\}$$
(4.8)

 $\acute{e}$  faceta se, e somente se, P  $\acute{e}$  um caminho induzido em G.

*Demonstração.* Vamos demonstrar que se P é um caminho induzido em G, então  $\mathcal{F}$  é faceta. Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P} : \sum_{3 \le i \le q} x_{v_1 v_i} - z_{v_1 v_q} + z_{v_2 v_1} = -1 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P} : \pi^\top s = \pi_0 \}.$$

Primeiro, vamos demonstrar que para todo  $rs \in \overline{E} \setminus \{v_1v_i : i \in \{3, \ldots, q\}\}$  temos  $\pi_{rs}^x = 0$ . Vamos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes a face que se diferenciam apenas pelo valor da variável  $x_{rs}$ .

a) Vamos demonstrar para  $r = v_1$ .

Seja a ordem  $\rho = \langle v_1, V(P) - v_1 \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.6). Observe que  $rs \notin G_{\rho}$ , portanto podemos obter dois vetores viáveis distintos apenas por  $x_{rs}^1 = 0$  e  $x_{rs}^2 = 1$ . Logo,  $\pi_{rs}^x = 0$ .

b) Vamos demonstrar para  $r \neq v_1$ .

Seja a ordem  $\rho = \langle r, V(P) - v_1, v_1 \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.5). Observe que  $rs \notin G_{\rho}$ , portanto podemos obter dois vetores viáveis distintos apenas por  $x_{rs}^1 = 0$  e  $x_{rs}^2 = 1$ . Logo,  $\pi_{rs}^x = 0$ .

Agora, vamos demonstrar que para todo  $\{r, s\} \subseteq V \in rs \notin \{v_1v_q, v_2v_1\}$ , temos que  $\pi_{rs}^z = 0$ .

Vamos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes à face que se diferenciam pelo valor da variável  $z_{rs}$ .

a) Vamos demonstrar para  $v_1 \notin \{r, s\}$ .

Suponha que  $rs \in E$ . Sejam as ordens  $\rho_1 = \langle r, s, V(P) - v_1, v_1 \rangle$  e  $\rho_2 = \langle s, r, V(P) - v_1, v_1 \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente, pela equação (4.6). Assim, obtemos dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

- b) Vamos demonstrar para  $v_1 \in \{r, s\}$ .
  - Vamos demonstrar para  $r = v_1, s \in V(P) \setminus \{v_2, v_q\}.$

Observe que  $rs \notin E$ , pois P é caminho induzido. Sejam as ordens  $\rho_1 = \langle v_1, s, V(P) \setminus \{v_1, s\} \rangle$  e  $\rho_2 = \langle s, v_1, V(P) \setminus \{v_1, s\} \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.6). Observe que  $rs \notin G_{\rho_1}$  e  $rs \notin G_{\rho_2}$ , portanto podemos fixar  $x_{rs}^1 = x_{rs}^2 = 0$ . Obtemos dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

- Se  $r = v_1, s \notin V(P)$ .

Suponha que  $rs \in E$ . Sejam as ordens  $\rho_1 = \langle V(P) - v_1, v_1, s \rangle$  e  $\rho_2 = \langle V(P) - v_1, s, v_1 \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.6). Obtemos dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

Suponha que  $rs \notin E$ . Sejam as ordens  $\rho_1 = \langle v_1, s, V(P) - v_1 \rangle$  e  $\rho_2 = \langle s, v_1, V(P) - v_1 \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x^1$  e  $x^2$  em

função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.6). Observe que  $rs \notin G_{\rho_1}$  e  $rs \notin G_{\rho_2}$ , portanto podemos fixar  $x_{rs}^1 = x_{rs}^2 = 0$ . Obtemos dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

Assim, podemos expressar  $\mathcal{H}$  como

$$\mathcal{H} = \{ s \in \mathcal{P} : \sum_{3 \le i \le q} \pi^x_{v_1 v_i} x_{v_1 v_i} - \pi^z_{v_1 v_q} z_{v_1 v_q} - \pi^z_{v_2 v_1} z_{v_2 v_1} = -\pi_0 \}.$$

Agora, vamos demonstrar que para todo  $v_1 v_i$  com  $i \in \{3, \ldots, q\}$  temos  $\pi^x_{v_1 v_i} = -\pi^z_{v_1 v_q}$ .

- a) Se i = q, então  $v_1$  é posterior a todos os demais vértices do caminho. Assim, temos  $\sum_{3 \le i \le q} x_{v_1 v_i} = 0$  e  $z_{v_1 v_q} + z_{v_2 v_1} - 1 = 0$ . Portanto,  $s \in \mathcal{F}$ .
- b) Se  $i \in \{3, \ldots, q-1\}$  temos  $v_1$  é posterior a todos os demais vértices do caminho. Assim, temos  $\sum_{3 \le i \le q} x_{v_1 v_i} = 0$  e  $z_{v_1 v_q} + z_{v_2 v_1} - 1 = 0$ . Portanto,  $s \in \mathcal{F}$ .

Sejam as ordens  $\rho(k) \in \rho(k+1)$  como descrito pelo Lema 4.5.2 no item 3. Sejam  $z^1 \in z^2$ definidos pelas ordens  $\rho(k) \in \rho(k+1)$ , respectivamente, e  $x^1 \in x^2$  definidos respectivamente em função de  $z^1 \in z^2$  pela Equação 4.7. Podemos ver um exemplo para  $G = P_4$  na Figura 7.



Avaliando a  $\pi^{\mathsf{T}}(s^2 - s^1)$  para  $k \in \{2, \ldots, q - 2\}$  temos  $\pi^z_{v_1v_{k+1}} + \pi^x_{v_1v_{k+1}} - \pi^x_{v_{k+1}v_1} - \pi^x_{v_1v_{k+2}} = 0$ . Observe que para todo  $i \in \{3, \ldots, q\}$ , temos  $\pi^x_{v_iv_1} = 0$ , para todo  $i \in \{3, \ldots, q - 1\}$  temos  $\pi^z_{v_1v_i} = 0$ . Nós podemos simplificar as equações e obter as seguintes identidades:

$$\begin{cases} \pi_{v_1v_i}^x = \pi_{v_1v_{i+1}}^x, & \text{para todo } i \in \{3, \dots, q-1\} \\ \pi_{v_1v_q}^x = -\pi_{v_1v_q}^z \end{cases}$$
(4.9)

Portanto, para todo  $v_1 v_i$  com  $i \in \{3, \ldots, q\}$  temos  $\pi^x_{v_1 v_i} = -\pi^z_{v_1 v_q}$ .

Agora, vamos provar a seguinte identidade  $\pi_{v_2v_1}^z = \pi_{v_1v_q}^z$ .

Sejam as ordens  $\rho_1 = \rho(q-1) = \langle v_2, \dots, v_{q-1}, v_1, v_q \rangle$  e  $\rho_2 = \langle v_1, \dots, v_{q-1}, v_2, v_q \rangle$  com  $\rho_2$  difere de  $\rho_1$  apenas pela permuta dos vértices  $v_1$  e  $v_2$ . Observe que  $\rho_2$  é uma das ordens descritas pelo Lema 4.5.2 no item 2. Sejam  $z^1$  e  $z^2$  definidos pelas ordens  $\rho_1$  e  $\rho_2$ ,

respectivamente, e  $x^1$  e  $x^2$  definidos respectivamente em função de  $z^1$  e  $z^2$  pela Equação 4.7.

Avaliando a diferença  $\pi^{\top}s^2 - \pi^{\top}s^1$ , temos que

$$\pi_{v_2v_1}^z + \sum_{i \in \{1, \dots, q-1\}} \pi_{v_2v_i}^z + \pi_{v_{q-1}v_1}^x + \pi_{v_1v_q}^x - \pi_{v_{q-1}v_2}^x - \pi_{v_2v_q}^x = 0.$$
(4.10)

Eliminando os coeficientes nulos, temos que  $\pi_{v_2v_1}^z = -\pi_{v_1v_q}^x$ . Como  $\pi_{v_1v_q}^x = -\pi_{v_1v_q}^z$ , concluímos que  $\pi_{v_2v_1}^z = \pi_{v_1v_q}^z$ .

Assim, temos o seguinte sistema linear entre os coeficientes não-nulos de  $\pi$  .

$$\begin{cases} \pi_{v_1v_i}^x = \pi_{v_1v_{i+1}}^x, & \text{para todo } i \in \{3, \dots, q-1\} \\ \pi_{v_1v_q}^x = -\pi_{v_1v_q}^z \\ \pi_{v_2v_1}^z = \pi_{v_1v_q}^z \end{cases}$$
(4.11)

Podemos definir  $\alpha = -\pi_{v_2v_1}^z$  e resolver o sistema em 4.11, através de substituições o obtendo  $\alpha = \pi_{v_1v_i}^x$  para todo  $i \in \{3, \ldots, q\}$  e  $\alpha = -\pi_{v_2v_1}^z = -\pi_{v_1v_q}^z$ .

Finalmente, temos que

$$\mathcal{F} \subseteq \mathcal{H} = \{ s \in \mathcal{P} : \alpha(\sum_{3 \le i \le q} x_{v_1 v_i} - z_{v_1 v_q} - z_{v_2 v_1}) = -\pi_0 \}.$$

Assim, temos a desigualdade  $\pi^{\top} \leq \pi_0$  é um múltiplo não-nulo da Desigualdade 4.3, portanto  $\mathcal{F}$  é faceta se P é caminho induzido em G.

Agora, vamos demonstrar que se Pnão é caminho induzido em G,então  ${\mathcal F}$ não é faceta.

Seja  $P = [v_1, \ldots, v_q]$  um caminho em G. Suponha que P não é caminho induzido em G, logo existe uma corda  $v_i v_j \in E \setminus E(P)$  com  $v_i v_j \in V(P)$ .

Podemos ver os possíveis casos na Figura 8.



a) Se  $v_i \neq v_1$ . Seja  $P' = [v_1, \ldots, v_i, v_j, \ldots, v_q]$ . Podemos descrever a desigualdade indutora da face  $\mathcal{F}$  como combinação linear de desigualdades válidas:

$$\sum_{\substack{k \in \{3, \dots, v_i\} \cup \{v_j, \dots, v_q\}}} x_{v_1 v_k} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1$$

$$x_{v_1 v_k} \ge 0, \qquad \qquad \forall k \in \{i+1, \dots, j-1\}$$

$$\sum_{i \in \{3, \dots, q\}} x_{v_1 v_i} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1$$

b) Se  $v_i = v_1, v_j \neq v_q$ . Sejam os caminhos  $P_1 = [v_1, v_j, \dots, v_q], P_2 = [v_1, \dots, v_j]$ . Podemos descrever a desigualdade indutora da face  $\mathcal{F}$  como combinação linear de desigualdades válidas:

$$\sum_{\substack{k \in \{j+1,\dots,q\}\\k \in \{3,\dots,q\}}} x_{v_1 v_k} \ge z_{v_1 v_q} + z_{v_j v_1} - 1$$

$$\sum_{\substack{k \in \{3,\dots,q\}}} x_{v_1 v_k} \ge z_{v_1 v_j} + z_{v_2 v_1} - 1$$

$$\sum_{\substack{k \in \{3,\dots,q\}}} x_{v_1 v_i} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1$$

c)  $v_i = v_1, v_j = v_q$  Observe que  $x_{v_1v_q} = z_{v_1v_q}$ , pois  $v_1v_q \in E$ , assim

$$\sum_{k \in \{3, \dots, q\}} x_{v_1 v_k} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1 \iff z_{v_1 v_q} + \sum_{k \in \{3, \dots, (q-1)\}} x_{v_1 v_k} \ge z_{v_1 v_q} + z_{v_2 v_1} - 1$$

que pode ser expresso como combinação das seguintes desigualdades válidas:

$$z_{v_1v_q} \ge z_{v_1v_q}$$

$$x_{v_1v_k} \ge 0 \qquad \forall k \in \{3, \dots, q-1\}$$

$$0 \ge z_{v_2v_1} - 1$$

$$z_{v_1v_q} + \sum_{k \in \{3, \dots, (q-1)\}} x_{v_1v_k} \ge z_{v_1v_q} + z_{v_2v_1} - 1$$

Logo, se P não é caminho induzido em G, então  $\mathcal{F}$  não é faceta.

