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RESUMO

Uma consulta de vizinhos mais próximos (ou kNN, do inglês k nearest neighbours)
recupera o conjunto de k pontos de interesse que são mais próximos a um ponto de consulta,
onde a proximidade é computada do ponto de consulta para cada ponto de interesse. Nas redes
de rodovias tradicionais (estáticas) o custo de deslocamento de um ponto a outro é dado pela
distância física entre esses dois pontos. Por outro lado, nas redes dependentes do tempo o custo
de deslocamento (ou seja, o tempo de viagem) entre dois pontos varia de acordo com o instante de
partida. Nessas redes, as consultas kNN são denominadas TD-kNN (do inglês Time-Dependent
kNN). As redes de rodovias dependentes do tempo representam de forma mais adequada algumas
situações reais, como, por exemplo, o deslocamento em grandes centros urbanos, onde o tempo
para se deslocar de um ponto a outro durante os horários de pico, quando o tráfego é intenso
e as ruas estão congestionadas, é muito maior do que em horários normais. Neste contexto,
uma consulta típica consiste em descobrir os k restaurantes (pontos de interesse) mais próximos
de um determinado cliente (ponto de consulta) caso este inicie o seu deslocamento ao meio
dia. Nesta dissertação nós estudamos o problema de processar uma variação de consulta de
vizinhos mais próximos em redes viárias dependentes do tempo. Diferentemente das consultas
TD-kNN, onde a proximidade é calculada do ponto de consulta para um determinado ponto de
interesse, estamos interessados em situações onde a proximidade deve ser calculada de um ponto
de interesse para o ponto de consulta. Neste caso, uma consulta típica consiste em descobrir
os k taxistas (pontos de interesse) mais próximos (ou seja, com o menor tempo de viagem) de
um determinado cliente (ponto de consulta) caso eles iniciem o seu deslocamento até o referido
cliente ao meio dia. Desta forma, nos cenários investigados nesta dissertação, são os pontos de
interesse que se deslocam até o ponto de consulta, e não o contrário. O método proposto para
executar este tipo de consulta aplica uma busca A∗ à medida que vai, de maneira incremental,
explorando a rede. O objetivo do método é reduzir o percentual da rede avaliado na busca. A
construção e a corretude do método são discutidas e são apresentados resultados experimentais
com dados reais e sintéticos que mostram a eficiência da solução proposta.

Keywords: Processamento de consultas espaciais. Redes dependentes do tempo. Consultas de
vizinho mais próximo.



ABSTRACT

A kNN query retrieve the k points of interest that are closest to the query point,
where proximity is computed from the query point to the points of interest. Time-dependent
road networks are represented as weighted graphs, where the weight of an edge depends on
the time one passes through that edge. This way, we can model periodic congestions during
rush hour and similar effects. Travel time on road networks heavily depends on the traffic and,
typically, the time a moving object takes to traverse a segment depends on departure time. In
time-dependent networks, a kNN query, called TD-kNN, returns the k points of interest with
minimum travel-time from the query point. As a more concrete example, consider the following
scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest from
him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral of
Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to
it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes
10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same
query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower. In this work, we
identify a variation of nearest neighbors queries in time-dependent road networks that has wide
applications and requires novel algorithms for processing. Differently from TD-kNN queries, we
aim at minimizing the travel time from points of interest to the query point. With this approach,
a cab company can find the nearest taxi in time to a passenger requesting transportation. More
specifically, we address the following query: find the k points of interest (e.g. taxi drivers) which
can move to the query point (e.g. a taxi user) in the minimum amount of time. Previous works
have proposed solutions to answer kNN queries considering the time dependency of the network
but not computing the proximity from the points of interest to the query point. We propose and
discuss a solution to this type of query which are based on the previously proposed incremental
network expansion and use the A∗ search algorithm equipped with suitable heuristic functions.
We also discuss the design and correctness of our algorithm and present experimental results that
show the efficiency and effectiveness of our solution.

Keywords: TD-kNN Queries. Spatial querying process. Time-dependent networks



LISTA DE FIGURAS

Figura 1 – Traffic on the Bezerra de Menezes avenue in Fortaleza, Brazil, at two different
times of a day. Source: Google Maps (https://maps.google.com/). . . . . . . 15

Figura 2 – An example of kNN query. The fastest path from the query point to the
nearest neighbor is in solid line. The fastest path from the query point to the
other point of interest is in dashed line . . . . . . . . . . . . . . . . . . . . 16

Figura 3 – An example of taxi call . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figura 4 – Arrangement of taxis in the Fortaleza city. Source: (SIMPLES, 2015) . . . . 17

Figura 5 – A graph representing a road network and the costs of its edges for different
times of a day. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figura 6 – A new graph representing the inclusion of the vertex p over the edge (A,C)

and the travel time functions of the new edges created. . . . . . . . . . . . . 23

Figura 7 – Illustration of the Incremental Euclidean Restriction (IER) (PAPADIAS et
al., 2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figura 8 – Illustration of the Incremental Network Expansion (INE) for k = 10. Source:
(HTOO, 2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figura 9 – An access method for time-dependent road networks (CRUZ et al., 2012). . 27

Figura 10 – Architecture generally used by cabs companies. . . . . . . . . . . . . . . . 28

Figura 11 – Taxi call state machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Figura 12 – Graph of the TDG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figura 13 – Time-dependent edges cost. . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figura 14 – The Graph x The Reverse Graph . . . . . . . . . . . . . . . . . . . . . . . 35

Figura 15 – A graphical representation of the behavior of the cost function H(.). . . . . 38

Figura 16 – The distribution of the cost function H(.). . . . . . . . . . . . . . . . . . . 39

Figura 17 – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figura 18 – Processing Time X POI Density in a 10k road network. . . . . . . . . . . . 42

Figura 19 – Effectiveness in a 1k road network. . . . . . . . . . . . . . . . . . . . . . . 42

Figura 20 – Effectiveness in a 1k road network. . . . . . . . . . . . . . . . . . . . . . . 43

Figura 21 – The average of visited vertices in a 1k road network. . . . . . . . . . . . . . 43

Figura 22 – The average of visited vertices in a 10k road network. . . . . . . . . . . . . 44

Figura 23 – Page about Fortaleza city in Open Street Map Wiki. . . . . . . . . . . . . . 44

Figura 24 – Diagram of the database used to store the road network of Fortaleza and the
taxi positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figura 25 – The relationship between the taxi positions and the road network . . . . . . 45

Figura 26 – Fortaleza road network with 1,000 points. . . . . . . . . . . . . . . . . . . 46



Figura 27 – Fortaleza road network with 10,000 points. . . . . . . . . . . . . . . . . . . 46

Figura 28 – Fortaleza road network with 50,000 points. . . . . . . . . . . . . . . . . . . 46

Figura 29 – Fortaleza road network with 100,000 points. . . . . . . . . . . . . . . . . . 46

Figura 30 – Fortaleza road network with 1k, 10k, 50k and 100k vertices (Images obtained
using QGIS (QGIS Development Team, 2009)). . . . . . . . . . . . . . . . 46

Figura 31 – Number of database registers X Number of nodes in the corresponding graph. 47

Figura 32 – Number of incident edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figura 33 – Ration of executions that found a POI X Network size. . . . . . . . . . . . 49

Figura 34 – Evaluation of network size influence in real road networks. . . . . . . . . . 49



LISTA DE TABELAS

Tabela 1 – Taxi State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Tabela 2 – Selected Fields of Smartphone Log with a Sample (Fonte: (SIMPLES, 2015)) 30

Tabela 3 – Server machine used in the experiments. . . . . . . . . . . . . . . . . . . . 37

Tabela 4 – Interval of the day x Speed. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Tabela 5 – Parameters values of experiments using synthetic data. . . . . . . . . . . . 40

Tabela 6 – File CSV, GPS capture file (Fonte: ) . . . . . . . . . . . . . . . . . . . . . 64



SUMÁRIO

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 THEORETICAL FOUNDATION . . . . . . . . . . . . . . . . . . . . . . 20

2.1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 TIME-DEPENDENT GRAPH (TDG) . . . . . . . . . . . . . . . . . . . . 20

2.3 DIJKSTRA, INE AND A∗ SEARCH ALGORITHMS . . . . . . . . . . . . 23

2.3.1 Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Incremental Network Expansion (INE) . . . . . . . . . . . . . . . . . . . 23

2.3.3 A∗ search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 ACCESS METHOD FOR TDGS . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 TAXI BUSINESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 NN-REVERSE-TD QUERY . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 PROBLEM STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 NAIVE SOLUTION (BASELINE) . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Off-line Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 NN-REVERSE-TD ALGORITHM . . . . . . . . . . . . . . . . . . . . . . 34

3.3.0.1 Offline Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.0.2 Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 EXPERIMENTAL EVALUATION . . . . . . . . . . . . . . . . . . . . . 37



4.1 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 SCENARIO 1: USING A SYNTHETIC DATA SET . . . . . . . . . . . . . 38

4.2.1 Effect of the density of POIs . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Effect of the network size . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 SCENARIO 2: USING A REAL DATA SET . . . . . . . . . . . . . . . . . 42

4.3.1 Data Sets Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.2 Effect of the density of POIs . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Effect of the network size . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 TIME-DEPENDENT SHORTEST PATH . . . . . . . . . . . . . . . . . . . 50

5.2 kNN QUERIES IN ROAD NETWORKS . . . . . . . . . . . . . . . . . . . 51

5.3 TIME-DEPENDENT kNN QUERIES . . . . . . . . . . . . . . . . . . . . 52

5.4 REVERSE NEAREST/FARTHEST NEIGHBOR . . . . . . . . . . . . . . 53

6 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . 55

6.1 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERÊNCIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

ANEXOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ANEXO A – GPS capture file . . . . . . . . . . . . . . . . . . . . . . . . 64



14

1 INTRODUCTION

This chapter is organized as follows. The motivation for this work is presented in
Section 1.1. In Section 1.2 the general and specific objectives are presented. Finally, Section 1.3
presents the contributions and Section 1.4 concludes the chapter.

1.1 MOTIVATION

The modern society faces many challenges in solving problems related with people
mobility in large urban centers. Mobility is becoming an imperative issue because the road
networks of big cities do not grow at the same rate as the number of vehicles. The high amount
of vehicles creates congestion in the roads, which makes travel time forecasting extremely
hard. Besides, travel time may radically change from rushing hours to normal hours. So, the
assessment and consideration of traffic conditions is key for leveraging intelligent transportation
systems. Intelligent systems based on models built through real data evaluations are critical to
help the contemporary society in solving the mobility problem in big cities.