#### 4.6 Facetas geradas por Buracos

Nesta seção iremos introduzir uma família de desigualdades baseadas em buracos de G. Demonstramos que as desigualdades nessa família são válidas para  $\mathcal{P}_{\text{EOF}}(\mathcal{P})$  e determinamos as condições sob quais elas induzem facetas.

Podemos ver na Figura 9 algumas cordalizações para buracos de tamanho 4, 5 e 6, respectivamente. Note que nessas cordalizações cada buraco de tamanho k foi subdivido em ciclos de tamanho 3, através do acréscimo de k - 3 cordas. O Lema 4.6.1 demonstra que as triangulações associadas a essas cordalizações são minimais.

**Lema 4.6.1.** Seja C = (V(C), E) um ciclo induzido em G e H uma cordalização de Gque admite  $\rho$  como esquema perfeito. Seja H[V(C))] = (V(C), E') o subgrafo induzido pelos vértices de C na cordalização e  $F = E' \setminus E$  a triangulação do ciclo na cordalização. Temos que  $|F| \ge |C| - 3$ .

Demonstração. Vamos demonstrar que para todo ciclo induzido C em G, temos  $|F| \ge |C| - 3$ .





Para |C| = 3, temos  $|F| \ge 0$ . Suponha que para todo C com  $|C| \le k$  tenhamos  $|F| \ge |C| - 3$ . Se |C| = k + 1, seja u o vértice de C com menor precedência em  $\rho$  e v, w seus vizinhos em C como na Figura 10. Como  $\rho$  é esquema perfeito em H, u é simplicial no subgrafo induzido pelos vértices posteriores a ele em  $\rho$ , portanto  $vw \in F$ . Assim, temos um novo ciclo, C' = (C - u) + vw, com |C'| = k, portanto pela hipótese de indução temos que  $|F| \ge (k-3) + 1 = |C| - 3$ .



Baseado no Lema 4.6.1, desenvolvemos a desigualdade 4.12.

$$\sum_{uv \in \bar{E}(C)} x_{uv} \ge |C| - 3. \tag{4.12}$$

Sabemos que toda solução inteira em  $\mathcal{P}_{\text{EOF}}(\mathcal{P})$  corresponde a uma cordalização orientada Cord(s) [26]. Portanto, a validade da desiguadade 4.12 para  $\mathcal{P}_{\text{EOF}}(\mathcal{P})$  é consequência direta do Lema 4.6.1. Denotaremos por  $\mathcal{F}$  a face induzida pela desigualdade 4.12 em  $\mathcal{P}$ .

$$\mathcal{F} = \{ s \in \mathcal{P} : \sum_{uv \in \bar{E}(C)} x_{uv} = |C| - 3 \}$$

$$(4.13)$$

Além disso, perceba que em qualquer cordalização de um buraco, os últimos 3 vértices, segundo qualquer esquema perfeito, induzem uma clique. Provamos essa observação no Lema 4.6.2.

**Lema 4.6.2.** Sejam C um ciclo em G,  $\{v_i, v_j, v_k\} \subseteq V(C)$  e H uma cordalização de G que admite a ordem  $\rho = \langle V(C) \setminus \{v_i, v_j, v_k\}, v_i, v_j, v_k\rangle$  como esquema perfeito. Temos que  $H[\{v_i, v_j, v_k\}]$  é uma clique.

*Demonstração*. Vamos demonstrar que  $v_i v_j, v_i v_k$  e  $v_j v_k$  são arestas em  $G_{\rho}$ . Assim, pelo Lema 4.2.1 teremos que elas são arestas em H.

Sejam  $P_1 = [v_i, \ldots, v_j]$ ,  $P_2 = [v_j, \ldots, v_k]$  e  $P_3 = [v_j, \ldots, v_k]$  caminhos em C disjuntos em vértices internos como na Figura 11. Observe que os vértices internos ao caminho  $P_1$  precedem os vértices  $v_i \in v_j$ , portanto  $v_i v_j \in G_\rho$  pelo Lema 4.2.2. De forma analoga, podemos demonstrar que  $v_j v_k \in v_i v_k$  são arestas em  $G_\rho$  utilizando respectivamente os caminhos  $P_2 \in P_3$ .





Utilizando os Lemas 4.6.1 e 4.6.2, podemos deduzir a estrutura de alguns vetores em  $\mathcal{F}$ . Exibiremos no Lema 4.6.3 os vetores em  $\mathcal{F}$  que utilizaremos em nossas demonstrações.

**Lema 4.6.3.** Seja C um buraco G. Suponha que para todo  $\{a, b\} \subseteq V \setminus V(C)$  temos  $|N_C(a) \cap N_C(b)| \leq 3$  e que  $G[N_C(a)]$  e  $G[N_C(b)]$  são caminhos induzidos em G. Vamos construir algumas soluções viáveis de forma que cada solução  $s = (\omega, x, z)$  tenha z definido por uma ordem  $\rho$  dentre as que exibiremos e que as variáveis em x sejam definidas como descrito a seguir.

Seja  $k, l \in V$ , vamos definir

$$x_{uv} := \begin{cases} z_{uv}, & \{u, v\} \subseteq (V(C) \cup \{k, l\}) \ e \ uv \in G_{\rho} \\ z_{uv}, & \{u, v\} \not\subseteq V(C) \cup \{k, l\} \\ 0, & c.c. \end{cases}$$
(4.14)

Os vetores descritos pelas seguintes ordens estão em  $\mathcal{F}$ , quando para todo  $a, b \in V \setminus V(C)$  temos  $|N_C(a) \cap N_C(b)| \leq 3$  e não existe aresta uv com  $u \in N_C(a) \setminus N_C(b)$  e  $v \in N_C(b) \setminus N_C(a)$ . Além disso, se  $k \ l \notin E$  temos que  $k \ l \notin G_{\rho}$ .

(a) Para 
$$k, l \in V(C)$$
 seja

$$\rho = \langle k, l, V(C) \setminus \{k, l\} \rangle. \tag{4.15}$$

(b) Para  $k, l \notin V(C)$  seja

$$\rho = \langle V(C) \setminus (N_C(k) \cup N_C(l)), N_C(k) \setminus N_C(l), k, N_C(l) \setminus N_C(k), l, N_C(k) \cap N_C(l) \rangle.$$
(4.16)

(c) Para  $k \notin V(C)$  e  $l \in V(C)$  seja

$$\rho = \langle V(C) \setminus (N_C(k) \cup N_C(l) \cup \{l\}), N_C(k) \setminus N_C(l), k, l, N_C(l) \rangle.$$

$$(4.17)$$

Demonstração. Primeiro, vamos demonstrar que os vetores descritos acima estão em  $\mathcal{P}$ .

Observe que os vetores descritos têm suas variáveis z definidas por ordens. Assim, eles respeitam as restrições 3.9 e 3.10.

Nos vetores descritos todas as variáveis  $x_{uv}$  com um dos vértices u ou v não pertencentes ao buraco são definidas iguais a  $z_{uv}$ . As variáveis  $x_{uv}$  com ambos u e v pertencentes ao buraco são definidas iguais a  $z_{uv}$ , se forem arestas de  $G\rho$ , e 0, caso contrário. Portanto, as restrições 3.11 e 3.12 são respeitadas.

Vamos analisar a restrição 3.13 para os vetores descritos e mostrar que ela é respeitada. Seja  $\{u, v, w\} \subseteq V$ . Para os casos seguintes mostraremos que se  $x_{uv} = x_{uw} = 1$  temos que  $x_{vw}$  ou  $x_{wv}$  são iguais a um. Assim, a desigualdade 3.13 é respeitada.

Lembramos que nas ordens exibidas os vértices em  $V(C) \cup \{k, l\}$  precedem todos os demais vértices de G.

Se  $w \notin V(C) \cup \{k, l\}$  ou  $w \in V(C) \cup \{k, l\}$  e  $v \notin V(C) \cup \{k, l\}$ , temos que  $x_{vw}$  ou  $x_{wv}$  são iguais a um pela Equação 4.14. Se  $w \in V(C) \cup \{k, l\}$  e  $v \in V(C) \cup \{k, l\}$ , temos que  $u \in V(C)$ , pois  $u \prec v$ . Além disso, como  $x_{uv} = x_{uw} = 1$  pela equação 4.14 temos  $uv, uw \in G_{\rho}$ , portanto  $vw \in G_{\rho}$ . Assim,  $x_{vw}$  ou  $x_{wv}$  são iguais a um. Logo, a restrição 3.13 é respeitada.

Vamos demonstrar que nos vetores descritos se  $k \ l \notin E$  temos que  $k \ l \notin G_{\rho}$ .

Nas ordens exibidas não existe um caminho de k a l em G com vértices internos precedendo ambos  $k \in l$ , pois a vizinhança de l em C é posterior a k. Logo, se  $k l \notin E$ temos que  $k l \notin G_{\rho}$ .

Finalmente, vamos provar que os vetores descritos pertencem a face  $\mathcal{F}$ , quando para todo  $a, b \in V \setminus V(C)$  temos  $|N_C(a) \cup N_C(b)| \leq 3$ ,  $G[N_C(a)]$  e  $G[N_C(b)]$  são caminhos induzidos em G.

Seja  $\rho$  uma ordem descrita no item (a). Nos vetores descritos pelo item (a), as variáveis  $x_{uv} = 1$  correspondem a arestas em  $G_{\rho}$ . Vamos demonstrar que o número de cordas adicionadas a C em  $G_{\rho}$  é exatamente |C| - 3.

Note que os vértices em C precedem os demais vértices do grafo. Assim, quando o Algoritmo 2 tiver visitado cada vértice de C na ordem, nenhuma nova corda será adicionada ao grafo até o fim da execução.

Vamos analisar a construção de  $G_{\rho}$  pelo o Algoritmo 2, enquanto ele percorre os vértices de C na ordem  $\rho$ . Sejam u o vértice de C com menor precedência ainda não visitado e v, w seus únicos vizinhos em C. Se  $vw \notin G_{\rho}$  o Algoritmo 2 adiciona a corda vw em  $G_{\rho}$  e passa ao próximo vértice. Observe que somente para os últimos três vértices não existe corda a ser adicionada. Logo, adicionamos exatamente |C| - 3 cordas.