Currently, traces modern methods allow you to capture a lot of points of moving
objects. With the high availability of inexpensive tracking devices, such as GPS-enabled devices,
besides the traffic sensors positioned in road segments in several countries, it is possible to collect
large amounts of trajectory data of vehicles. Using such data along with the underlying road
network information allows creating an accurate picture of the traffic conditions in time and
space. Thus, it becomes feasible to model the dependence of traveling speed on the time of the
day based on historical traffic data. Given this information it is possible to analyze and provide
location-based services and to solve complex spatio-temporal queries. One possible use of this
information is to compute more realistic travel time forecasting from an origin to a destination,
which is a major issue for the intelligent transportation domain.

With the increasing interest in intelligent transportation, more complex and advanced
query types were recently proposed, such as nearest neighbors (kNN) queries (SHARIFZADEH
et al., 2008; LI et al., 2005; CHEN et al., 2011; PAPADIAS et al., 2003; JENSEN et al.,
2003; KOLAHDOUZAN; SHAHABI, 2004b; KOLAHDOUZAN; SHAHABI, 2005) and route
planning queries (SHARIFZADEH et al., 2008; LI et al., 2005; CHEN et al., 2011). A kNN
query returns the k points of interest that are closest to the query point, where proximity is
computed from the query point to the points of interest. So, as a result, many navigation systems
are now enhanced to support kNN research. People use these systems for decision making.
For example, users may ask questions like "What is the shortest path to go from home to the
University?"or "What is the nearest train station to a hospital?".

Though, the majority of previous solutions fails to represent the reality in the sense
that they assume that road networks are static and the cost to traverse each edge is given by the
length of this edge and, thus, it does not vary with time. This assumption is certainly not true
on a real scenario, where the travel time heavily depends on the traffic and, typically, the time
that a moving object takes to traverse a segment depends on departure time. Figure 1 shows a
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(a) Traffic at 06:22h. (b) Traffic at 08:40h.

Figura 1 – Traffic on the Bezerra de Menezes avenue in Fortaleza, Brazil, at two different times
of a day. Source: Google Maps (https://maps.google.com/).

real example of how traffic is influenced by the time of day and, consequently, the time spent
to move from one point to another within a large city. It illustrates two different moments of a
same avenue in Fortaleza, Brazil. At 19:30h this avenue is completely congested and, thus, the
time to cross it is longer than at 20:40h, when the traffic is less intense.

Some recent studies have included the temporal dependence to solve conventional
spatial queries, such as kNN (DEMIRYUREK et al., 2010c; DEMIRYUREK et al., 2010d; CRUZ
et al., 2012) and shortest path (NANNICINI et al., 2012) queries. In time-dependent networks, a
kNN query, called TD-kNN, returns the k points of interest with minimum travel-time from the
query point. As a more concrete example, consider the following scenario. Imagine a tourist in
Fortaleza who is interested to visit the touristic attraction closest from him/her. Let us consider
two points of interest in the city, the Fortaleza Cathedral and the Iracema Beach. He/she asks a
query asking for the touristic attraction whose the path leading up to it is the fastest at that time,
the answer depends on the departure time. For example, at 10h it takes 10 minutes to go to the
Cathedral (see Figure 2a). It is the nearest attraction. Although, if he/she asks the same query at
22h, in the same spatial point, the nearest attraction is the Iracema Beach (see Figure 2b).

According to (CRUZ et al., 2012), time-dependent road networks are represented as
weighted graphs, where the vertices represent the network junctions, starting and ending points
of a road segment (e.g. a street or an avenue), the edges connect vertices (depending on the
application, additional points can represent a change in curvature or in maximum speed of a
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(a) The nearest neighbor at 10h (b) The nearest neighbor at 22h

Figura 2 – An example of kNN query. The fastest path from the query point to the nearest
neighbor is in solid line. The fastest path from the query point to the other point of

interest is in dashed line

segment) and the weight (cost in time) of an edge is a function of the departure time. This way,
we can model periodic congestion during rush hour and similar effects, for example.

Processing queries in time-dependent road networks is challenging due to a number
of reasons. The space required to store these networks is significantly larger than the space
used to store the time-independent ones, since it is necessary to keep, for each edge, the cost to
traverse it for every time interval of a day. Furthermore, solutions for conventional queries in
static networks can not be directly applied to solve the time-dependent problems. Particularly, it
is complicated to apply the well-known speed-up technique of bi-directional search, that starts
a search simultaneously from the source and the target, to solve the shortest path problem in a
time-dependent network since the arrival time would have to be known in advance for such a
procedure.

In this work, we identify a variation of nearest neighbors queries in time-dependent
road networks that has wide applications and requires novel algorithms for processing. Differently
from TD-kNN queries, we aim at minimizing the travel time from points of interest to the query
point. As an example of the application of such query, a cab company can find the nearest taxi
in time to a passenger requesting transportation. More specifically, we address the following
query: find the k points of interest (e.g. taxi drivers) which can move to the query point (e.g. a
taxi user) in the minimum amount of time. Figure 3 illustrates how a TD-kNN query can be
used. Consider two different scenarios, one at 8h30 and another at 14h. In both scenarios, there
are two taxi drivers and different paths to reach the passenger. Taking into consideration the
travel time to roaming the streets, the time of the call and the period of time that the passenger is
willing to wait for the taxi, the proposed query should return the taxi driver who can answer first
the customer call.
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Figura 3 – An example of taxi call

Figure 4 shows a real example of how a cab company may be scattered in a city.
This figure illustrates the location of the cabs, of a same company, in Fortaleza city at 10h.

Figura 4 – Arrangement of taxis in the Fortaleza city. Source: (SIMPLES, 2015)

Previous works have proposed solutions to answer kNN queries considering the time
dependency of the network but not computing the proximity from the points of interest to the
query point. We propose and discuss a solution to this type of query which are based on the
previously proposed incremental network expansion and use the A∗ search algorithm equipped
with suitable heuristic functions. We also discuss the design and correctness of our algorithm
and present experimental results that show the efficiency and effectiveness of our solution. We
can note that in some cases, the answer returned by a regular TD-kNN query is coincidentally the
same as returned by our query, for example, where all the roads allow bi-directional vehicles’s
flow and all conversions are allowed, what is unreasonable in real situations.
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1.2 OBJECTIVES

Given the motivating scenario presented above, the general objective of this work
is to study the problem of to find the k points of interest (e.g. cabs, ambulances or police cars)
which can move to the query point (e.g. a taxi user or a citizen waiting for an emergency service)
in the minimum amount of time, proposing efficient and optimal solutions to them. To achieve
this objective, we established the following specific objectives:

• To propose a baseline solution, for comparison purposes, to the problem of minimizing the
travel time from points of interest to the query point;
• To propose an efficient algorithm to solve the problem of minimizing the travel time from

points of interest to the query point;
• To evaluate the proposed solutions to the problem of minimizing the travel time from

points of interest to the query point and to indicate in which types of applications each one
should be used;
• To specify and develop a new generator of synthetic networks, varying both the network

size and the density of points of interest;
• To design and develop road networks based in real data about the streets and cabs positions

in the Fortaleza city;

1.3 CONTRIBUTIONS

We propose and discuss a solution to this type of query, which is based on the
previously proposed incremental network expansion and use the A∗ search algorithm equipped
with suitable heuristic functions. This solution find the k points of interest which can move to
the query point in the minimum amount of time. We also discuss the design and correctness
of our algorithm and present experimental results that show the efficiency and effectiveness
of our solution. We note that, in some cases, the answer returned by a regular TD-kNN query
is coincidentally the same as returned by our query, for example, when all the roads allow bi-
directional vehicle flow and all conversions are allowed, what is unreasonable in real situations.

The following items summarize the main contributions of this thesis:

• We propose and discuss a baseline solution, for comparison purposes, to the problem of
minimizing the travel time from points of interest to the query point in time-dependent
networks. The baseline solution is a variation of the algorithm proposed by Dijstra(DIJKSTRA,
1959);
• We propose an efficient algorithm to solve the problem of minimizing the travel time from

points of interest to the query point in time-dependent networks;
• We evaluate the proposed solutions to the problem of minimizing the travel time from

points of interest to the query point in time-dependent networks using synthetic and real
data;
• We specify and develop a new generator of synthetic networks, varying both the network

size and the density of points of interest;
• We design and develop road networks based in real data about the streets and cabs positions
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in the Fortaleza city;

1.4 CONCLUSION

The next chapters of this thesis are structured as follows:

• Chapter 2 presents the key concepts involved in this work. It formalizes the concept of
time-dependent graph and presents some definitions useful to formalize our problems.
Furthermore, we discuss in details the A∗ search (HART et al., 1968) and Incremental
Network Expansion (INE) (PAPADIAS et al., 2003) algorithms, which are bases for our
solutions and a method to access information about adjacency of vertices and history traffic
in time-dependent networks.
• Chapter 3 presents the proposed solutions in details;
• Chapter 4 evaluates the proposed approaches;
• Chapter 5 discuss the related works;
• Chapter 6 concludes this thesis with a summary of our findings and some suggestions for

further work.
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2 THEORETICAL FOUNDATION

This chapter describes the concepts and models used to represent time-dependent
networks and some of their properties. Section 2.1 shows the definitions of interest point and
query point. Section 2.2 presents the graph used to model this network, called time-dependent
graph, as well as some concepts necessary to the formulation of the problems investigated in
this work. In Section 2.3 we discuss in details the Dijkstra, A∗ search (HART et al., 1968) and
the Incremental Network Expansion (INE) (PAPADIAS et al., 2003) algorithms, which are of
key importance to our proposed solutions. Section 2.4 describes an efficient access method for
time-dependent networks. In Section 2.5 we discuss some characteristics of the taxi business.
Finally, Section 2.6 concludes this chapter.

2.1 PRELIMINARIES

We start this section discussing some terminologies used in this work. These termi-
nologies include interest point and query point.

Definição 1 (Interest Object or Interest Point or Point of Interest - POI) An interest object
is any object on a network and it is of interest to users. An interest point is where the interest
object is located. We use the terms interest objects and interest points interchangeably. We
assume a road network containing a set of interest objects, such as cabs, ambulances, etc.

Definição 2 (Query Object or Query Point) A query object is an object on the network and
its influence on interest objects is determined as the query is called. A query point is where the
query object is located. We use the terms query object and query point interchangeably.

2.2 TIME-DEPENDENT GRAPH (TDG)

We consider that the structure of a time-dependent road network is modeled by a
graph where the vertices represent the intersections of road segments. Those are connected by
edges, which the cost to traverse vary with time. More formally, the network is modeled by a
time-dependent graph (TDG) G = (V,E,C), where V is a set of vertices, E is a set of edges
and the cost (time in our domain of interest), represented by C, to traverse an edge is a function
of the departure time. In other words, a TDG is a graph in which the costs of the edges varies
with time. The concept of TDG is formally defined below.