Para os vetores descritos nos itens (b) e (c), vamos demonstrar que, para qualquer par de vértices uv, se  $uv \notin G_p$ , então não existe um caminho de u a v com o vértice interno k (l) e cujos vértices internos precedem u e v. Assim, a adição dos vértices k e l ao grafo não altera o número de cordas em  $G_\rho$ . Logo, o número de cordas em  $G_\rho$  é |C| - 3.

Iremos realizar a demonstração por contraposição, ou seja, se existe um caminho de ua v com o vértice interno k (l) e cujos vértices internos precedem  $u \in v$ , então existe um caminho com as mesmas propriedades, exceto por não conter o vértice k (l).

Seja  $\{u, v\} \subseteq N_C(l)$ . Se  $u, v \in N_C(k) \cap N_C(l)$ , então pelo Lema 4.6.2 temos que  $uv \in G_{\rho}$ , independente da existência de caminhos de u a v, onde k é vértice interno e cujos vértices internos precedem  $u \in v$ . Suponha  $u \in N_C(l) \setminus N_C(k)$ . Seja  $P_1$  um caminho de u a v com o vértice interno k e cujos vértices internos precedem  $u \in v$ . Sabemos que u precede os vértices em  $N_C(k) \cap N_C(l)$ . Como k é vértice interno no caminho, existem ao menos dois vértices  $k_1 \in k_2$  tais que  $k_1, k_2 \in N_C(k) \setminus N_C(l)$ . Observe na Figura 12 esses vértices.





Por hipótese, os vértices em  $N_C(k) \setminus N_C(l)$  formam um caminho, portanto podemos tomar  $P_2$  um caminho de  $k_1$  a  $k_2$  com  $V(P_2) \subseteq N_C(k) \setminus N_C(l)$ . Assim, existe um caminho  $P_3$  de u a v cujos vértices internos precedem  $u \in v$  que não passa pelo vértice k.

Utilizando as soluções viáveis em  $\mathcal{F}$  que exibimos, vamos demonstrar no Teorema 4.6.4 que  $\mathcal{F}$  é faceta.

**Teorema 4.6.4** (Faceta de Buraco). Seja C um ciclo em G. A face  $\mathcal{F}$  é faceta se C não contém corda, para todo  $\{a, b\} \subseteq V \setminus V(C)$ , temos  $|N_C(a) \cap N_C(b)| \leq 3$ , e ambos  $G[N_C(a)], G[N_C(b)]$  são caminhos induzidos em G.

Demonstração (Se). Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P} : \sum_{uv \in \bar{E}(C)} x_{uv} = |C| - 3 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P} : \pi^{\mathsf{T}} s = \pi_0 \}.$$

Primeiro, vamos demonstrar que para todo  $wt \in \overline{E}(G) \setminus \overline{E}(C)$  temos  $\pi_{rs}^x = 0$ .

Nós iremos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes à face que se diferenciam apenas pelo valor da variável  $x_{rs}$ .

a) Vamos mostrar para  $r \in V(C), s \notin V(C)$ .

Seja a ordem  $\rho = \langle r, V(C) - r, s \rangle$  definindo  $z^1$  e  $z^2$ . Observe que  $\rho$  pertence às ordens descritas pelo Lema 4.6.3 no item (a). Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Observe que  $rs \notin G_{\rho}$ , portanto podemos obter dois vetores viáveis distintos apenas por  $x_{rs}$ , com  $x_{rs}^1 = 0$  e  $x_{rs}^2 = 1$ . Logo,  $\pi_{rs}^x = 0$ .

b) Vamos mostrar para  $r \notin V(C), s \in V(C)$ .

Seja a ordem  $\rho = \langle V(C) \setminus (N_C(s) \cup \{s\}), r, s, N_C(s) \rangle$  definindo  $z^1$  e  $z^2$ . Observe que  $\rho$  pertence às ordens descritas pelo Lema 4.6.3 no item (c). Definimos  $x^1$  e  $x^2$ em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Observe que  $rs \notin G_{\rho}$ , portanto podemos obter dois vetores viáveis distintos apenas por  $x_{rs}$ , com  $x_{rs}^1 = 0$ e  $x_{rs}^2 = 1$ . Logo,  $\pi_{rs}^x = 0$ .

c) Vamos mostrar para  $r, s \notin V(C)$ .

Seja a ordem  $\rho = \langle V(C) \setminus (N_C(r) \cup N_C(s)), N_C(r) \setminus N_C(s), r, N_C(s) \setminus N_C(r), s, N_C(r) \cap N_C(s) \rangle$  definindo  $z^1$  e  $z^2$ . Observe que  $\rho$  pertence às ordens descritas pelo Lema 4.6.3 no item (b). Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Observe que  $rs \notin G_{\rho}$ , portanto podemos obter dois vetores viáveis distintos apenas por  $x_{rs}$ , com  $x_{rs}^1 = 0$  e  $x_{rs}^2 = 1$ . Logo,  $\pi_{rs}^x = 0$ .

Agora, vamos demonstrar que para todo  $\{r, s\} \subseteq V$  temos que  $\pi_{rs}^z = 0$ .

Nós iremos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes a face que se diferenciam pelo valor da variável  $z_{rs}$ .

a) Vamos mostrar para  $r, s \in V(C)$ .

Sejam as ordens  $\rho_1 = \langle r, s, V(C) \setminus \{r, s\} \rangle$  e  $\rho_2 = \langle s, r, V(C) \setminus \{r, s\} \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Observe que  $\rho_1$  e  $\rho_2$  pertencem as ordens descritas pelo Lema 4.6.3 no item (a) e que  $rs \in G_{\rho}$  se, e somente se,  $rs \in E$ . Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Se  $rs \notin E$  podemos fixar  $x_{rs}^1 = x_{rs}^2 = 0$ . Assim, podemos obter dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

b) Vamos mostrar para  $r \notin V(C), s \in V(C)$ .

Sejam as ordens  $\rho_1 = \langle V(C) \setminus (N_C(r) \cup N_C(s) \cup \{s\}), N_C(r) \setminus N_C(s), r, s, N_C(s) \rangle$ e  $\rho_2 = \langle V(C) \setminus (N_C(r) \cup N_C(s) \cup \{s\}), N_C(r) \setminus N_C(s), s, r, N_C(s) \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Observe que  $\rho_1 \in \rho_2$  pertencem às ordens descritas pelo Lema 4.6.3 no item (c) e que  $rs \in G_{\rho}$  se, e somente se,  $rs \in E$ . Definimos  $x^1 \in x^2$  em função de  $z^1 \in z^2$ , respectivamente, pela equação (4.14). Se  $rs \notin E$  podemos fixar  $x_{rs}^1 = x_{rs}^2 = 0$ . Assim, podemos obter dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

c) Vamos mostrar para  $r, s \notin V(C)$ .

Suponha  $rs \in E$ . Sejam as ordens  $\rho_1 = \langle V(C), r, s \rangle$  e  $\rho_2 = \langle V(C), s, r \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Observe que  $\rho_1$  e  $\rho_2$  pertencem às ordens descritas pelo Lema 4.6.3 no item (a). Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Assim, podemos obter dois vetores viáveis distintos apenas por  $z_{rs}$ , com  $z_{rs}^1 = 0$  e  $z_{rs}^2 = 1$ . Logo,  $\pi_{rs}^z = 0$ .

Para demonstrar que  $\pi_{rs}^{z} = 0$ , quando  $r, s \notin V(C)$  e  $rs \notin E$ , nós iremos utilizar o Lema 4.6.5 que será provado após o término dessa demonstração.

**Lema 4.6.5.** Para todo  $uv, wy \in \overline{E}(C)$ , temos  $\pi^x_{uv} = \pi^x_{wy}$ .

Vamos ao caso em que  $rs \notin E$ . Sejam as ordens  $\rho_1 = \langle V(C) \setminus (N_C(r) \cup N_C(s)), N_C(r) \setminus N_C(s), r, N_C(s) \setminus N_C(r), s, N_C(r) \cap N_C(s) \rangle$  e  $\rho_2 = \langle V(C) \setminus (N_C(r) \cup N_C(s)), N_C(s) \setminus N_C(r), s, N_C(r) \setminus N_C(s), r, N_C(r) \cap N_C(s) \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Observe que  $\rho_1$  e  $\rho_2$  pertencem às ordens descritas pelo Lema 4.6.3 no item (b) e que  $rs \in G_{\rho}$  se, e somente se,  $rs \in E$ . Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Podemos fixar  $x_{rs}^1 = x_{rs}^2 = 0$ . Assim, obtemos a equação

$$\pi^{\top}(s_1 - s_2) = \sum_{t \in N_C(s) \setminus N_C(r) \cup \{s\}}^{w \in N_C(s) \setminus N_C(s)} \pi_{wt}^z + \sum_{t \in N_C(s) \setminus N_C(r)} \pi_{rt}^z + \pi_{rs}^z + \sum_{ij \in \bar{E}(C)} \pi_{ij}^x - \sum_{pq \in \bar{E}(C)} \pi_{pq}^x = 0$$
(4.18)

Podemos simplificar essa equação eliminando os o<br/>eficientes de  $\pi$ já demonstrados nulos e o Lem<br/>a 4.6.5. Assim, ficamos com

$$(|C|-3)\pi_{uv}^x - (|C|-3)\pi_{uv}^x + \pi_{rs}^z = \pi_{rs}^z = 0, \text{ para algum } uv \in \bar{E}(C).$$
(4.19)

Assim, para todo  $r, s \notin V(C)$  temos  $\pi_{rs}^z = 0$ .

Seja  $\alpha = \pi_{uv}^x$  para algum  $uv \in \overline{E}(C)$ . Eliminando os coeficientes nulos em  $\pi$  e utilizando o Lema 4.6.5 podemos expressar  $\mathcal{H}$  como

$$\mathcal{F} \subseteq \mathcal{H} = \{ s \in \mathcal{P} : \alpha(\sum_{uv \in \bar{E}(C)} x_{uv}) = \pi_0 \}$$

Assim, temos que desigualdade  $\pi^{\top} \leq \pi_0$  é um múltiplo não-nulo da desigualdade 4.3, portanto  $\mathcal{F}$  é faceta se C não contém corda, para todo  $\{a, b\} \subseteq V \setminus V(C)$  temos  $|N_C(a) \cap N_C(b)| \leq 3$ ,  $G[N_C(a)]$  e  $G[N_C(b)]$  são caminhos induzidos em G.

Vamos exibir a demonstração do Lema 4.6.5.

Demonstração. Primeiro, vamos demonstrar que  $\pi_{rs}^x = \pi_{sr}^x$  para todo  $uv \in \overline{E}(C)$ .

Seja  $\{r, s, t\} \subseteq V(C)$  e as ordens  $\rho_1 = \langle V(C) \setminus \{r, s, t\}, r, s, t\rangle$  e  $\rho_2 = \langle V(C) \setminus \{r, s, t\}, s, r, t\rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Observe que  $\rho_1$  e  $\rho_2$  pertencem as ordens descritas pelo Lema 4.6.3 no item (a). Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{rs} + \pi^x_{rs} - \pi^x_{sr} = 0$  e simplificando a equação temos  $\pi^x_{rs} = \pi^x_{sr}$ .

Vamos demonstrar que para quaisquer  $uv, wy \in \overline{E}(C)$ , temos  $\pi^x_{uv} = \pi^x_{wy}$ .

Suponha  $\{u, v\} \cap \{w, y\} = \emptyset$ . Sejam as ordens  $\rho_1 = \langle V(C) \setminus \{u, v, w, y\}, u, w, y, v\rangle$ ,  $\rho_2 = \langle V(C) \setminus \{u, v, w, y\}, w, u, v, y\rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x^1$  e  $x^2$  em função de  $z^1$  e  $z^2$ , respectivamente, pela equação (4.14). Observe na Figura 13 o esquema dessas soluções. Temos que

$$\pi^{\mathsf{T}}(s_1 - s_2) = \pi^x_{wy} - \pi^x_{uv} + \pi^z_{uw} + \pi^z_{yv} + \pi^x_{uw} - \pi^x_{wu} + \pi^x_{yv} - \pi^x_{vy} = 0$$
(4.20)

e simplificando a equação obtemos  $\pi_{wy}^x = \pi_{uv}^x$ .

Figura 13 – Representação das  $s^1 e s^2$ 





No caso 1, temos  $v = w, u \prec w$  e  $u \prec y$ . As ordens  $\rho_1 = \langle V(C) \setminus \{u, w, y, k\}, u, w, k, y \rangle$ e  $\rho_2 = \langle V(C) \setminus \{u, w, y, k\}, u, y, k, w \rangle$  para um k qualquer, de forma semelhante ao item anterior, nos levam a relação  $\pi_{wy}^x = \pi_{uv}^x$ .

No caso 2, temos  $v=y, u \prec w, v \prec w$ . Usamos as ordens $\rho_1 \langle V(C) \setminus \{u, v, k, w\}, u, v, k, w \rangle$ e $\rho_2 \langle V(C) \setminus \{u, v, k, w\}, v, u, k, w \rangle$ para obter a relação  $\pi^x_{uv} = \pi^x_{wv}$ .

No caso 3, temos  $v=y,\,u\prec w\prec v.$ Sabemos que  $\pi^x_{uv}=\pi^x_{vu}$ para todo  $uv\in \bar{E}(C).$ Assim, pelo caso 2, temos  $\pi^x_{uv}=\pi^x_{wv}=\pi^x_{vw}.$ 

## 5 CONCLUSÃO

Neste trabalho, analisamos o problema de determinar bons limites inferiores para a largura em árvore de um grafo e, particularmente, analisamos a formulação linear inteira denominada formulação por Ordem de Eliminação e o poliedro descrito pelo fecho convexo dos seus pontos inteiros. Com o objetivo de obter a melhor descrição possível desse poliedro através de desigualdades indutoras de faceta.

Conseguimos obter resultados parciais que contribuem com a determinação de decomposições em árvore utilizando a formulação por Ordem de Eliminação. Mostramos uma simplificação para a formulação por Ordem de Eliminação com um número reduzido de variáveis e de restrições.

Mostramos que o poliedro associado à simplificação que apresentamos é afim-isofórmico ao poliedro da formulação por Ordem de Eliminação e demonstramos para um número significativo de desigualdades que induzem facetas.

#### **Trabalhos Futuros**

Vamos apresentar algumas direções para dar continuidade ao trabalho desenvolvido e obter novos resultados.

No tocante à determinação de facetas, percebemos que as desigualdades denominadas *fence* [28] são válidas para o poliedro em estudo, contudo nem sempre induzem faceta. Todavia, uma direção a ser examinada é a utilização da técnica de lifting [16] para a partir delas determinar novas desigualdades que induzam faceta independentemente de condições.

Outra direção a ser examinada é o desenvolvimento e implementação de algoritmos de corte baseado nas desigualdades que apresentamos.

## REFERÊNCIAS

1 ROBERTSON, N.; SEYMOUR, P. Graph Minors. I. Excluding a forest. J. Combin. Theory, Ser. B 35, p. 39–61, 1983.

2 ROBERTSON, N.; SEYMOUR, P. Graph Minors. II Algorithmic aspects of tree-width. J. Algorithm 7, p. 309–322, 1986.

3 ARNBORG, S. Efficient algorithms for combinatorial problems on graph with bound decomposability - a survey. *BIT 25*, p. 2–23, 1985.

4 ARNBORG, S.; PROSKUROWSKI, A. Linear time algorithms for NP-hard problems on graph embedded in k-trees. *Discrete Appl. Math.* 23, p. 11–24, 1989.

5 BODLAENDER, H. L. A tourist guide through treewidth. Acta Cybernet 11, p. 1–21, 1993.

6 CARVALHO, L. E. X. Decomposição em Árvore de Grafos com Largura Limitada -Uma Pesquisa Algorítmica. Departamento de Ciências da Computação - DC/UFC, CE, Brasil, p. 34, 2002.

7 KOSTER, A. M. C. A.; WOLLE, T.; BODLAENDER, H. L. Degree-based treewidth lower bounds. *Proceedings of the 4th International Workshop on Experimental and Efficient Algorithms*, 2005.

8 RAMACHANDRAMURTHI, S. A lower bound for treewidth and its consequences. Proceedings of the 20th International Workshop on Graph-Theoretic Concepts in Computer Science, 1995.

9 LUCENA, B. A new bound for tree-width using maximum cardinality search. SIAM Journal on Discrete Mathematics. Vol. 16, No. 3, p. 345–353, 2003.

10 BODLAENDER, H.; KOSTER, A. M. C. A.; WOLLE, T. Contraction and treewidth lower bounds. *Processedings 12th Annual European Symposium on Algorithms*, 2004.

11 BODLAENDER, H.; KOSTER, A. M. C. A.; WOLLE, T. Contraction and treewidth lower bounds. *Technical Report UU-CS-2004-34.*, 2004.

12 DIESTEL, R. Graph Theory. [S.l.]: Springer Science & Business Media, 2005.

13 BODLAENDER, H. L.; KOSTER, A. M. Treewidth Computation II. Lower Bounds. *Technical Report UU-CS-2010-022*, p. 3, 2010.

14 WAKABAYASHI, Y.; FERREIRA, C. E. Combinatória Poliédrica e Planos-de-Corte Faciais. 2010. Apostila eletrônica. Acessado em: 29 Jun. 2014. Disponível em: (http://www.ime.usp.br/~yw/2010/progint/livro-update2010.pdf).

15 MARTÍ, R.; REINELT, G. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. *Applied Mathematical Sciences*, v. 175, p. 188, 2010.

16 XAVIER, Á. S. Geração de Facetas para Politopos de Conjuntos Independentes. Dissertação (Mestrado) — Universidade Federal do Ceará (UFC), 2011. 17 CARVALHO, L. E. X. Decomposição em Árvore de Grafos com Largura Limitada - Uma Pesquisa Algorítmica. Dissertação (Mestrado) — Departamento de Ciência da Computação - DC/UFC, 2002.

18 BODLAENDER, H. L. Necessary edges in k-chordalizations of graphs. *Journal of Combinatorial Optimization*, 2003.

19 CLAUTIAUX, F. et al. New lower and upper bounds for graph treewidth. *Proceedings* of the 2th International Workshop on Experimental and Efficient Algorithms, 2003.

20 TARJAN, R. E.; YANNAKAKIS, M. Simple linear time algorithms to test chordiality of graph, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. *SIAM Journal on Computing*, 1984.

21 LUCENA, B. Dynamic Programming, Tree-Width, and Computation on Graphical Models. Tese (Doutorado) — Brown University, Providence, RI, USA, 2002.

22 BODLAENDER, H. L. Discovering Treewidth. Proc. of 31st Conference on Current Trends in Theory and Practice of Computer Science, 2005.

23 DIRAC, G. A. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg Vol. 25, p. 71–76, 1961.

24 BLAIR, J. R.; PEYTON, B. W. An Introduction to Chordal Graph and Clique Trees. *Mathematical Sciences Section Oak Ridge National Laboratory*, 1992.

25 CAMPOS, V. A.; SILVA, A. S. F. A 0-1 integer formulation for the tree decomposition problem. In: 19th International Symposium on Mathematical Programming. [S.l.: s.n.], 2006.

26 KOSTER, A. M. C. A.; BODLAENDER, H. Private Communication.

27 ROSE, D. J.; TARJAN, R. E.; LUEKER., G. S. Algorithmic aspects of vertex elimination on graphs. *SIAM J. COMPUT*, v. 5, n. 2, p. 267–271, Junho 1976.

28 MARTÍ, R.; REINELT, G. The Linear Ordering Problem: Exact and Heuristic Methods in Combinatorial Optimization. *Applied Mathematical Sciences*, v. 175, p. 122, 2010.

## APÊNDICE

## APÊNDICE A – DEMONSTRAÇÕES DE FACETAS BÁSICAS

Neste apêndice, vamos exibir as demonstrações relativas ao Lema 4.4.1.

**Lema A.0.6.**  $x_{uv} \ge 0$  induz faceta, para todo  $uv \in E$ .

Demonstração. Seja  $uv \in \overline{E}$ . Definimos  $\mathcal{F} = \{s \in \mathcal{P}_{EOF} : x_{uv} = 0\}.$ 

Vamos demonstrar que  $\mathcal{F}$  é faceta.

Suponha que

 $\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : x_{uv} = 0 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}.$ 

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E}(G) \setminus \{uv\}$ , temos  $\pi^x_{ab} = 0$ . Frequentemente, iremos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$ , pertencentes a face, que se diferenciam de forma proposital.

a) Vamos demonstrar para a = v, b = u.

Seja a ordem  $\rho = \langle v, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \neq vu$ , e  $x_{vu}^1 = 1, x_{vu}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vu}^x = 0$ .

b) Vamos demonstrar para  $a = u, b \neq v$ .

Seja a ordem  $\rho = \langle u, b, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \notin \{vu, ub\}, x_{vu}^1 = x_{vu}^2 = 0$  e  $x_{ub}^1 = 1, x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^x = 0$ .

c) Vamos demonstrar para  $a \neq v, b = u$ .

Seja a ordem  $\rho = \langle v, a, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vu, au\}, x_{vu}^1 = x_{vu}^2 = 0$  e  $x_{au}^1 = 0, x_{au}^2 = 1$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{au}^x = 0$ .

d) Vamos demonstrar para  $a = v, b \neq u$ . Seja a ordem  $\rho = \langle v, b, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo

 $pq \in \bar{E} \setminus \{vb\} \in x_{vb}^1 = 0, x_{vb}^2 = 1.$  Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^x = 0.$ 

e) Vamos demonstrar para  $a \neq u, b = v$ .

Seja a ordem  $\rho = \langle u, a, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uv, av\}, x_{uv}^1 = 0, x_{uv}^2 = 0$  e  $x_{av}^1 = 1, x_{av}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{av}^x = 0$ .

f) Vamos demonstrar para  $\{a, b\} \cap \{u, v\} = \emptyset$ .

Seja a ordem  $\rho = \langle a, b, v, u \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V$ , temos que  $\pi_{ab}^z = 0$ .

a) Vamos demonstrar para  $\{a, b\} \cap \{u, v\} = \emptyset$ .

Sejam as ordens  $\rho_1 = \langle a, b, v, u \rangle$ ,  $\rho_2 = \langle b, a, v, u \rangle$  deifinindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$ , para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ab}^2 = 0$  e  $x_{ba}^1 = x_{ba}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

b) Vamos demonstrar para a = v, b = u.