Definição 3 A time-dependent graph (TDG) G= (V,E,C) is a graph where: (i) V = {v1, ...,vn}
is a set of vertices; (ii) E = {(vi,v j) | vi,v j ∈ V, i 6= j} is a set of edges; (iii) C = {c(vi,v j)(·) |
(vi,v j) ∈ E}, where c(vi,v j) : [0,T ]→ R+ is a function which attributes a positive weight for
(vi,v j) depending on a time instant t ∈ [0,T ] and where T is a domain-dependent time length.

We assume that C is a set of functions that are defined in the interval [0, T ] where
T is a domain-dependent time length. Particularly, in this work, we assume that T has the
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(a) A graph representing a road network.

(b) Cost functions, or travel time on edges.

Figura 5 – A graph representing a road network and the costs of its edges for different times of a
day.

granularity of 15 minutes during a day. For each edge (u,v), a function c(u,v)(t) gives the cost of
traversing (u,v) at the departure time t ∈ [0,T ]. We also assume that the travel times of the edges
in the network follow the FIFO property, i.e., an object that starts traversing an edge first has
to finish traversing this edge first as well. The general time-dependent shortest path problem in
which the departure is immediate, i.e. the user departs exactly at the time t, and in which waiting
is disallowed everywhere along the path through the network is NP-hard (ORDA; ROM, 1990a),
but it has a polynomial time solution in FIFO networks. Since the travel times satisfy the FIFO
property, waiting in a intermediary vertex in a path is not beneficial.

Note that the definition given above does not require the graph to be bidirected. More
specifically, the existence of an edge (u,v) does not imply in the existence of the edge (v,u).
Furthermore, there may be opposing edges (u,v) and (v,u) such that c(u,v)(t) 6= c(v,u)(t). As an
example, consider the graph shown in Figure 5 which is a representation of a time-dependent
road network. The travel times of its edges for each instant of a day are shown in the graphics in
Figure 5b. The pairs of opposite edges (A,C) and (C,A) and (B,C) and (C,B) have the same
cost. However, (A,B) and (B,A), although opposite, have distinct costs.

The time cost to traverse a path from a specific starting time, or departure time, is
called travel-time. The travel-time is calculated assuming that stops are not allowed because, as
discussed before, we consider that the network is FIFO waiting in a vertex do not anticipate the
arrival time of a vehicle. The travel-time of a path is calculated considering the arrival time at
each vertex belonging to it. These concepts are formally defined below.

Definição 4 Given a TDG G = (V,E,C), the arrival time at the vertex v j of an edge (vi, v j) ∈ E
at departure t ∈ [0, T] is given by AT (vi,v j, t) = t + c(vi,v j)(t) mod T .
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Given that a vehicle starts a path at a vertex of the graph and this path starts at a
determined departure time, the arrival-time calculates the time instant when the vehicle arrives at
the other end of the edge. Considering the cost functions shown in 5b, when traversing the road
represented by (B,A) at 10:00 am, a vehicle arrives at 10:10 am at A. Note that the operation of
the rest (mod) exists for the calculation of the arrival-time be circular. For instance, consider that
one departs from B towards A at t = 24:00, AT (vi,v j,24:00) is 0:10, since the vehicle arrives at
the other end of the edge at this time.

Definição 5 Given a TDG G = (V,E,C), a path p = 〈vp1, ...,vpk〉 in G and a departure time t ∈
[0, T], the travel-time of p is the time-dependent cost to traverse this path, given by T T (p, t) =
∑

k−1
i=1 c(vpi ,vpi+1)

(ti) where t1 = t and ti+1 = AT(vpi , vpi+1 , ti).

The above definition shows how the cost of a path, called travel-time, is calculated.
Given the sequence of vertices that compose a path and the time instant when one starts to
traverse this path, the travel-time is the sum of the costs to go from one vertex to the next one
in the sequence. The cost to go from the first to the second vertex is calculated considering the
departure time t. The cost to reach the next vertices depends on the arrival time at the previous
vertex. It is important to notice that this definition does not take into consideration stops at the
nodes of the graph, that is, the way to the next vertex in the sequence begins at the same moment
when the previous vertex was reached (COSTA et al., 2014). As an example, consider the path
〈B,A,C〉 in the graph shown in Figure 5a. At a departure time t = 10:00 am, the cost of traversing
this path is given by T T (〈B,A,C〉, 10:00) which is equal to 25 minutes, since the cost to go from
B to A at 10 am is 10 minutes and the arrival time at A is 10:10 am and the cost to go from A to
C at 10:10 am is 15 minutes.

We assume that points of interest as well as origin and destination points are located
on a vertex throughout this thesis. On the original network, those points are not necessarily
vertices, however, they can be transformed into new vertices of the network as shown in (CRUZ
et al., 2012). That work proposes the IncludePOI algorithm which take as input a TDG G and a
POI p = 〈(u,v),τp〉, where (u,v) is the edge over which p is positioned and τp is a ratio which
indicates how far p is from the begin of the edge (u). To illustrate how this algorithm works,
let us consider that we want to include a new vertex (not necessarily a POI) represented by
p = 〈(C,A), 1

3〉 in the network shown in Figure 5a. The IncludePOI algorithm works as follows.
It first inserts the new vertex p in the set of vertices V . Figure 6a shows the network with the
inclusion of p. As p is a point over (C,A), (C,A) is removed from E and two new edges (C, p)
and (p,A) are created. The travel time functions for (C, p) and (p,A) are c(C,p) =

1
3c(C,A) and

c(p,A) =
2
3c(C,A) and the travel time function c(C,A) is removed from C. The graphics representing

the travel times of the new edges are shown in Figure 6b. Next, as (A,C) is also in E, we need to
repeat the same process executed for the edge (C,A). (A,C) is removed from E and the edges
(A, p) and (p,C) are created. The new cost functions are c(A,p) =

2
3c(A,C) and c(p,C) =

1
3c(A,C) as

shown in Figure 6b.
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2.3 DIJKSTRA, INE AND A∗ SEARCH ALGORITHMS

In this section we discuss in details how the Dijkstra, Incremental Network Expansion
(INE) and the A∗ search algorithms, bases for the proposed solutions in this thesis, work.

2.3.1 Dijkstra’s algorithm

Dijkstra’s algorithm is an classical algorithm to solve the problem of the shortest
path from a given source to all other vertice in a directed graph with non-negative edge weights
is due to Dijkstra (DIJKSTRA, 1959). The algorithm keep, for each vertice u, a label distance[u]
with the tentative distance from s to u. A priority queue Q contains all vertices that describe
the current search horizon around s. At each step, the algorithm removes the node u from Q
with minimum distance from s. So, all outgoing edges (u,v) of u are relaxed, i.e., we check if
d(s,u)+ len(u,v)< distance[v] holds. If it holds, a shorter path to v via u has been found. In
this way, v is either inserted to the priority queue or its priority is decreased.

2.3.2 Incremental Network Expansion (INE)

The problem of processing k-nearest neighbor (k-NN) queries in road networks has
been investigated since the pioneering study by (PAPADIAS et al., 2003), where the Incremental
Euclidean Restriction (IER) and the Incremental Network Expansion (INE) methods were
proposed.

The basic idea of the IER method is to first find the k POIs from the query point q

(a) A graph representing the network with
the inclusion of the new vertex p.

(b) Cost functions of the new edges.

Figura 6 – A new graph representing the inclusion of the vertex p over the edge (A,C) and the
travel time functions of the new edges created.
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on the Euclidean distance using R-trees (GUTTMAN, 1984). Then, the network distances from
q to these POIs are calculated and the distance to the farthest of these POIs is used as an upper
bound. Next, all the POIs with an Euclidean distance from q less or equal to the upper bound are
investigated, that is, their network distances are calculated, because they offer a chance to be
part of the k-NN result. Figure 7 shows how this method works when one NN is required. IER
first retrieves the Euclidean nearest neighbor pE1 of q. Then, the network distance dN(q, pE1)

of pE1 is computed. This distance is then used as an upper bound, that is, all the objects closer
(to q) than pE1 in the network, should be within Euclidean distance at most dN(q, pE1), and,
thus, they should lie in the shaded area of the left figure. Next, as shown in the right figure,
the second Euclidean NN, pE2, is found. Similarly, the network distance dN(q, pE2) of pE2 is
computed. Since dN(q, pE2) < dN(q, pE1), pE2 becomes the new NN and the upper bound is
updated accordingly. As the distance to the next Euclidean NN pE3 is greater than dN(q, pE2),
the algorithm stops and returns pE2 as the nearest neighbor (COSTA et al., 2014).

Figura 7 – Illustration of the Incremental Euclidean Restriction (IER) (PAPADIAS et al., 2003).

Clearly, the problem with this approach is that, generally, k-NN POIs on the Eucli-
dean distance are not always k-NN on the road network distance, especially when time-dependent
costs are considered. Thus, several false hits must be investigated. To remedy this problem, the
Incremental Network Expansion (INE) algorithm was proposed. It performs network expansion
and searches neighbor POIs by visiting vertices in order of their proximity from q, using Dijks-
tra’s algorithm (DIJKSTRA, 1959), until all k nearest points of interest are located. Returning to
the example shown in Figure 7, as pE2 is the NN from q considering the network distance, the
INE algorithm first locates this POI without investigating pE1. The blue shaded area in Figure 8
indicates the search area on the road network of a k-NN query with the INE approach for k =
10 (COSTA et al., 2013). As shown in this figure, the search area is enlarged from q until the k
POIs have been found.

One drawback of this algorithm is that the search is not guided, i.e., the vertices
are examined in order of proximity from q without any estimate for the cost of achieving the
POIs. In order to guide the execution of this method, we incorporate an A* search to the INE
expansion, being possible to discard the verification of paths that do not lead to the solution. We
explain how this search works below.
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Figura 8 – Illustration of the Incremental Network Expansion (INE) for k = 10. Source: (HTOO,
2013).

2.3.3 A∗ search

The A∗ search is an algorithm that was originally proposed to find the shortest path
from an origin to a goal node and it is similar to Dijkstra’s algorithm. The main difference to
this algorithm lies in the use of a potential function that guides the search towards the goal. The
A* algorithm determines the order in which vertices are expanded in a search by using a cost
function, f (v). This function is a sum of two other functions: the known distance from the
starting vertex to the current vertex, d(q,v), plus a heuristic function, h(v), that estimates the
distance from this vertex to the goal.

As A∗ traverses the graph, it follows a path of the lowest expected total cost. It
maintains a priority queue of nodes to be traversed and it expands first vertices that appear to be
most likely to lead towards the goal. The lower f (v) for a given node v, the higher its priority.
At each step of the algorithm, the node with the lowest f (v) value is removed from the queue.
Then, the f and g values of its neighbors are updated accordingly, and these neighbors are added
to the queue (CRUZ et al., 2012). The algorithm stops when the destination vertex is removed
from the queue or when the queue is empty.