Sejam as ordens  $\rho_1 = \langle u, v \rangle, \rho_2 = \langle v, u \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uv, vu\}$ . Definimos  $x_{uv}^1 = x_{vu}^2 = 0$  e  $x_{vu}^1 = x_{uv}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vu}^z = 0$ .

c) Vamos demonstrar para  $a = v, b \neq u$ .

Sejam as ordens  $\rho_1 = \langle v, b, u \rangle, \rho_2 = \langle b, v, u \rangle$  definindo  $z^{1}e z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vb, bv\}$ . Se  $vb \in \bar{E}$ , definimos  $x_{vb}^1 = x_{bv}^2 = 0$  e  $x_{bv}^1 = x_{vb}^2 = 0$ .Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

d) Vamos demonstrar para  $a = u, b \neq v$ .

Sejam as ordens  $\rho_1 = \langle v, u, b \rangle, \rho_2 = \langle v, b, u \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{vu}^1 = x_{vu}^2 = 0, x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vu, ub, bu\}$ . Se  $ub \in \bar{E}$ , definimos  $x_{ub}^1 = x_{bu}^2 = 0$  e  $x_{bu}^1 = x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^z = 0$ .

Resta provar que  $\pi_0 = 0$ .

Como  $\mathcal{F} = \{s \in \mathcal{P} : x_{uv} = 0\} \subseteq H = \{s \in \mathcal{P} : \pi_{uv}^x x_{uv} = \pi_0\}, \text{ temos que } \pi_0 = 0.$ 

Portanto, demonstramos que a desigualdade  $\pi^{\top} \leq \pi_0$  é um múltiplo não-nulo da desigualdade  $x_{uv} \geq 0$  para  $uv \in \overline{E}$ , portanto  $\mathcal{F}$  é faceta.

**Lema A.0.7.**  $z_{uv} \ge 0$  induz faceta se, e somente se,  $uv \in E$  e  $N(v) \setminus \{u\} \subseteq N(u)$ .

Demonstração. Vamos demonstrar que a desigualdade  $z_{uv} \ge 0$  induz faceta se, e somente se,  $uv \in e N(v) \setminus \{u\} \subseteq N(u)$ .

Definitions  $\mathcal{F} = \{ s \in \mathcal{P}_{EOF} : z_{uv} = 0 \}.$ 

Vamos demonstrar que se  $uv \in E$  e  $N(v) \setminus \{u\} \subseteq N(u)$ , então  $\mathcal{F}$  é faceta. Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : z_{uv} = 0 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}.$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E}$ , temos  $\pi_{ab}^x = 0$ .

a) Vamos demonstrar para  $a \notin \{u, v\}$  e bneqa.

Seja a ordem  $\rho = \langle a, v, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demonstrar para  $a = u, b \neq v$ .

Seja a ordem  $\rho = \langle v, u, b \rangle$  definindo  $z^1$  e  $z^2$ . Como  $b \notin N(u)$ , temos que  $b \notin N(v)$ , logo  $vb \in \overline{E}$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{vb, ub\}, x_{vb}^1 = x_{vb}^2 = 0$ e  $x_{ub}^1 = 1, x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^x = 0$ .

c) Vamos demonstrar para  $a = v, b \neq u$ .

Seja a ordem  $\rho = \langle v, u, b \rangle$  definindo  $z^1$  e  $z^2$ , Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vb\}$  e  $x_{vb}^1 = 1$ ,  $x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^x = 0$ .

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V \text{ com } ab \neq uv$ , temos que  $\pi_{ab}^z = 0$ . Nós iremos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes a face que se diferenciam pela variável  $z_{ab}$ .

a) Vamos demonstrar para  $a = u, b \neq v$ .

Sejam as ordens  $\rho_1 = \langle v, u, b \rangle, \rho_2 = \langle v, b, u \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vb, tv, ub, bu\}$ . Se  $ub \in \bar{E}$ , temos que  $vb \in \bar{E}$  e definimos  $x_{vb}^1 = x_{bv}^1 = 0, x_{vtb}^2 = x_{bv}^2 = 0, x_{ub}^1 = x_{bu}^1 = 0$  e  $x_{ub}^2 = x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^z = 0$ .

b) Vamos demonstrar para  $a = v, b \neq u$ .

Sejam as ordens  $\rho_1 = \langle v, b, u \rangle$ ,  $\rho_2 = \langle b, v, u \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vb, bv\}$ . Se  $vb \in \bar{E}$ , definimos  $x_{vb}^1 = x_{bv}^2 = 0$  e  $x_{bv}^1 = x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^z = 0$ .

c) Vamos demonstrar para  $\{a, b\} \cap \{u, v\} = \emptyset$ .

Sejam as ordens  $\rho_1 = \langle a, b, v, u \rangle, \rho_2 = \langle b, a, v, u \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab, ba\}$ . Se  $ab \in \overline{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Como  $\mathcal{F} = \{s \in \mathcal{P}_{\text{EOF}} : z_{uv} = 0\} \subseteq H = \{s \in \mathcal{P}_{\text{EOF}} : \pi_{uv}^z z_{uv} = \pi_0\}$ , temos que  $\pi_0 = 0$ . Portanto, provamos que a desigualdade  $\pi^\top \leq \pi_0$  é um múltiplo não-nulo da desigualdade  $z_{uv} \geq 0$  se  $uv \in E$  e  $N(v) \setminus \{u\} \subseteq N(u)$ , portanto  $\mathcal{F}$  é faceta se  $uv \in E$  e  $N(v) \setminus \{u\} \subseteq N(u)$ .

Resta provar que, se  $uv \in \overline{E}$  ou  $N(v) \setminus (N(u) \cup \{u\}) \neq \emptyset$ , então  $\mathcal{F}$  não é faceta.

a) Mostraremos que se  $uv \notin E$ , temos que  $\mathcal{F}$  não é faceta.

Observe que as seguintes restrições são válidas para  $\mathcal{P}$ .

 $x_{uv} \le z_{uv}, \quad \text{pois } uv \notin E$  $0 \le x_{uv}, \quad \text{trivial}$  $0 \le z_{uv}$ 

Portanto  $z_{uv} \ge 0$  é dominada. Assim, ela não induz faceta.

b) Caso  $uv \in E$  e  $\exists w \in N(v) \setminus (N(u) \cup \{u\})$ , veremos que  $\mathcal{F}$  não é faceta.

Primeiramente, p que a desigualdade  $z_{uv} + x_{uw} \ge z_{uw}$  é válida para o poliedro  $\mathcal{P}_{\text{EOF}}$ . Suponha, por contradição, que exista uma solução inteira  $s \in \mathcal{P}_{\text{EOF}}$  tal que  $z_{uv} + x_{uw} < z_{uw}$ . A única atribuição 0-1 para as variáveis dessa desigualdade que a satisfaz é  $(z_{uv}, x_{uw}, z_{uw}) = (0, 0, 1)$ , portanto  $v \prec w \prec v$ . Observe que  $uv, vw \in E$ , portanto  $x_{vu} = x_{vw} = 1$ . Assim, pela restrição 3.13 temos que  $x_{uw} = 1$ ; uma contradição. Logo, a restrição  $z_{uv} + x_{uw} \ge z_{uw}$  é válida  $\mathcal{P}_{\text{EOF}}$ .

Observe que a desigual dade  $-x_{uw} \ge -z_{uw}$  também é válida, pois  $uw \notin E$ , portanto podemos expressar  $z_{uv} \ge 0$  como

$$\begin{aligned}
 z_{uv} + x_{uw} &\geq z_{uw} \\
 -x_{uw} &\geq -z_{uw} \\
 \overline{z_{uv}} &\geq 0
 \end{aligned}$$
(A.1)

Logo, se  $z_{uv} \ge 0$  induz faceta, então  $uv \in E, N(v) \setminus \{u\} \subseteq N(u).$ 

**Lema A.0.8.**  $z_{uv} \leq 1$  induz faceta se, e somente se,  $uv \in E$  e  $N(u) \setminus \{v\} \subseteq N(v)$ .

Demonstração. Provaremos que a desigualdade  $z_{uv} \leq 1$  induz faceta se  $uv \in E, N(u) \setminus \{v\} \subseteq N(v)$ .

Definitions  $\mathcal{F} = \{ s \in \mathcal{P}_{EOF} : z_{uv} = 1 \}.$ 

Vamos demonstrar que se  $uv \in E$  e  $N(u) \setminus \{v\} \subseteq N(v)$ , então  $\mathcal{F}$  é faceta. Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : z_{uv} = 1 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E}$ , temos  $\pi_{ab}^x = 0$ .

Vamos exibir dois vetores viáveis  $s^1 = (\omega^1, x^1, z^1)$  e  $s^2 = (\omega^2, x^2, z^2)$  pertencentes a face que se diferenciam apenas pela variável  $x_{ab}$ .

a) Vamos demonstrar para  $a \notin \{u, v\} \in b \neq a$ .

Seja a ordem  $\rho = \langle a, u, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\}$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demonstrar para  $a = v, b \neq u$ .

Seja a ordem  $\rho = \langle u, v, b \rangle$  definindo  $z^1 \in z^2$ . Como  $b \notin N(v)$ , temos que  $b \notin N(u)$ , logo  $ub \in \overline{E}$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ub, vb\}, x_{ub}^1 = x_{ub}^2 = 0$  $e x_{vb}^1 = 1, x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^x = 0$ .

c) Vamos demonstrar para  $a = u, b \neq v$ .

Seja a ordem  $\rho = \langle u, v, b \rangle$  definindo  $z^1$  e  $z^2$ , Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ub\}$  e  $x_{ub}^1 = 1$ ,  $x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^x = 0$ .

Agora, vamos demonstrar que para todo  $\{a, b\} \subseteq V$ , com  $ab \neq uv$ , temos  $\pi_{ab}^z = 0$ .

a) Vamos demonstrar para  $\{a, b\} \cap \{u, v\} = \emptyset$ .

Sejam as ordens  $\rho_1 = \langle a, b, u, v \rangle, \rho_2 = \langle b, a, u, v \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E}\{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

b) Vamos demonstrar para  $a = u, b \neq v$ .

Sejam as ordens  $\rho_1 = \langle u, b, v \rangle, \rho_2 = \langle b, u, v \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ub, bu\}$ . Se  $ub \in \bar{E}$ , definimos  $x_{ub}^1 = x_{bu}^2 = 0$  e  $x_{ub}^1 = x_{bu}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^z = 0$ .

c) Vamos demonstrar para  $a = v, b \neq u$ .

Sejam as ordens  $\rho_1 = \langle u, v, b \rangle, \rho_2 = \langle u, b, v \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vb, bv, ub, bu\}$ . Se  $vb \in \bar{E}$ , temos que  $ub \in \bar{E}$  e definimos  $x_{vb}^1 = x_{bv}^1 = 0, x_{vb}^2 = x_{bv}^2 = 0, x_{ub}^1 = x_{bu}^1 = 0$  e  $x_{ub}^2 = x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^z = 0$ 

Como  $\mathcal{F} = \{s \in \mathcal{P} : z_{uv} = 1\} \subseteq H = \{s \in \mathcal{P} : \pi_{uv}^z z_{uv} = \pi_0\}$ , temos que  $\pi_0 = \pi_{uv}^z$ . Logo a desigualdade  $\pi^\top \leq \pi_0$  é um múltiplo não nulo da desigualdade  $z_{uv} \leq 1$ , se  $uv \in E$  e  $N(u) \setminus \{v\} \subseteq N(v)$ . Portanto,  $\mathcal{F}$  é faceta se  $uv \in E, N(u) \setminus \{v\} \subseteq N(v)$ .