If the potential function h does not overestimate the cost to reach the goal from
all v ∈ V , then A* always finds shortest paths. If h(v) is a good approximation of the cost to
reach the goal, A* efficiently drives the search towards the goal, and it explores considerably
fewer nodes than Dijkstra’s algorithm. If h(v) = 0 ∀v ∈V , A* behaves exactly like Dijkstra’s
algorithm, i.e., it explores the same vertices.

Unlike the solutions used in the calculation of shortest paths, in the proposed so-
lutions in this thesis, the A* search is incorporated directly into the incremental expansion of
the network, rather than being used to calculate the travel-time from the query vertex q to each
candidate point of interest. Particularly, in the TD-kNN-OTC query, where we aim at finding the
nearest POIs from q considering the operating time of the POIs, there are multiple and unknown
goals. In the TD-OSR query, the goal is not only to reach the destination the quickest, but also to
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pass through a number of POIs belonging to certain categories in a given order (COSTA et al.,
2013).

2.4 ACCESS METHOD FOR TDGS

Building strategies and algorithms for correct and efficient query processing in time-
dependent networks is a challenge, since the common properties of graphs can not be satisfied in
the time-dependent case (GEORGE et al., 2007a). Particularly, these networks can not be stored
in the same way than a static network, the same applies to the access to the network information.
Thus, it emerges the need for storage methods that facilitate the access to the network information
and that support the design of efficient algorithms for computing the frequent queries on such
networks.

Some characteristics of the time-dependent networks should be considered in the
development of this method. First of all, these networks require more space than the static
ones to store the costs, since, for each edge, we need to keep the cost to traverse it for each
time interval of constant size (COSTA et al., 2014). Another important observation is that the
cost of storing the edges of the network grows as the time granularity (number of intervals)
increases. Finally, to store the costs of traversing an edge for all the time intervals together
implies accessing unnecessary information when retrieving disk page(s) that contains this edge,
since the access to the adjacency list is executed to get the cost of the edges for a given time.

Based on these observations, in order to process our queries in a more efficient way,
we resort to the access method proposed by (COSTA et al., 2014). It is important to notify
that we use this method without any modification or extension. It is composed by three levels,
the Time-Level, the Graph-Level and the Data-Level shown in Figure 9. The data pages in the
time-level contain pointers to index structures in the graph-level. As a TDG can be seen as a set
of static graphs for each time interval, the idea behind the first level is to access first the graph
corresponding to a given time interval, avoiding retrieving the edge costs for every possible
departure time. The graph-level has an index structure for each time partition, such that it is
possible to, given a vertex identifier (Nid), access its adjacency list in the graph corresponding to
the departure time. The data pages of the structures in the graph-level contain pointers to a disk
page in the data-level that stores the adjacency list of a vertex.

The index structures for the time and graph levels are generic in the originally
proposed method. In this work, we opted to use a B+-tree in the two index levels, which is
provided by the XXL library (BERCKEN et al., 2001). The pointers to the graph and data levels
are stored in the leaves and each node (including the internal nodes) is a page in disk (CRUZ et
al., 2012). Thus, the number of pages accessed for each retrieved data entry is of the order of
O(logb |T P|+ logb |V |), where b is the order of the tree, T P is the number of temporal partitions
that compose the cost of an edge and V is the number of vertices.
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Figura 9 – An access method for time-dependent road networks (CRUZ et al., 2012).

2.5 TAXI BUSINESS

The ground taxicab service is a public transport mode widely used in big cities.
Unlike mass public transit (such as buses, trolley buses, trams, subways and ferries), the cabs
does not have a regular route and no pre-set schedule. Besides, taxicab is an individual transport
service and has higher tariff than mass public. However, taxicab provides a higher quality service.

As part of the taxi companies’ efforts on improving their quality of service, in
general, each taxi is equipped with a smartphone, which is mainly used to handle taxi bookings
and monitor a taxi’s real time status. More specifically, it receives taxi booking tasks from the
backend service (taxi call center), and sends back taxi driver’s decision (accept or reject the task)
via mobile internet service (3G). Moreover, each smartphone keeps logging and updating a taxi’s
real time state by collecting the information from its frontend touch screen. Figure 10 depicts an
architecture generally used by cabs companies.

Based on the collected real time information, the smartphone app is able to identify
different taxi states. Table 1 lists all the taxi states with their descriptions.

Taxi State Description
FREE Taxi unoccupied and ready for taking a new passenger or booking
POB Passenger on board
STC Taxi soon to clear the current job and ready for new bookings

ONCALL Taxi unoccupied, but accepted a new booking
ARRIVED Taxi arrived at the booking pickup location and waiting for the passenger
NOSHOW No passenger showing up at he booking pickup location

Tabela 1 – Taxi State

The taxi state transitions depend on the type of a taxi job. In general, all taxi jobs
can be classified into two categories: street job and booking job. A street job means a cab picks
up new passengers by street hail, and the following is the typical taxi state transitions on a street
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Figura 10 – Architecture generally used by cabs companies.

job:

1. A passenger down a cab with FREE state along a road or a taxi stand.
2. The taxi driver starts the taximeter for a new trip and reports this situation using the

smartphone app, which updates the taxi state to POB.
3. During the trip, the taxi state keeps POB while the smartphone app periodically updates

the taxi GPS location.
4. The taxi is approaching the destination and the driver presses the FREE button on the

smartphone app to update the taxi state to FREE.

A booking job means a cab picks up new passengers, who have made a booking via
mobile phone applications (apps), short message service (SMS) or telephone. The typical taxi
state transitions on a booking job can be described as next:

1. A passenger makes a taxi booking, and the backend service dispatches the booking
information to the nearby taxis with FREE state. For this purpose, the backend service
makes a query looking for cabs inside a circle, with a certain radius, where the center of
the circle is the passenger position. In general, the current applications use the smallest
Euclidean distance. The cabs should be part of the zone which represents the customer’s
location. Zone is the area where a set of taxi drivers operates. The result of this query
is stored in a queue ordered by the Euclidean distance from the taxi to the passenger in
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ascending order. Then, the queue is consumed and the driver notified of the passenger’s
call. If the selected driver does not accept the passenger’s request, the next one in the
queue is notified.

2. A taxi driver successfully bids the booking job by pressing the button on the smartphone
touch screen, and meanwhile the app updates the taxi state to ONCALL.

3. Upon arrival of the booking pickup location, the app updates the taxi state to ARRIVED.
4. If the passengers do not show up within a specific time period (e.g., 15 minutes), the app

updates the taxi state to NOSHOW first and then to FREE within 10 seconds.
5. If the passenger gets on the taxi in time, the app updates the taxi state to POB once the

driver starts the taximeter.
6. Tthe subsequent taxi state transitions are the same as street job’s procedure, i.e., from

street job’s.

Figure 11 shows a complete taxi state transition diagram, which includes the proce-
dures of both street jobs and booking jobs.

Figura 11 – Taxi call state machine.

The smartphone app keeps updating and tracking any changes of taxi state and other
important information, e.g., GPS location, vehicle speed and taxi fares. The smartphone app
writes all such information to its local storage, and meanwhile selectively and periodically sends
them to the backend service via mobile internet. The app logging frequency is not fixed by
default, and a logging action is triggered by the taxi state changes, GPS location updates and
a few other critical vehicle events. Different from the traditional GPS localizer traces, the app
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adopts the event-driven logging mechanism, which are explicitly driven by the taxi state transition
events. Therefore, the app captures much more accurate information than the traditional GPS
traces, and accordingly provides more opportunities to discover and understand activities of both
taxis and passengers.

We use the app log from a large local taxi operator, and select some fields: cabid,
latitude, longitude, altitude, accuracy, altitudeaccuracy and timestamp. Table 2 gives the selected
fields and a sample record.

cabid latitude longitude altitude accuracy altitudeaccuracy timestamp
982335450 -37316237 -385125479 -6 30 98 Mon Nov 16 2015 11:01:43 GMT-0300 (BRT)
982335450 -37316237 -385125479 -6 30 98 Mon Nov 16 2015 11:01:43 GMT-0300 (BRT)
982335450 -37316654 -38512422 -5 29 100 Mon Nov 16 2015 11:01:44 GMT-0300 (BRT)

Tabela 2 – Selected Fields of Smartphone Log with a Sample (Fonte: (SIMPLES, 2015))

2.6 CONCLUSION

In this chapter we formally defined the concept of time-dependent graph and presen-
ted some definitions useful to formalize our problems in the following chapters. Furthermore,
we discussed how the Dijkstrae, INE and A∗ algorithms work. Besides, we showed some
characteristics of the taxi Business.
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3 NN-REVERSE-TD QUERY

In this chapter, we describe the problem of finding nearest neighbor on a time-
dependent network, hereinafter called NN-Reverse-TD query), which aims to find the nearest
neighbor POI tx of a query object q in a time-dependent network such that tx has the minimum
time-dependent travel-time to q.

We assume that a street network contains a set of identical objects (that is, points of
interest such as taxi, ambulance, car, etc). Our street network model is represented in a form
of a time dependent graph where each edge contains a non-negative weights, a linear function
according to the time of day. Each edge connects two different nodes of the graph.

We start this chapter stating NN-Reverse-TD Query problem. Next, in Section
3.1, we present a naive solution for this problem, which it will serve as our baseline in our
experiments. In Section 3.2, we describe an effective solution for the NN-Reverse-TD query
problem.

3.1 PROBLEM STATEMENT

In this section we define the problem of finding the Nearest Neighbor Reverse in
Time Dependent Network Query (NN-Reverse-TD Query). In order to formalize this problem
we resort to the definitions 3, 4 and 5 presented in Chapter 2.

Let P = {p1, ..., pN} be the set of PoIs mapped on vertices of a TDN graph T DG =
(V,E,C). Each PoI p is univocally mapped to a vertice of T DG. Let a travel time function tt(s, t),
which computes the travel time from source node s to target node t over T DG, where s,t 3 V .
We formalize as N-Reverse-TD query problem as follows:

Definição 6 (NN-Reverse-TD Query Problem) An instance of NN-Reverse Query problem is
a tuple NNRQ = (T DG, POI, qp, qt, wt) where T DG is a TDG graph, POI is a set of point of
interests where POI ⊆ P, qp is a query point such that qp 3 V , qt ∈ [0, T ] is a non-negative
integer representing the query time and mtt ∈ [0, T ] is a non-negative integer defining the
maximum waiting time. Given an instance of NNRQ, the problem is to find a p 3 P that satisfies
the following conditions:

1. tt(p,qp) ≤ wt
2. ∀ pi 3 V | tt(p,qp) ≤ tt(pi,qp) and p 6= pi

Condition 1 stablishes that the travel time should be less than the waiting time wt
and condition 2 specifies that travel time from p to qp must be minimal taking into account all
POIs.

3.2 NAIVE SOLUTION (BASELINE)

This approach is basically an extension of the Dijkstra’s algorithm (DIJKSTRA,
1959), which addresses the problem of finding the shortest path from an origin to a destination
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node. Here, the Dijkstra’s algorithm was applied in time-dependent networks.

Dijkstra’s algorithm computes all the shortest path between the source node to every
target nodes. Although this solution does not take into consideration the travel time of the each
edge, in the expansion of Dijkstra’s algorithm we performed the following criteria:

1. The target is a point of interest, a POI;
2. The non-negative weights is an heuristic function H(.) adds to each edge an estimate of

the cost to reach any another edge.

The idea is to reach POIs the quickest. Then, after they are reached, we calculate the
travel time to query object, 2. This is our baseline. It is important to stress that our naive solution
as well as Dijkstra’s algorithm determine if any two ’shortest path’ only one will be returned.

v0

v1 v2

v3 v4

v5 v6

v7

v9

v8

Figura 12 – Graph of the TDG

(a) Time-dependent edges cost.

Figura 13 – Time-dependent edges cost.
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3.2.1 Off-line Pre-processing

The Naive solution has two pre-processing steps that are executed off-line, i.e.,
before processing the query. The first step calculates the value of the heuristic function to the
vertices of G. For each vertex v ∈V , the distance between it and the nearest point of interest in G
is calculated. This distance is used as an estimate to the time to reach a POI from v, the chapter 4
is described more comprehensively this point.

Algoritmo 1: NN-Reverse-TD-Dijkstra (Baseline)
input :A query point q ∈ V , maximum travel time t ∈ [0, T ] and day time dt
output :The nearest neighbor to q considering the maximum travel time t

1 begin
2 poiIds[]← G.getPoiIds();
3 T Tmin ← t;
4 POI ← -1;
5 VV ← /0;
6 for i = 0 poiIds.size() do
7 Path← Di jkstra(q, poiIds[i],dt);
8 if Path.getCost() ≤ t then
9 if Path.getCost() ≤ T Tmin then

10 POI ← poiIds[i];
11 T Tmin ← Path.getCost();
12 VV ← Path.getVerticesVisited();
13 end
14 end
15 end
16 if POI > -1 then
17 NN(POI,T T min,VV );
18 end
19 end

3.2.2 Query Processing

Algorithm 1 (NN-Reverse-TD-Dijkstra) presents the algorithm to solve the NN-TD
Query problem. Using polymorphism,(CARDELLI; WEGNER, 1985), to put the problem in a
more abstract structure, we have the input method a query point q ∈ V , maximum travel time t ∈
[0, T ] and time of day dt.

As the two solutions differs in implementation, the baseline algorithm is similar to
the approach Backtracking Search. First, returns all v ∈ V that representing a point of interest,
POI, in graph (line 2). Then, for each point of interest returned, a shortest path check is performed
from the point of interest to the query point (line 6 and 7). As previously discussed, this shortest
path is an adaptation of Dijkstra’s algorithm, the weight of each edge is replaced by a heuristic
function H(.) that the input value is a time of day and the function returns is time required to
through the edge.

When there is a shortest path from point of interest to query point the next step is to
carry out the following checks:

First
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If the total time that was returned in the baseline query is less or equals the input value t,
this is maximum travel time for moving from point of interest to query point (line 8);

Second

If the total time that was returned in the baseline query is less or equals a value already
attributed (line 3) with the lowest value for moving from point of interest to query point
(line 9);

3.3 NN-REVERSE-TD ALGORITHM

In this section we present the proposed algorithm, show how to perform the pre-
processing step. This algorithm is based on the Incremental Network Expansion (INE) algorithm,
initially proposed by (??). The INE is an algorithm based on Dijkstra’s algorithm, where
initiating a query point, visited all the reachable vertices of q in order of their proximity, until
nearest point of interest are located. However different from previous solutions, our approach
does the expansion using a reverse graph, GR, which allows finding and pruning candidates POIs.

The heuristic function of the Naive solution does not take into consideration reverse
graph. Its goal is to reach POIs the closer with a shorter time. Then, after these POIs are reached,
the better POI is calculated. This solution is not very efficient in the sense that it spends time
searching for POIs that are close to q, but that may take a long time to return solution. Clearly, a
heuristic that besides considering an estimate to reach POIs can better guide the search for POIs
where one can be the service provider, it using the reverse graph heuristic.

Based on this, we propose reverse nearest neighbor solution. The reverse graph was
motivated of the heuristic If you can’t find a solution, try assuming that you have a solution and
seeing what you can derive from that ("working backward") from George Pólya’s 1945 book,
How to Solve It (POLYA, 1945). This heuristic allows the search to be expanded capture the
heuristic function H(.) not from vertex to destination vertex, but the destination vertex to the
source.

Now we need to formalize the notion of reverse time dependent graph as follows:

Definição 7 (Time-Dependent Graph Reverse (TDG-Reverse)) A reverse graph of G is a
graph with the same set of vertices, but the edges are reversed, i.e., if G contains an edge
(u,v) then the reverse of G contains an edge (v,u). A Time-Dependent Graph Reverse (TDG-
Reverse) is a graph defined as GR.

Figure 14a shows an example of a time-dependent graph G. Figure 14b illustrates
the reverse graph GR of G.

3.3.0.1 Offline Pre-processing

The pre-processing of this solution also has two steps. In the first one we created
the graph G in memory with the values of the heuristic function. Differently from the previous
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Figura 14 – The Graph x The Reverse Graph

solution we carry out the process to reverse graph, GR, where all directed edges are reversed.

3.3.0.2 Query Processing

As the two solutions differs in implementation, but can have the same input value:
query point q ∈ V , maximum travel time t ∈ [0, T ] and query time qt. However, the builder
objects for handling the query method, the parameter graph is an reverse graph. Algorithm 2
formalizes our solution to the RNN-TD problem.

First, the algorithm loads the reverse graph of G, GR, from the disk, line 2. Then,
the algorithm begins the expansion and inserts q in a priority queue Q (line 9) that stores the
set of candidates for expansion in the next step. An entry in queue Q is a tuple (vi,AT vi,T T vi),
where AT vi = AT (q,vi,dt) and T T vi = T T (q,vi,dt). The priority of elements in Q is given by
the increasing order of T T vi values with the purpose of checking first the vertices that offer a
greater chance to reach the POI in V .

Next, the vertices are dequeued from Q (line 11). When a vertex u is dequeued
from Q it is marked as visited (line 12) in the Visited list corresponding to the identifier vertex
visited until the current vertex. For example, the Visited[1] list represents that the vertice with
identifier (id) equals 1 already been visited. The path from this vertex to q is defined in another
list, Parents list.

For every element u pull of the Q check if the vertex was added to Visited list (line
12), i.e., if Visited contain vertex of the u. Another checking is realized, if maximum travel time
t was reached, if this return true, an exception thrown path not found for maximum travel time
and time of day, line 13 and line 14. And if current vertex is an POI, line 16.

For every v neighbor of u for an updated AT v, we check if it is in the Visited list. If
this condition is satisfied (which is verified on line 20) "jumps over"one iteration in the loop (line
21), doing this we avoid re-expand vertices unnecessarily. Otherwise, continue checking. T T
is updated, added travel time value to reach the current neighbor, line 23. Again to verify that
the maximum service time has been exceeded, it has been exceeded, "jumps over"one iteration,
line 24. The Parents list is updated with v, line 27. Already, as the network is expanded, AT vi is
decremented with t travel time value of the current neighbor (line 28).

The priority queue Q offer the entry with a tuple (v,AT v,T T v).
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The algorithm stops when the vertex is POI and maximum travel time for service, t,
it is not busted, as shown on lines 9 and 10.

Algoritmo 2: NN-Reverso-TD
input :A query point q ∈ V , maximum travel time t ∈ [0, T ] and day time dt
output :The nearest neighbor with the minimum route from POI to q considering the maximum travel time t

1 begin
2 GR ← G.reverseGraph();
3 ATq ← t + dt;
4 T Tmax ← 0;
5 Parent ← /0;
6 if q is POI then
7 Return NN(q,0, [q]);
8 end
9 En-queue (q, ATq, T Tmax) in Q;

10 while Q 6= /0 do
11 (q, ATq, T Tmax)← De-queue Q;
12 Mark q as visited;
13 if T T current > t then
14 Return -1;
15 end
16 if q is POI then
17 Return NN(POI,T T min,Parent)
18 end
19 for u ∈ ad jacency(q) do
20 if u is visited then
21 continue;
22 end
23 T T current ← q.getTravelTime() + u.getTravelTime();
24 if T T current > t then
25 continue;
26 end
27 Parent.add(q,u);
28 AT current ← q.getArrivalTime()- u.getTravelTime();
29 En-queue (u, AT current, T T current) in Q;
30 end
31 end
32 end
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4 EXPERIMENTAL EVALUATION

This chapter describes the experimental evaluation conducted in order to evaluate
the proposed algorithm and is organized as follows. Section 4.1 describes how the experiments
were conducted. Section 6.2 describes the experimental results obtained from a synthetic data
set. Section 6.3 shows the results obtained from a real data set. Finally, Section 6.4 concludes
the chapter.

4.1 EXPERIMENTAL SETUP

As far as we know there is no published research addressing the same query investi-
gated in this thesis, which it is: find the k points of interest which can move to the query point in
the minimum amount of time. Nonetheless, in order to have an idea of how effective our solution
is, we compare it to a naive solution used as a baseline. The proposed baseline is a variation of
the algorithm proposed by Dijstra(DIJKSTRA, 1959), as discussed previously. With the aim
of validate the proposed approach, we have used two different scenarios. In the first scenario,
a synthetic data set has been employed. In the second scenario, a real data set was utilized.
Besides, both the proposed approach and the baseline were implemented in Java programming
language and using the Graphast framework (Group Advanced Research in Database, 2015).

All experiments were conducted on a Intel Core 2 Quad CPU Q6600 server, with
8GB RAM and 2.40GHz, using Ubuntu 11.10 of 64 bits as operating system (see Table 3). We
performed the experiments without caching.

Configuration Information
Architecture x86_64 (32-bit, 64-bit)

CPU(s) 4
CPU family 6
Processor Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz
MemTotal 8174664 kB (8GB)

Linux version 3.13.0-65-generic
Distributor ID Ubuntu

Release 14.04 (trusty)

Tabela 3 – Server machine used in the experiments.