**Lema A.O.9.**  $x_{uv} + x_{uw} - 1 \le x_{vw} + x_{wv}$  induz faceta para todo  $uv, uw, vw \in \overline{E}$ .

Demonstração. Vamos demonstrar que a desigualdade  $x_{uv} + x_{uw} - 1 \le x_{vw} + x_{wv}$  induz faceta, para todo  $uv, uw, vw \in \overline{E}$ .

Definitions  $\mathcal{F} = \{ s \in \mathcal{P}_{EOF} : x_{uv} + x_{uw} - x_{vw} - x_{wv} = 1 \}.$ Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : x_{uv} + x_{uw} - 1 = x_{vw} + x_{wv} \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^\top s = \pi_0 \}.$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E} \setminus \{uv, uw, vw\}$ , temos  $\pi_{ab}^x = 0$ .

a) Vamos demonstrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Seja a ordem  $\rho = \langle a, b, u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \neq ab$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ 

b) Vamos demonstrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

- Suponha que a = u. Seja a ordem  $\rho = \langle u, b, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \neq ab$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 s^2) = \pi_{ab}^x = 0$ .
- Suponha que a = v. Seja a ordem  $\rho = \langle v, u, w, b \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, vw\}, x_{vw}^1 = 0, x_{vw}^2 = 0$  e  $x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 s^2) = \pi_{ab}^x = 0$ .
- Suponha que *a* = *w*. Seja a ordem *ρ* = ⟨*w*, *u*, *v*, *b*⟩ definindo *z*<sup>1</sup> e *z*<sup>2</sup>. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \notin \backslash \{ab, wu, wv\}, x_{wv}^1 = x_{wv}^2 = 0, x_{wu}^1 = x_{wu}^2 = 0, x_{ab}^1 = 1$  e  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 s^2) = \pi_{ab}^x = 0$ .
- Suponha que  $b \in \{u, v, w\}$ . Seja a ordem  $\rho = \langle a, u, v, w, b \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \neq ab$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .
- c) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 2$ .
  - Suponha que ab = vu. Seja a ordem ρ = ⟨v, u, w⟩ definindo z<sup>1</sup> e z<sup>2</sup>. Definimos x<sup>1</sup><sub>pq</sub> = x<sup>2</sup><sub>pq</sub> = z<sup>1</sup><sub>pq</sub> para todo pq ∉ {vu, vw}, x<sup>1</sup><sub>vw</sub> = x<sup>2</sup><sub>vw</sub> = 0 e x<sup>1</sup><sub>ab</sub> = 1, x<sup>2</sup><sub>ab</sub> = 0. Assim, temos π<sup>⊤</sup>(s<sup>1</sup> s<sup>2</sup>) = π<sup>x</sup><sub>ab</sub> = 0.
  - Suponha que ab = wu. Seja a ordem ρ = ⟨w, u, v⟩ definindo z<sup>1</sup> e z<sup>2</sup>. Definimos x<sup>1</sup><sub>pq</sub> = x<sup>2</sup><sub>pq</sub> = z<sup>1</sup><sub>pq</sub> para todo pq ∉ {wv, ab}, x<sup>1</sup><sub>wv</sub> = x<sup>2</sup><sub>wv</sub> = 0 e x<sup>1</sup><sub>ab</sub> = 1, x<sup>2</sup><sub>ab</sub> = 0. Assim, temos π<sup>⊤</sup>(s<sup>1</sup> s<sup>2</sup>) = π<sup>x</sup><sub>ab</sub> = 0.

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V$ , temos que  $\pi_{ab}^z = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Sejam as ordens  $\rho_1 = \langle a, b, u, v, w \rangle$ ,  $\rho_2 = \langle b, a, u, v, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \notin \{ab, ba\}$ . Se  $vt \in E$ , definimos  $x_{ab}^1 = x_{ba}^2 = 1$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Se  $ab \in \overline{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ 

- b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .
  - Suponha que a = u. Sejam as ordens  $\rho_1 = \langle w, u, b, v \rangle, \rho_2 = \langle w, b, u, v \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{wv, wu, ab\}, x_{wv}^1 = x_{wv}^2 = 0, x_{wu}^1 = x_{wu}^2 = 0$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 1$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .
  - Suponha que a = v. Sejam as ordens  $\rho_1 = \langle u, v, b, w \rangle, \rho_2 = \langle u, b, v, w \rangle,$ definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $\{p,q\} \subseteq V.$ Se  $vb \in E$ , temos  $\pi_{vb}^z = 0$ .

Se  $vb \in \overline{E}$ , obtemos dois vetores viáveis distintos por  $z_{vb} \in \{0, 1\}$  e  $x_{vb} \in \{0, 1\}$ . Assim,  $\pi^{\top}(s^1 - s^2) = \pi_{vb}^z + \pi_{vb}^x - \pi_{bv}^x = 0$ . Como já demonstramos que, para todo  $ab \in \overline{E} \setminus \{uv, uw, vw\}$ , temos  $\pi_{ab}^x = 0$ . Podemos simplificar  $\pi^{\top}(s^1 - s^2) = 0$ , obtendo  $\pi_{vb}^z = 0$ .

- Suponha que a = w. Sejam as ordens  $\rho_1 = \langle u, v, w, b, \rangle, \rho_2 = \langle u, v, b, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $\{c, d\} \subseteq V$ .

Se  $wb \in E$ , temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{wb} = 0$ .

Se  $wb \in \overline{E}$ , obtemos dois vetores viáveis distintos por  $z_{wb} \in \{0,1\}$  e  $x_{wb} \in \{0,1\}$ . Assim,  $\pi^{\top}(s^1 - s^2) = \pi^z_{wb} + \pi^x_{wb} - \pi^x_{bw} = 0$ . Como já demonstramos que para todo  $ab \in \overline{E} \setminus \{uv, uw, vw\}$  temos  $\pi^z_{ab} = 0$ . Podemos simplificar  $\pi^{\top}(s^1 - s^2) = 0$  obtendo  $\pi^z_{wb} = 0$ . Portanto, se  $wb \in \overline{E}$  temos  $\pi^z_{wb} = 0$ .

- c) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 2$ .
  - Suponha que ab = wv. Sejam as ordens  $\rho_1 = \langle u, w, v \rangle, \rho_2 = \langle u, v, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uv, vu, vw, wv\}$ . Definimos  $x_{uv}^1 = x_{vu}^2 = 0, x_{uv}^1 = x_{uv}^2 = 0, x_{uv}^1 = x_{vw}^2 = 0, x_{uv}^1 = x_{uv}^2 = 0, x_{uv}^1 = x_{uv}^2 = 0, x_{uv}^1 = x_{uv}^2 = 0$ .
  - Suponha que ab = uv. Sejam as ordens  $\rho_1 = \langle u, v, w \rangle, \rho_2 = \langle v, u, w \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{uv, vu, vw, wv\}$ . Definimos  $x_{uv}^1 = x_{vu}^2 = 0, x_{uv}^1 = x_{uv}^2 = 0, x_{wv}^1 = x_{vw}^2 = 0$ e  $x_{vw}^1 = x_{wv}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .
  - Suponha que ab = uw. Sejam as ordens  $\rho_1 = \langle u, w, v \rangle, \rho_2 = \langle w, u, v \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{uv, vu, vw, wv\}$ . Definimos  $x_{uw}^1 = x_{wu}^2 = 0, x_{uv}^1 = x_{vu}^2 = 0, x_{wv}^1 = x_{vw}^2 = 0, x_{wv}^1 = x_{vw}^2 = 0, x_{wv}^1 = x_{wv}^2 = 0$ .

Agora, vamos demonstrar algumas relações entre os coeficientes não nulos em  $\pi$ .

a) Vamos demonstrar que  $\pi^x_{uv} = \pi^x_{uw}$ .

Seja a ordem  $\rho = \langle u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \notin \{uv, uw, vw\}, (x_{uv}^1, x_{uw}^1, x_{vw}^1) = (1, 0, 0)$  e  $(x_{uv}^2, x_{uw}^2, x_{vw}^2) = (0, 1, 0)$ . Assim,  $\pi^{\top}(s^1 - s^2) = \pi_{uv}^x - \pi_{uw}^x = 0$ . Logo,  $\pi_{uv}^x = \pi_{uw}^x$ .

b) Vamos demonstrar que  $\pi_{wv}^x = -\pi_{uv}^x$ .

Seja a ordem  $\rho = \langle u, w, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uv, uw, wv\}, (x_{uv}^1, x_{uw}^1, x_{wv}^1) = (0, 1, 0)$  e  $(x_{uv}^2, x_{uw}^2, x_{wv}^2) = (1, 1, 1)$ . Assim, temos que  $\pi^{\top}(s^1 - s^2) = -\pi_{uv}^x - \pi_{wv}^x = 0$ . Logo,  $\pi_{wv}^x = -\pi_{uv}^x$ 

- c) Vamos demonstrar que  $\pi^x_{uw} = -\pi^x_{vw}$ .
  - Seja a ordem  $\rho = \langle u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uv, uw, vw\}, (x_{uv}^1, x_{uw}^1, x_{vw}^1) = (1, 0, 0)$  e  $(x_{uv}^2, x_{uw}^2, x_{vw}^2) = (1, 1, 1)$ . Assim temos que  $\pi^{\top}(s^2 - s^1) = \pi_{uw}^x + \pi_{vw}^x$ . Logo,  $\pi_{uw}^x = -\pi_{vw}^x$ .

Utilizando as igualdades entre as componentes não nulas em  $\pi$  obtemos,

$$-\pi^x_{wv} = \pi^x_{uv} = \pi^x_{uw} = -\pi^x_{vu}$$

o qual nos permiti expressar  $\mathcal{H}$  como,

Finalmente, temos

$$\mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi_{uv}^x \cdot (x_{uv} + x_{uw} - x_{vw} - x_{wv}) = \pi_0 \}$$
(A.2)

Assim, temos  $\pi_0 = \pi_{uv}^z$  e a inequação de H é multiplo da inequação F. Logo,  $\mathcal{F}$  é faceta.

**Lema A.0.10.**  $z_{uv} + z_{vw} \leq z_{uw} + 1$  induz faceta, para todo  $\{u, v, w\} \subseteq V$ .

Demonstração. Vamos demonstrar que a desigualdade  $z_{uv} + z_{vw} \leq z_{uw} + 1$  induz faceta, para todo  $\{u, v, w\} \subseteq V$ .