We have defined a synthetic cost function, denoted by H(.), where for each edge,
we chose a random speed between 3 km/h and 60 km/h for each interval of the day, so that the
time cost given by the ratio between the edge length and this speed satisfies the FIFO property
(See Table 4). The cost function H(.), for a given edge e, has a temporal resolution of 96 points
in time, e. g., a value at every 15 minutes of a day. So, for a certain edge e, the cost in time to
traverse e may vary every 15 minutes. Function H(.) was inspired by the Haversine method
(ABRAMOWITZ; STEGUN, 1964).

We can see according to Table 4 that higher speed values are arranged in hours where,
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Interval of the Day Range to generate speed
1 a.m to 6 a.m 30km/h - 50km/h
6 a.m to 7 a.m 20km/h - 30km/h
7 a.m to 9 a.m 3km/h - 14km/h

9 a.m to 11 a.m 20km/h - 30km/h
11 p.m to 14 p.m 3km/h - 14km/h
14 p.m to 16 p.m 50km/h - 60km/h
16 p.m to 17 p.m 20km/h - 30km/h
17 p.m to 20 p.m 3km/h - 14km/h
20 p.m to 22 p.m 21km/h - 30km/h
22 p.m to 00 p.m 50km/h - 60km/h

Tabela 4 – Interval of the day x Speed.

traditionally, there is a low flow of moving objects and the lower speed values are arranged in
hours where, generally, there is a high flow of moving objects. Figure 16 shows a graphical
representation of the behavior of the cost function H(.). Figure 16 illustrates the distribution of
the cost function H(.).

Figura 15 – A graphical representation of the behavior of the cost function H(.).

4.2 SCENARIO 1: USING A SYNTHETIC DATA SET

In this section, we present the results of the experiments we carried out using
a synthetic data set. We generated synthetic time-dependent road networks. A network is
generated as a grid where each point corresponds to a vertex. Each vertex has a uniformly
distributed number of neighbors from one to four, which are chosen between its adjacent vertices
(including the diagonal ones). The POIs are uniformly distributed over the network. To generate
the edges cost, we used the cost function H(.), described previously.
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Figura 16 – The distribution of the cost function H(.).

Figure 3 shows the algorithm used in this work to generate time-dependent road
networks. This algorithm receives as input parameters: the number of points in the the x-axis
(longitude), the number of points in the the y-axis (latitude) and the percentage of vertices that
are points of interest. In lines 2 and 3 is calculated the distance between two vertices. Line 7
defines the geographic coordinate in the the x-axis. Line 9 defines the geographic coordinate
in the y-axis. Hence, a vertex is created using these two geographical coordinates and added in
the graph (lines 11 to 15). After the node insertion, its edges are created, firstly in the vertical
direction (y-axis), line 18, and next in the horizontal direction (x-axis), line 19. It is noteworthy
that the edges have created two paths and their costs are set according to the Table 4 described
previously. It is important to note that this algorithm has a quadratic asymptotic complexity, that
is, O(n2).

We evaluated how the proposed approach and the baseline work according to two
variables that are shown in Table 5, the network size (i.e., number of vertices) and the density of
POIs (i.e., the percentage of POIs in relation to the number of vertices). For each experiment, we
vary a parameter and set the other parameter to default values (in bold) and for each triplet of
different parameters, we generated 10 distinct time-dependent road networks and executed 10
queries randomly selected for each network, for a total of 100 queries. We calculated upper and
lower 95% confidence limits for the relative gain, assuming the data to be normally distributed.
As only the network size and the density of POIs affect the cost of the pre-processing of all
solutions, we investigate how these costs are influenced by these variables.

We compare the algorithms according to the number of expanded vertices and the
number of I/O operations to access the disk pages in data-level, both with respect to the density
of POIs and network size. We simulated the I/O operations in data pages (data-level), using LRU
as cache politics and 5% of the number of disk page in data-level as the cache size. We can
verify, as expected, that there is a correlation between the number of expanded vertices and the
number of accessed disk pages.
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Algoritmo 3: Algorithm to generate time-dependent road networks
input :Number x of latitude points, number y of latitude points and p percentage of vertices that are POIs
output :The Graph G with x × y vertices

1 begin
2 interadorX ← 180 ÷ x;
3 interadorY ← 180 ÷ y;
4 randomPOI[]← RandomPOI(x,y, p);
5 poi← 0;

// iterate to create nodes
6 for i = 0 to x do
7 longitude← interadorX · i + (-90);
8 for j = 0 to y do
9 latitude← interadorY · j + (-90);

10 node← Node(latitude, longitude);
11 if poi ∈ randomPOI[] then
12 node.isPoi← true;
13 end
14 G.addNode(node) poi← poi + 1;
15 end
16 end

// iterate to create edges
17 for i = 0 to (x × y- 1) do

// create parallels edge to the axis abscises
18 if i < (x × y- x) then
19 edge← Edge(i, i+ y);
20 edge.RandomCost();
21 G.addEdge(edge);

22 edge← Edge(i+ y, i);
23 edge.RandomCost();
24 G.addEdge(edge);
25 end

// create parallels edge to the axis of the ordinates
26 if (i mod x) 6= (x-1) then
27 edge← Edge(i, i+1);
28 edge.RandomCost();
29 G.addEdge(edge);

30 edge← Edge(i+1, i);
31 edge.RandomCost();
32 G.addEdge(edge);
33 end
34 end
35 end

Density of POIs 1%, 5%, 10%
Network Size 1k, 10k, 100k, 1000k

Tabela 5 – Parameters values of experiments using synthetic data.

4.2.1 Effect of the density of POIs

We set the density of POIs to be 1%, 5% and 10% of the number of points of interest
(uniformly distributed). For each density, we generated 10 distinct time-dependent networks
with 2000 vertices and executed 10 randomly selected queries with k=1 on each one.

Efficiency has been applied to measure the average time consumed to execute queries
by using the proposed approach and the baseline solution. In the first experiment, performance
was measured, i.e., the average time required to process a query. Figure 17 shows the performance
of the baseline solution and the proposed approach using time-dependent road networks with
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1k nodes. Note that the proposed approach outperforms the baseline solution in this scenario.
For example, for the POI density of 10%, the proposed approach presented an average time
of 368,143.58 ns, while the baseline solution produced an average time of 1,672,657,402.00
ns. Figure 18 shows the performance of the baseline solution and the proposed approach using
time-dependent road networks with 10k nodes. Note that the proposed approach outperforms
the baseline solution in this scenario. For example, for the POI density of 10%, the proposed
approach presented an average time of 474.856,76 ns, while the baseline solution produced an
average time of 166,660,430,461.00 ns. Besides, it is important to note that for the baseline
solution the average response time increases as the POI density increases. This is reasonable
since the number of possible solution grows when the number of POIs increases and the baseline
computes all possible solutions.

Figura 17

The effectiveness metric has been used to compare how many times the propose
approach has found the optimal solution, that is, the same solution found by the baseline.

Figure 21 illustrates the effectiveness of the proposed approach in time-dependent
road networks with 1k nodes. Note that, for a POI density of 5% the proposed approach found
the optimal solution in 95% of cases. Figure 22 illustrates the effectiveness of the proposed
approach in time-dependent road networks with 10k nodes. Note that, for a POI density of 5%
the proposed approach found the optimal solution in 90% of cases. It is important to note that
the proposed approach’s effectiveness decreases as the POI density increases, regardless of the
network size.

Figures 21 and 22 illustrate the difference between the average of visited vertices in
both algorithms, using, respectively, time-dependent road networks with 1k and 10k nodes.
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Figura 18 – Processing Time X POI Density in a 10k road network.

Figura 19 – Effectiveness in a 1k road network.

4.2.2 Effect of the network size

In this experiment, we generate 10 time-dependent networks with 1k, 10k, 100k and
1000k vertices. Each one with 10% of points of interest. We executed 10 randomly selected
queries with k = 1 on each network.

4.3 SCENARIO 2: USING A REAL DATA SET

In this section, we present the results of the experiments we carried out using a real
data set. In this scenario, in order to generate time-dependent road networks, we have used two
different data sets. The first data set, available from Open Street Map (OSM) (WIKI, 2014),
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Figura 20 – Effectiveness in a 1k road network.

Figura 21 – The average of visited vertices in a 1k road network.

contains information (street segments, etc) about the road network of Fortaleza city 23 (See
Figure 23). The second data set, available from a Brazilian cab fleet monitoring company called
Taxi Simples (SIMPLES, 2015), provides data about the distribution and moving of cabs in
Fortaleza city. Since, each taxi driver at Taxi Simples company has a mobile phone equipped
with a GPS device, this data set stores information about the location of taxi drivers. So, this data
set stores many geographic positions for the same cab. Once the size of this data set is too large,
we have used only the data collected on November 16, 2015, from 11am to 12pm (local time).
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Figura 22 – The average of visited vertices in a 10k road network.

Figura 23 – Page about Fortaleza city in Open Street Map Wiki.

4.3.1 Data Sets Pre-processing

In order to build time-dependent road networks, we had to process and extract
information from these two data sets. For this, we have used the following strategy:

1. First, we created a database, using PostgreSQL 9.3.10 with the spatial database extension
Postgis version 2.1, containing two tables (See Figure 24). The “ROADS” table stores
information about the streets of the Fortaleza city. This table has two columns: “gid”, the
street identifier, and “geom”, whose data type is MultiLineString and stores a point, with
latitude and longitude, for each street corner. The “TAXI-CAB” table stores information
about the taxi positions. This table has tree columns: “id”, the cab identifier, “point_geo”,
whose data type is Point and stores a point, with latitude and longitude, representing the
cab position, and “gid”, a foreign key used to match the cab position and the road network.
For more information about the types of geographical data Multilinestrings, Linestrings
and Point, you can visit the site of Open Geospatial Consortium (OPENGIS, 2015).
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Figura 24 – Diagram of the database used to store the road network of Fortaleza and the taxi
positions

2. Next, we exported the Open Street Map data set to the “ROAD” table in the POSTGIS
database. This data set is available as a OSM file. Then, we used a script called “osm2pgsql”
in order to export the information about the road network of Fortaleza to the “ROAD”
table.

3. Then, we exported the Taxi Simples data set to the “TAXI-CAB” table in the POSTGIS
database. This data set is available as a Comma-separated values (CSV) file, See Ap-
pendix A. In this file, the taxi positions follows the GEOLOCATION API specification
(GEOLOCATION. . . , 2015) and have an average error of 13.60 meters. This file contains
about 1,500,000 records (positions) for 430 cabs. So, there are many registers (points)
to the same cab. For this reason, we selected for each cab the register with the highest
timestamp. Thus, the “TAXI-CAB” table has only 430 registers, one for each cab. In this
step, only the columns “id” and “point_geo” were filled.