Definimos  $\mathcal{F} = \{s \in \mathcal{P}_{EOF} : z_{uv} + z_{vw} - z_{uw} = 1\}.$ Suponha que

$$\mathcal{F} = \{s \in \mathcal{P}_{\text{EOF}} : z_{uv} + z_{vw} - z_{uw} = 1\} \subseteq \mathcal{H} = \{s \in \mathcal{P}_{\text{EOF}} : \pi^{\top}s = \pi_0\}$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E}$ , temos  $\pi_{ab}^x = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Seja a ordem  $\rho = \langle a, b, u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\}$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

Suponha que a = u. Seja a ordem  $\rho = \langle u, b, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ub\}$  e  $x_{ub}^1 = 1$ ,  $x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Suponha que a = v. Seja a ordem  $\rho = \langle v, b, w, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{vb\}$  e  $x_{vb}^1 = 1$ ,  $x_{vb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Suponha que a = w. Seja a ordem  $\rho = \langle w, b, u, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{wb\}$  e  $x_{wb}^1 = 1$ ,  $x_{wb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Suponha que  $b \in \{u, v, w\}$ . Seja a ordem  $\rho = \langle a, u, v, w \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

c) Vamos demonstrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

Suponhaa = u. Seja a ordem  $\rho = \langle u, v, w \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^\top (s^1 - s^2) = \pi_{ab}^x = 0$ . Suponha a = v. Seja a ordem  $\rho = \langle v, w, u \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^\top (s^1 - s^2) = \pi_{ab}^x = 0$ . Suponha a = w. Seja a ordem  $\rho = \langle w, u, v \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^\top (s^1 - s^2) = \pi_{ab}^x = 0$ . Suponha a = w. Seja a ordem  $\rho = \langle w, u, v \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^\top (s^1 - s^2) = \pi_{ab}^x = 0$ .

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V$  com  $ab \notin \{uv, vw, uw\}$ , temos que  $\pi_{ab}^{z} = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Sejam as ordens  $\rho_1 = \langle a, b, u, v, w \rangle$ ,  $\rho_2 = \langle b, a, u, v, w \rangle$ , definindo  $z^1 \in z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

Suponha que a = u. Sejam as ordens  $\rho_1 = \langle u, b, v, w \rangle$ ,  $\rho_2 = \langle b, u, v, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Suponha que a = v. Sejam as ordens  $\rho_1 = \langle v, b, w, u \rangle$ ,  $\rho_2 = \langle v, b, w, u \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Suponha que a = w. Sejam as ordens  $\rho_1 = \langle w, b, u, v \rangle, \rho_2 = \langle b, w, u, v \rangle$ , definindo  $z^1$  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Exibiremos algumas relações entre as componentes não nulas de  $\pi$ .

a) Vamos demonstrar que  $\pi_{uv}^z = -\pi_{uw}^z$ .

Sejam as ordens  $\rho_1 = \langle u, v, w \rangle, \rho_2 = \langle v, w, u \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E}$ . Observe que as únicas variáveis distintas são  $(z_{uv}^1, z_{uw}^1) = (1, 1)$  e  $(z_{uv}^2, z_{uw}^2) = (0, 0)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{uv}^z + \pi_{uw}^z = 0$ . Logo,  $\pi_{uv}^z = -\pi_{uw}^z$ .

b) Vamos demonstrar que  $\pi_{uw}^z = -\pi_{vw}^z$ .

Sejam as ordens  $\rho_1 = \langle u, v, w \rangle, \rho_2 = \langle w, u, v \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E}$ . Observe que as únicas variáveis distintas são  $(z_{uw}^1, z_{vw}^1) = (1, 1)$  e  $(z_{uw}^2, z_{vw}^2) = (0, 0)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{uw} + \pi^z_{vw} = 0$ . Logo,  $\pi^z_{uw} = -\pi^z_{vw}$ .

c) Observe que  $\pi_{uv}^z = -\pi_{uw}^z = \pi_{vw}^z$ . Assim,  $\pi_{uv}^z = \pi_{vw}^z$ .

Finalmente, temos

$$\mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi_{uv}^z \cdot (z_{uv} + z_{vw} - z_{uw}) = \pi_0 \}$$
(A.3)

Assim, temos  $\pi_0 = \pi_{uv}^z$ . Além disso, temo que inequação indutora de  $\mathcal{H}$  é multiplo não nulo da inequação indutora de  $\mathcal{F}$ . Logo,  $\mathcal{F}$  é faceta.

| - 1 |  | н |
|-----|--|---|
|     |  | L |
|     |  | L |
|     |  | L |
| 14  |  |   |

**Lema A.0.11.**  $z_{uv} + x_{uw} - 1 \le x_{vw} + x_{wv}$  induz faceta, para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ .

Demonstração.  $z_{uv} + x_{uw} - 1 \leq x_{vw} + x_{wv}$  induz faceta, para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ . Definimos  $\mathcal{F} = \{s \in \mathcal{P}_{\text{EOF}} : z_{uv} + x_{uw} - x_{vw} - x_{wv} = 1\}$ . Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : z_{uv} + x_{uw} - x_{vw} - x_{wv} = 1 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}.$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E} \setminus \{uw, vw, wv\}$ , temos  $\pi_{ab}^x = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0$ .

Seja a ordem  $\rho = \langle a, b, u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\}$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

Suponha que  $a \in \{u, v, w\}$ . Seja a ordem  $\rho = \langle u, v, w, b \rangle$  definindo  $z^1 e z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uw, vw, ab\}, x_{uw}^1 = 0, x_{vw}^1 = 0, x_{uw}^2 = 0, x_{vw}^2 = 0$ ,  $x_{ab}^1 = 1 e x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Suponha que  $b \in \{u, v, w\}$ . Seja a ordem  $\rho = \langle a, u, v, w \rangle$  definindo  $z^1 e z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab\}, x_{ab}^1 = 1$  e  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

c) Vamos demonstrar para  $|\{a, b\} \cap \{u, v, w\}| = 2$ .

Suponha que ab = wu. Seja a ordem  $\rho = \langle w, u, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab, wv\}, x_{wv}^1 = 0, x_{wv}^2 = 0, x_{ab}^1 = 1$  e  $x_{ab}^2 = 0$ . Obtemos dois vetores viáveis distintos apenas por  $x_{ab} \in \{0, 1\}$ . Logo,  $\pi_{ab}^x = 0$ .

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V$  com  $ab \notin \{uv\}$ , temos que  $\pi_{ab}^{z} = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Sejam as ordens  $\rho_1 = \langle a, b, u, v, w \rangle$ ,  $\rho_2 = \langle b, a, u, v, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ .

Suponha que a = u. Sejam as ordens  $\rho_1 = \langle u, v, w, b \rangle, \rho_2 = \langle u, v, b, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab, ba\}$ . Se  $ab \in \overline{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Suponha que  $a \in \{v, w\}$ . Sejam as ordens  $\rho_1 = \langle u, \{u, v\}, b \rangle, \rho_2 = \langle u, v, b, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E}$ . Caso  $ab \in E$ , obtemos dois vetores viáveis distintos apenas por  $z_{wb} \in \{0, 1\}$ . Caso  $ab \in \overline{E}$ , obtemos dois vetores viáveis distintos por  $z_{ab} \in \{0, 1\}$  e  $x_{wb} \in \{0, 1\}$ . Assim,  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z + \pi_{ab}^x - \pi_{ba}^x = 0$ .

Como já demonstramos que, para todo  $ab \in \overline{E} \setminus \{uw, vw, wv\}$ , temos  $\pi_{ab}^{x} = 0$ . Podemos simplificar  $\pi^{\top}(s^{1} - s^{2}) = 0$  obtendo  $\pi_{wb}^{z} = 0$ . Portanto, se  $wb \in \overline{E}$  temos  $\pi_{wb}^{z} = 0$ .

c) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 2$ .

Suponha que ab = uw. Sejam as ordens  $\rho_1 = \langle w, u, v \rangle, \rho_2 = \langle u, w, v \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{wu, wv, uw, vw\}, x_{wu}^1 = x_{wu}^2 = 0, x_{uw}^1 = x_{uw}^2 = 0, x_{wv}^1 = x_{wv}^2 = 0, x_{wv}^1 = x_{wv}^2 = 0$ . Obtemos dois vetores viáveis distintos apenas por  $z_{ab} \in \{0, 1\}$ . Logo,  $\pi_{ab}^z = 0$ .

Exibiremos algumas relações entre os componentes não nulos de  $\pi$ .

a) Vamos demonstrar que  $\pi_{uv}^z = -\pi_{uw}^x$ .

Sejam as ordens  $\rho_1 = \langle u, v, w \rangle, \rho_2 = \langle v, u, w \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{vw, wv, uw, wu\}, x_{uw}^1 = x_{uw}^1 = 1, x_{vw}^1 = x_{uw}^2 = 1, x_{wu}^2 = 0$  e  $x_{vw}^2 = x_{wv}^2 = 0$ . Observe que as únicas variáveis distintas são  $(z_{uv}^1, x_{vw}^1) = (1, 0)$  e  $(z_{uv}^2, x_{vw}^2) = (0, 1)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{uv} - \pi^x_{vw} = 0$ . Logo,  $\pi^z_{uv} = \pi^x_{vw}$ .

b) Vamos demonstrar que  $\pi_{uv}^z = -\pi_{uw}^x$ .

Seja a ordem  $\rho = \langle u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{uw, vw\}, x_{uw}^1 = 0, x_{vw}^1 = 0, x_{uw}^2 = 1, x_{vw}^2 = 1$ . Observe que as únicas variáveis distintas são  $(x_{uv}^1, x_{vw}^1) = (0, 0)$  e  $(x_{uv}^2, x_{vw}^2) = (1, 1)$ .

Assim, temos 
$$\pi^{\top}(s^1 - s^2) = -\pi^x_{uw} - \pi^x_{vw} = 0$$
. Logo,  $\pi^x_{uw} = -\pi^x_{vw}$ .

c) Vamos demonstrar que  $\pi_{vw}^x = \pi_{wv}^x$ .

Sejam as ordens  $\rho_1 = \langle u, v, w \rangle, \rho_2 = \langle u, w, v \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E}$ . Observe que as únicas variáveis distintas são  $(z_{vw}^1, x_{vw}^1, x_{wv}^1) = (1, 1, 0)$  e  $(z_{vw}^2, x_{vw}^2, x_{wv}^2) = (0, 0, 1)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{vw} + \pi^x_{vw} - \pi^x_{vw} = 0$ . Como já demonstramos que  $\pi^z_{vw} = 0$ , podemos simplificar a equação obtendo  $\pi^x_{vw} - \pi^x_{vw}$ .

Finalmente, temos

$$\mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi_{uv}^z \cdot (z_{uv} + x_{uw} - x_{vw} - x_{wv}) = \pi_0 \}$$
(A.4)

Assim, temos  $\pi_0 = \pi_{uv}^z$  e a inequação indutora de  $\mathcal{H}$  é multiplo da inequação indutora de  $\mathcal{F}$ . Logo,  $\mathcal{F}$  é faceta.

**Lema A.0.12.**  $z_{uw} + x_{wu} \ge x_{vw}$  induz faceta, para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ .

Demonstração.  $z_{uw} + x_{wu} \ge x_{vw}$  induz faceta, para todo  $uv \in E$  e  $uw, vw \in \overline{E}$ .

Definitions  $\mathcal{F} = \{s \in \mathcal{P}_{EOF} : z_{uw} + x_{wu} - x_{vw} = 0\}.$ 

Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : z_{uw} + x_{wu} - x_{vw} = 0 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}.$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E} \setminus \{wu, vw\}$ , temos  $\pi_{ab}^x = 0$ .

a) Vamos demostrar para  $a = u, b \neq v$ .

Seja a ordem  $\rho = \langle u, v, w \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demonstrar para  $a = w, b \neq u$ .