4. Finally, we performed the map matching between the taxi positions and the road network,
that is necessary to place the cab over a correct street segment. This task was carried out
running a geographical query in POSTGIS, which performs a data interpolation. Figures
25a and 25b show the relationship between the taxi positions and the road network before
and after the mapping match process. In this step, the column “gid” in the “TAXI-CAB”
table is filled.

(a) Before the map matching process (b) After the map matching process

Figura 25 – The relationship between the taxi positions and the road network

Next, we have used the data exported to the POSTGIS database to build time-
dependent road networks. For this, we have used Java programming language and the Graphast
framework (Group Advanced Research in Database, 2015).
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4.3.2 Effect of the density of POIs

4.3.3 Effect of the network size

In this experiment, we generate 100 time-dependent networks with 1k, 10k, 50k and
100k vertices. Each one with 1% of points of interest. We executed 10 randomly selected queries
with k = 1 on each network. In order to select a snippet of the Fortaleza road network, we have
used the following strategy: we choose the square region with the largest number of cabs. The
query point was selected randomly, using a strategy proposed by (KNUTH, 1969). The chosen
snippets of the Fortaleza road network (with 1k, 10k, 50k and 100k vertices) are illustrated in
Figures ??.

Figura 26 – Fortaleza road network with 1,000
points.

Figura 27 – Fortaleza road network with 10,000
points.

Figura 28 – Fortaleza road network with 50,000
points.

Figura 29 – Fortaleza road network with 100,000
points.

Figura 30 – Fortaleza road network with 1k, 10k, 50k and 100k vertices (Images obtained using
QGIS (QGIS Development Team, 2009)).

It is important to note that two streets may have points in common (corners, for
example). In the Postgis database, for a point that belongs to two streets there are two records.
However, in the corresponding time-dependent graph, for a point that belongs to two streets
there is just one node. For this reason, the number of nodes in a time-dependent graph and the
number of corresponding records in the Postgis database are different. Figure 31 illustrates this
difference.

Besides, the Open Street Map data set about the Fortaleza city is relatively recent,
which afforded some troubles. The first identified problem was the road network disconnection,
producing certain kinds of “islands”. Thus, since the query points were chosen randomly, in
some executions there was no way between the query point (passenger) and a POI (taxi driver).
In this cases, the query point belonged to a disconnected sub-graph. As the Fortaleza road
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Figura 31 – Number of database registers X Number of nodes in the corresponding graph.

network provided by Open Street Map is disconnected, the average number of incident edges is
very low (close to 1), as illustrated in Figure 32. Figure 33 shows the ratio of executions that
found a POI. For example, in the experiment using road networks with size of 1k just 40% of the
executions found a POI.

Figure 34, on logarithmic scale, illustrates the average behavior of both algorithms
when the network size increases. This experiment indicates that the size of network does not
affect significantly the average number of expanded vertices. Despite of the increases in the
processing time and the number of expanded vertices, the proposed algorithm outperforms the
baseline solution.
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Figura 32 – Number of incident edges.
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Figura 33 – Ration of executions that found a POI X Network size.

(a) Network size X Processing time. (b) Network size X Number of expanded vertices.

Figura 34 – Evaluation of network size influence in real road networks.
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5 RELATED WORK

In this chapter we review works that relate to our approach and discuss in detail
how our solution advances the state of the art. Section 5.1 presents the approaches to find
the shortest path in time-dependent networks. In Section 5.2 are discussed the solutions to
execute kNN queries in road networks. Section 5.3 shows some initiatives to run kNN queries
in time-dependent networks. Finally, Section 5.4 discuss two types of proximity queries called
Reverse Nearest Neighbor (RNN) and Reverse Farthest Neighbor (RFN) queries.

5.1 TIME-DEPENDENT SHORTEST PATH

This problem has an intrinsically relation with the time-dependent kNN problem,
since the nearest POIs from the query depend on the cost (travel time) of the shortest (fastest)
path to each POI object. The usual solution to shortest path problem in static graphs is Dijkstra’s
algorithm (DIJKSTRA, 1959). In (WAGNER; WILLHALM, 2007), the authors present a survey
with many others ideas that have been proposed to find point-to-point shortest paths.

Unfortunately, these ideas would fail when time-dependent networks are considered.
Much less work has been proposed to the time-dependent case. The first algorithm that considers
a time-dependent variant of shortest paths is addressed in (COOKE; HALSEY, 1966). This
algorithm is a modified form of Bellman’s (BELLMAN, 1957) iteration scheme for finding the
shortest route between any two vertices in a network.

In 1997 and 1998, Chabini (CHABINI, 1997)(CHABINI, 1998) proposed two types
of time-dependent shortest path (TDSP) algorithms in discrete dynamic networks. George and
Shekhar proposed (GEORGE et al., 2007b) a time-aggregated graph where they aggregate the
travel-times of each edge over the time instants into a time series. Their model has less storage
requirements than the time-expanded networks. All these studies assume that the edge weight
functions are defined over a finite discrete time window. They proposed two algorithms for
shortest path computations. For each time window, the first algorithm computes the shortest
path for a given start-time, through the static network. The second algorithm computes the
shortest paths which result in the least travel time over the entire time period. Orda et al. (ORDA;
ROM, 1990b) proposed a Bellman-Ford based solution where edge weights are piece-wise linear
functions.

In (DEAN, 1999), Dean proposed a label-setting algorithm where arrival times
are considered as the labels of the nodes. The Time-Interval All Fastest Path (allFP) query
(KANOULAS et al., 2006) proposed solve. This algorithm was based on A*. Instead of
sorting the priority queue by scalar values, they maintain a priority queue of all paths to be
expanded. Therefore, they enumerate all the paths from the source to a destination node which
incurs exponential running time in the worst case. In addition, their algorithm is efficient when
estimation (heuristic function in A*) can enable the effective pruning of the search space. Another
approach was proposed by (NANNICINI et al., 2008b), it applies bidirectional A* search with
landmarks on a time-dependent network to calculate the fastest path between two vertices.
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5.2 kNN QUERIES IN ROAD NETWORKS

The problem of kNN queries in road networks was introduced in (PAPADIAS et al.,
2003). In that paper, the authors present two different solutions to this problem: the Incremental
Euclidean Restriction (IER) and the Incremental Network Expansion (INE) algorithms. IER
uses the assumption that the Euclidean distance between two points on the network is less
than the network distance. This assumption is used to retrieve kNN points, according to the
Euclidean distance, and use their network distance as an upper bound for the distance of kNN
points according to the network distance. INE is an adaptation of Dijkstra’s algorithm. With this
algorithm, starting from the query object q all network nodes reachable from q in every direction
are visited in order of their proximity to q until all k nearest data objects are located.

In (KOLAHDOUZAN; SHAHABI, 2004a) the authors presented an approach based
on pre-computing the network’s voronoi polygons (NVP) (ERWIG; HAGEN, 2000), indexed by
a spatial access method. Using NVPs one can immediately find the first nearest neighbor of a
query object and reduce the on-line cost in a kNN search. These approaches cannot be directly
applied to solve TD-kNN queries. Berchtold et al. (BERCHTOLD et al., 1998) too used Voronoi
diagram, suggest precalculating approximating and indexing the solution space for the nearest
neighbor problem in m dimensional spaces. Precalculating the solution space means determining
the Voronoi diagram of the data points, cells.

In (HU et al., 2006) the authors developed a network reduction technique where the
network topology is simplified by a set of interconnected tree-based structures (SPIE’s). By doing
that the number of edges is reduced while all network distances are preserved. They proposed
the nd (nearest descendant) index on the SPIE such that a kNN query on those structures follows
a predetermined tree path, avoiding unnecessary network expansion. In (LEE et al., 2009)
the authors exploited the search space pruning technique. With the observation that during a
search some subspaces of the network with no objects can be skipped, they organized a road
network as a hierarchy of interconnected regional sub-networks (Rnets). They speed-up the
search performance by incorporating shortcuts that avoid detailed traversal and object lookup
within Rnets, allowing bypass those Rnets that do not contain objects of interest.

Kollios et al. (KOLLIOS et al., 1999) propose an elegant solution for answering
kNN queries for moving objects in one dimensional space. Their algorithm uses a duality
transformation, where the future trajectory of a moving point x(t) = x0 + vxt is transformed into
a point (x0,vx) in a so-called dual space.

Raptopoulou et al. (RAPTOPOULOU et al., 2003) and Tao et al. (TAO et al., 2004)
consider the nearest neighbor problem for a query point moving on a line segment, for static or
moving interest points. Raptopoulou et al. (RAPTOPOULOU et al., 2003) consider simplified
and less effective heuristics for directing and pruning the search in the TPR-tree. Tao et al. (TAO
et al., 2004) also consider the general concept of so-called time-parameterized queries.

An efficient and scalable approach to kNN queries in a road network was proposed
in (CHO; CHUNG, 2005). This paper presented a system called UNICONS (a unique continuos
search algorithm) where the main idea is to integrate the precomputed kNNs into the Dijkstra’
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algorithm.

5.3 TIME-DEPENDENT kNN QUERIES

The problem of kNN queries in time-dependent networks was introduced by (DE-
MIRYUREK et al., 2010b). In this paper, the authors compare two different baseline methods to
solve this problem. The first approach uses time-expanded graphs to model the network. Time-
expanded graphs allows us to exploit previous solutions in static networks to solve TD-kNN
queries. However, this solution has numerous shortcomings, such as high storage overhead,
slower response time and also incorrect results, as shown by (DEMIRYUREK et al., 2010b).
The second approach is an adaptation of the INE algorithm (PAPADIAS et al., 2003) that does a
blind search while expanding the network.

In (DEMIRYUREK et al., 2010a), a pre-computation process that builds two different
indexing structures, the Tight Network Index (TNI) and Loose Network Index (LNI) was
proposed. Both are composed for cells that reference the points of interest such that, if a query
point q is in a tight cell of a point p, p is its nearest neighbor, and if q is out of a loose cell of p, p
is not its nearest neighbor. As in the NVP method, using TNI one can immediately find the first
nearest neighbor of a query object. However, it is not clear how this process works well when
travel time functions in edges with opposite directions can be different. That is an important
aspect in time-dependent networks, since the cost of a path can be determined by its orientation.

Goal-directed search, also called A* (HART et al., 1968) was adapted to time-
dependent scenarios by Flinsenberg (FLINSENBERG, 2004). Another version of A*, more
efficient for time-dependent scenarios, called ALT, was presented in (GOLDBERG; HARREL-
SON, 2005) and (GOLDBERG; WERNECK, 2005). Delling et al. (DELLING; WAGNER,
2007) presented an unidirectional ALT that was evaluated in time-dependent graphs (fulfilling the
FIFO property) speed-ups the previous approach in a factor between 3 and 5 times, depending
on the degree of time-dependency. Goal-directed search has also been successfully applied to
time-dependent networks in (PYRGA et al., 2004) (PYRGA et al., 2007) and (DISSER et al.,
2008). The time-dependent ALT approach can be used in a bidirectional manner. It was shown in
(NANNICINI et al., 2008a). The key idea of bidirectional search in time-dependent networks is
that the backward search is only used to bound the nodes that the forward search has to visit. This
approach can be further accelerated by limiting ALT the search to a core set of nodes, extracted
during the preprocessing step (DELLING; NANNICINI, 2008).

An improved solution is proposed by (CRUZ et al., 2012). In this work, the authors
proposed an algorithm that is based on INE expansion (PAPADIAS et al., 2003) and use an A*
search to guide this expansion. The vertices that offer a great chance to be in a fast path to a POI
are expanded first. A pruning process is also proposed in order to avoid expanding unpromising
vertices, i.e, vertices that are far to any POI. To do that, was proposed an heuristic function that
works well in time-dependent networks. The idea behind it approach is to discard vertices that
are near from the query but far from any point of interest. It approach adds to each vertex an
expectation to find a point of interest quickly in a path that pass by this vertex. Furthermore, it
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was used upper bound values of travel time to prune unpromising paths. It experiments show
that TD-NE-A* require up 50% less I/O operations than TD-NE. Was also propose a generic and
scalable access method to support it approach on a disk-based environment.

In (COSTA et al., 2013), the authors consider the problem of finding the closest point
of interest in road networks where the travel time along each edge is a function of the departure
time and the service time of the facilities are taken into consideration. More specifically, the
proposed query aims to find the point of interest (e.g., a museum) in which the user can be served
in the minimum amount of time, accounting for both the travel time to the point of interest and
the waiting time, if it is closed.

5.4 REVERSE NEAREST/FARTHEST NEIGHBOR

In addition to kNN queries, there are other types of proximity queries known as
Reverse Nearest Neighbor (RNN) and Reverse Farthest Neighbor (RFN) queries (TRAN et al.,
2009).

A Reverse Nearest Neighbor (RNN) query retrieves interest points which consider
the query point as their nearest neighbor. A RNN query is used to find places where the query
point has most impact. An example of RNN query is to find residential that consider a restaurant
as the nearest restaurant (TRAN et al., 2009). Therefore, RNN search is used to find places
which are most affected by a given location.

In contrast, a Reverse Farthest Neighbor (RFN) query retrieves interest points which
consider the query point as their farthest neighbor. This query type is used to find places that
are least affected by a given location. For example, a estate company may want to know which
properties is least affected by a road construction.

A Reverse k Nearest Neighbor (RkNN) query is a generalization of basic RNN where
the interest points retrieved consider the query point as one of their nearest neighbors (k > 1)
rather the only nearest neighbor. As an example of RkNN query is retrieves all restaurants which
assign the query restaurant as one of the two (k = 2) nearest neighbors.

A Reverse k Farthest Neighbor (RkFN) query is a generalization of basic RFN where
the query point is considered as one of the farthest neighbors (k > 1) by the interest points
retrieved. As an example of RkFN query is, given a train station A as the query point, which
other train stations consider A as one of the two (k = 2) farthest train stations.

A discussion about RNN queries and its variants is found in (KORN; MUTHU-
KRISHNAN, 2000). This paper proposes an approach for RNN queries and a method for large
data sets using R-tree. Yang et al (YANG; LIN, 2001) introduced a single index structure called
‘Rdnn-tree’ to replace the multiple indexes used in their previous work. This index structure can
be used for both RNN and NN queries.

A new concept, called ‘Reverse Skyline Queries’, was introduced in (DELLIS;
SEEGER, 2007) by Dellis and Seeger in order to find RNN of any given query point. It uses
the ‘Branch and Bound’ technique to retrieve a candidate point set and refines this set to find the
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exact answers. In (KUMAR et al., 2008), the authors introduced a method to process reverse
proximity queries in two and three dimensions using a lifting transformation technique. Though,
the results were only approximate. Although these methods are helpful in geographical and
spatial works, they cannot be used for spatial network problems.

In (SAFAR et al., 2009), the authors discussed various types of RNN queries and
proposes several algorithms to process these queries in spatial network databases. These algo-
rithms were based on Network Voronoi Diagram, PINE algorithm and the pre-computation of
network distances. Similar to NN, the basic RNN query can be generalized to find objects that
consider the query point as one of the k nearest neighbors. This kind of query is called RkNN,
where k can be any number given at the query time. Finaly, (TRAN et al., 2009) introduced other
types of reverse proximity queries, called RFN (Reverse Farthest Neighbor) and RkFN.
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6 CONCLUSION AND FUTURE WORK

This chapter is organized as follows. The main contributions and results achieved
with this research are presented in Section 6.1. Finally, Section 6.2 we present direction for
future works.

6.1 CONCLUSION

In this thesis, we identify a variation of TD-kNN queries in time-dependent road
networks that has wide applications and requires novel algorithms for processing. Differently
from TD-kNN queries, we aim at minimizing the travel time from points of interest to the
query point. With this approach, a cab company can find the nearest taxi in time to a passenger
requesting transportation. More specifically, we address the following query: find the k points of
interest (e.g. taxi drivers) which can move to the query point (e.g. a taxi user) in the minimum
amount of time.

Previous works have proposed solutions to answer TD-kNN queries considering the
time dependency of the network but not computing the proximity from the points of interest to the
query point. We proposed and discussed a solution to this type of query which are based on the
previously proposed incremental network expansion and use the A∗ search algorithm equipped
with suitable heuristic functions. We also discuss the design and correctness of our algorithm
and present experimental results that show the efficiency and effectiveness of our solution. We
can note that in some cases, the answer returned by a regular TD-kNN query is coincidentally the
same as returned by our query, for example, where all the roads allow bi-directional vehicles‘s
flow and all conversions are allowed, what is unreasonable in real situations.

The general objective of this work was to study the problem of to find the k points of
interest (e.g. cabs, ambulances or police cars) which can move to the query point (e.g. a taxi
user or a citizen waiting for an emergency service) in the minimum amount of time, proposing
efficient and optimal solutions to them.

In this context, we proposed two solutions to the problem of minimizing the travel
time from points of interest to the query point, that is, to find the k points of interest which can
move to the query point in the minimum amount of time. More specifically:

• We proposed and discussed a baseline solution, for comparison purposes, to the problem
of minimizing the travel time from points of interest to the query point in time-dependent
networks;
• We proposed an efficient algorithm to solve the problem of minimizing the travel time

from points of interest to the query point in time-dependent networks;
• We evaluated the proposed solutions to the problem of minimizing the travel time from

points of interest to the query point in time-dependent networks using synthetic and real
data;
• We specified and developed a new generator of synthetic networks, varying both the

network size and the density of points of interest;
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• We designed and developep road networks based in real data about the streets and cabs
positions in the Fortaleza city;

6.2 FUTURE WORK

As a future work we intend to modify the time-dependent query proposed in this
thesis adding some filters based on POIs’ characteristics, such as: cabs with six (6) luggage or
with accessibility aids. Besides, we pretend to compute the cost function using an estatistical
distribution closer to reality. Moreover, we will investigate the possibility of update the cost
function at real time, in order to represent some events like car crashes and road construction.
The experimental evaluation could include other baselines. Another possible future work is to
create time-dependent road networks using trajectories of real moving objects. Then, we would
like to perform the experiments using such networks. Furthermore, it would be interesting to
implement the proposed approaches in a database, instead of using a file system. Finally, we
would also like to propose solutions to solve others popular spatial queries but in the context of
time-dependent networks.
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ANEXO A – GPS capture file

cabid latitude longitude altitude accuracy altitudeaccuracy timestamp
982335450 -37316237 -385125479 -6 30 98 Mon Nov 16 2015 11:01:43 GMT-0300 (BRT)
982335450 -37316237 -385125479 -6 30 98 Mon Nov 16 2015 11:01:43 GMT-0300 (BRT)
982335450 -37316654 -38512422 -5 29 100 Mon Nov 16 2015 11:01:44 GMT-0300 (BRT)
982335451 -37345546 -384968942 33 47 206 Mon Nov 16 2015 10:01:56 GMT-0300 (BRT)
982335451 -37345546 -384968942 33 47 206 Mon Nov 16 2015 10:01:56 GMT-0300 (BRT)
982335451 -37345544 -384968941 33 48 206 Mon Nov 16 2015 10:01:57 GMT-0300 (BRT)
982335175 -37715261 -385787434 27 12 206 Mon Nov 16 2015 09:59:05 GMT-0300 (BRT)
982335175 -37716108 -385787616 23 12 202 Mon Nov 16 2015 09:59:06 GMT-0300 (BRT)
982335175 -37716108 -385787616 23 12 202 Mon Nov 16 2015 09:59:06 GMT-0300 (BRT)
982335175 -37716167 -385788077 24 12 214 Mon Nov 16 2015 09:59:07 GMT-0300 (BRT)
982335443 -37765462 -384817017 -1 11 110 Mon Nov 16 2015 10:01:23 GMT-0300 (BRT)
982335443 -37765464 -384817017 -1 11 110 Mon Nov 16 2015 10:01:23 GMT-0300 (BRT)
982335443 -37765467 -384817086 0 10 109 Mon Nov 16 2015 10:01:24 GMT-0300 (BRT)
982335454 -37316689 -38512422 -5 29 100 Mon Nov 16 2015 11:01:44 GMT-0300 (BRT)
982335454 -37345543 -384968942 33 47 206 Mon Nov 16 2015 10:01:56 GMT-0300 (BRT)
982335454 -37345523 -384968942 33 47 206 Mon Nov 16 2015 10:01:56 GMT-0300 (BRT)
982335460 -37345523 -384968941 33 48 206 Mon Nov 16 2015 10:01:57 GMT-0300 (BRT)
982335160 -37715265 -385787434 27 12 206 Mon Nov 16 2015 09:59:05 GMT-0300 (BRT)
982335160 -37716154 -385787616 23 12 202 Mon Nov 16 2015 09:59:06 GMT-0300 (BRT)
982335190 -37716143 -385787616 23 12 202 Mon Nov 16 2015 09:59:06 GMT-0300 (BRT)
982335190 -37716187 -385788077 24 12 214 Mon Nov 16 2015 09:59:07 GMT-0300 (BRT)
982335481 -37765432 -384817017 -1 11 110 Mon Nov 16 2015 10:01:23 GMT-0300 (BRT)
982335481 -37765487 -384817017 -1 11 110 Mon Nov 16 2015 10:01:23 GMT-0300 (BRT)
982335481 -37765432 -384817086 0 10 109 Mon Nov 16 2015 10:01:24 GMT-0300 (BRT)

Tabela 6 – File CSV, GPS capture file (Fonte: )