Seja a ordem  $\rho = \langle w, u, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, wu\}, x_{wu}^1 = x_{wu}^2 = 0$  e  $x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

c) Vamos demostrar para  $a = v, b \notin \{u, w, v\}$ .

Seja a ordem  $\rho = \langle v, w, u \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \overline{E} \setminus \{ab\}$  e  $x_{ab}^1 = 1$ ,  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

d) Vamos demostrar para  $a \notin \{u, v, w\}$ .

Seja a ordem  $\rho = \langle a, v, w, u \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab\} \in x_{ab}^1 = 1, x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Agora, vamos demonstrar que, para todo  $\{a, b\} \subseteq V$  com  $ab \notin \{uv\}$ , temos que  $\pi_{ab}^{z} = 0$ .

a) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 0.$ 

Sejam as ordens  $\rho_1 = \langle a, b, v, w, u \rangle$ ,  $\rho_2 = \langle a, b, v, w, u \rangle$ , definindo  $z^1 \in z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0$  e  $x_{ba}^1 = x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

b) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 1$ . Suponha  $a \in \{u, v, w\}$  e  $b \notin \{u, v, w\}$ . Sejam as ordens  $\rho_1 \in \rho_2$  tais que  $v \prec w \prec u$  idênticas exceto pela permutação das posições de  $a \in b$ . Em  $\rho_1$ , temos b sendo imediatamente posterior a a. Em  $\rho_2$ , temos b sendo imediatamente anterior a a.

Seja as ordens  $\rho_1 \in \rho_2$  definindo  $z^1 \in z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$ para todo  $pq \in \bar{E}$ . Assim,  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z + \pi_{ab}^x - \pi_{ba}^x = 0$ . Como já demonstramos que, para todo  $ab \in \bar{E} \setminus \{wu, vw\}$ , temos  $\pi_{ab}^x = 0$ . Podemos simplificar  $\pi^{\top}(s^1 - s^2)$  obtendo  $\pi_{ab}^z = 0$ .

c) Vamos demostrar para  $|\{a, b\} \cap \{u, v, w\}| = 2$ .

Sejam as ordens  $\rho_1 = \langle v, w, u \rangle, \rho_2 = \langle w, v, u \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ab, ba, wu\}$ . Se  $ab \in \bar{E}$ , definimos  $x_{ab}^1 = x_{ba}^2 = 0, x_{ba}^1 = x_{ab}^2 = 0$  e  $x_{wu}^1 = x_{wu}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

Provaremos que  $\pi_{vw}^x = -\pi_{wu}^x$ .

Sejam as ordens  $\rho_1 = \langle v, w, u \rangle, \rho_2 = \langle w, v, u \rangle$ , definindo  $z^1 z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{wu, wv\}$ . Definimos  $x_{wu}^1 = 1, x_{wu}^2 = 0, x_{wv}^1 = 0, x_{wu}^2 = 0$  e  $x_{wu}^1 = 1 x_{wu}^2 = 0$ . Observe que as únicas variáveis distintas são  $(z_{wv}^1, x_{wv}^1, x_{wu}^1) = (0, 1, 1)$  e  $(z_{wv}^2, x_{wv}^2, x_{wu}^2) = (1, 0, 0)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{vw} + \pi^x_{vw} + \pi^x_{wv} = 0$ . Como já demonstramos que  $\pi^z_{vw} = 0$ , podemos simplificar a equação obtendo  $\pi^x_{vw} = -\pi^x_{wu}$ .

Provaremos que  $\pi^x_{uw} = -\pi^x_{vw}$ .

Sejam as ordens  $\rho_1 = \langle v, u, w \rangle, \rho_2 = \langle v, w, u \rangle$ , definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vw, wu, uw\}$ . Definimos  $x_{vw}^1 = 1, x_{vw}^2 = 0, x_{uw}^2 = x_{wu}^2 = 0$  e  $x_{wu}^1 = 1, x_{wu}^2 = 0$ . Observe que as únicas variáveis distintas são  $(z_{wu}^1, x_{vw}^1) = (0, 1)$  e  $(z_{wu}^2, x_{vw}^2) = (1, 0)$ .

Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi^z_{uw} - \pi^x_{vw} = 0$ . Como já demonstramos que  $\pi^z_{vw} = 0$ , podemos simplificar a equação obtendo  $\pi^z_{uw} = \pi^x_{vw}$ .

Assim, temos  $\pi_0 = \pi_{uv}^z$  e que a inequação indutora de  $\mathcal{H}$  é multiplo da inequação  $\mathcal{F}$ . Logo,  $\mathcal{F}$  é faceta.

**Lema A.0.13.**  $z_{uv} + x_{vw} \leq z_{vw}$  induz faceta para todo  $uv, uw \in E$  e  $vw \in \overline{E}$ .

Demonstração. Vamos demonstrar que a desigualdade  $z_{uv} + x_{vw} \leq z_{vw}$  induz faceta para todo  $uv, uw \in E$  e  $vw \in \overline{E}$ .

Definitions  $\mathcal{F} = \{ s \in \mathcal{P}_{EOF} : z_{uv} + x_{vw} = z_{vw} \}.$ 

Suponha que

$$\mathcal{F} = \{ s \in \mathcal{P}_{\text{EOF}} : x_{uv} = 0 \} \subseteq \mathcal{H} = \{ s \in \mathcal{P}_{\text{EOF}} : \pi^{\top} s = \pi_0 \}.$$

Primeiro, vamos demonstrar que, para todo  $ab \in \overline{E} \setminus \{vw\}$ , temos  $\pi^x_{ab} = 0$ . Iremos dividir em casos.

a) Vamos demonstrar para  $a = u \in b \in V(G) \setminus \{u, v, w\}.$ 

Seja a ordem  $\rho = \langle u, w, v, b \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{ub\}, x_{ub}^1 = 1$  e  $x_{ub}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^x = 0$ .

b) Vamos demonstrar para a = w e b = v.

Seja a ordem  $\rho = \langle w, u, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2$  para todo  $pq \in \bar{E} \setminus \{wv\}, x_{wv}^1 = 1$  e  $x_{wv}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{wv}^x = 0$ .

- c) Vamos demonstrar para  $a = w \in b \in V(G) \setminus \{u, v, w\}$ . Seja a ordem  $\rho = \langle w, u, v, b \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2$  para todo  $pq \in \bar{E} \setminus \{wb\}, x_{wb}^1 = 1 \in x_{wb}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{wb}^x = 0$ .
- d) Vamos demonstrar para  $a \in V(G) \setminus \{u, v, w\} \in b \in \{u, v, w\}$ . Seja a ordem  $\rho = \langle a, u, w, v \rangle$  definindo  $z^1 \in z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2$  para todo  $pq \in \bar{E} \setminus \{ab\}, x_{ab}^1 = 1 \in x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .
- e) Vamos demonstrar para  $a \in V(G) \setminus \{u, v, w\}$  e  $b \in V(G) \setminus \{u, v, w, a\}$ .

Seja a ordem  $\rho = \langle a, b, u, w, v \rangle$  definindo  $z^1$  e  $z^2$ . Definimos  $x_{pq}^1 = x_{pq}^2$  para todo  $pq \in \overline{E} \setminus \{ab\}, x_{ab}^1 = 1$  e  $x_{ab}^2 = 0$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^x = 0$ .

Agora, vamos demonstrar que, para todo  $a, b \subseteq V(G)$  com  $\{a, b\} \neq \{v, u\}$  e  $\{a, b\} \neq \{v, w\}$ , temos  $\pi_{ab}^z = 0$ .

a) Vamos demonstrar para  $a = u \in b \in V(G) \setminus \{u, v, w\}.$ 

Sejam as ordens  $\rho_1 = \langle u, b, v, w \rangle$ ,  $\rho_2 = \langle b, u, v, w \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = z_{pq}^1$  e  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \overline{E}$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^z = 0$ .

b) Vamos demonstrar para  $a = v \in b \in V \setminus \{u, v, w\}$ .

Sejam as ordens  $\rho_1 = \langle w, u, v, b \rangle$ ,  $\rho_2 = \langle w, u, b, v \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = z_{pq}^1$  e  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \overline{E}$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ub}^z = 0$ .

c) Vamos demonstrar para  $a = w \in b \in V(G) \setminus \{u, v, w\}.$ 

Sejam as ordens  $\rho_1 = \langle u, v, w, b \rangle$ ,  $\rho_2 = \langle u, v, b, w \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = z_{pq}^1$  e  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \overline{E}$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{wb}^z = 0$ .

d) Vamos demonstrar para  $a \in V(G) \setminus \{u, v, w\} \in b \in V(G) \setminus \{a, u, v, w\}$ .

Sejam as ordens  $\rho_1 = \langle a, b, u, v, w \rangle$ ,  $\rho_2 = \langle b, a, u, v, w \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = z_{pq}^1$  e  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \bar{E}$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{ab}^z = 0$ .

e) Vamos demonstrar para a = u e b = w.

Tomemos as ordens  $\rho_1 = \langle v, u, w \rangle$ ,  $\rho_2 = \langle u, w, v \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente, e definindo  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \bar{E}$ ,  $x_{pq}^1 = z_{pq}^1$  para todo  $pq \in \bar{E} \setminus \{vw\}$ e  $x_{vw}^1 = 0$ . Observe que  $\pi^{\top}(s^1 - s^2) = \pi_{vu}^z + \pi_{vw}^z - \pi_{wv}^x = 0$ . Como  $\pi_{wv}^x = 0$ , temos  $\pi_{vu}^z = -\pi_{vw}^z$ .

Seja um vetor viável  $s^3 = (\omega^2, x^3, z^3)$  de forma que a ordem  $\rho_3 = \langle w, u, v \rangle$ defina  $z^3$ . Definimos  $x_{pq}^3 = z_{pq}^3$  para todo  $pq \in \bar{E} \setminus \{wv\}$  e  $x_{wv}^3 = 0$ . Observe que  $\pi^{\top}(s^1 - s^3) = \pi_{vu}^z + \pi_{uw}^z + \pi_{vw}^z = 0$ . Como  $\pi_{vu}^z = -\pi_{vw}^z$ , temos que  $\pi_{uw}^z = 0$ .

Resta mostrar as relações entre os coeficientes  $\pi_{vu}^z, \pi_{vw}^x \in \pi_{vw}^z$ . No item anterior, vimos que  $\pi_{vu}^z = -\pi_{vw}^z$ . Iremos provar que  $\pi_{vw}^z = -\pi_{vw}^x$  e, portanto, a faceta  $\mathcal{H}$  é um múltiplo de  $\mathcal{F}$ . Logo,  $\mathcal{F}$  é faceta.

Sejam as ordens  $\rho_1 = \langle u, v, w \rangle$ ,  $\rho_2 = \langle u, w, v \rangle$  definindo  $z^1$  e  $z^2$ , respectivamente. Definimos  $x_{pq}^1 = z_{pq}^1$  e  $x_{pq}^2 = z_{pq}^2$  para todo  $pq \in \overline{E}$ . Assim, temos  $\pi^{\top}(s^1 - s^2) = \pi_{vw}^z + \pi_{vw}^x - \pi_{wv}^x = 0$ . Como  $\pi_{wv}^x = 0$ , concluímos que  $\pi_{vw}^z = -\pi_{vw}^x$ .