
UNIVERSIDADE FEDERAL DO CEARÁ

CENTRO DE CIÊNCIAS

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

TICIANA LINHARES COELHO DA SILVA

ONLINE CLUSTERING OF TRAJECTORY DATA STREAM

FORTALEZA

2016

TICIANA LINHARES COELHO DA SILVA

ONLINE CLUSTERING OF TRAJECTORY DATA STREAM

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação do
Centro de Ciências da Universidade Federal do
Ceará, como requisito parcial à obtenção do
título de doutor em Ciência da Computação.
Área de Concentração: Ciência da Computação

Orientador: Prof. Dr. José Antônio Fer-
nandes de Macêdo

Co-Orientador: Prof. Dra. Karine Ben-
nis Zeitouni

FORTALEZA

2016

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

C621o Coelho da Silva, Ticiana Linhares.
 Online Clustering of Trajectory Data Stream / Ticiana Linhares Coelho da Silva. – 2016.
 107 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2016.
 Orientação: Prof. Dr. José Antônio Fernandes de Macêdo.
 Coorientação: Prof. Dr. Karine Bennis Zeitouni.

 1. Clusterização. 2. Trajetória. 3. Padrão de Mobilidade. I. Título.
 CDD 005

TICIANA LINHARES COELHO DA SILVA

ONLINE CLUSTERING OF TRAJECTORY DATA STREAM

Tese apresentada ao Curso de Doutorado
em Ciência da Computação do Programa de
Pós-Graduação em Ciência da Computação
do Centro de Ciências da Universidade
Federal do Ceará, como requisito parcial à
obtenção do título de doutor em Ciência da
Computação. Área de Concentração: Ciência
da Computação

Aprovada em:

BANCA EXAMINADORA

Prof. Dr. José Antônio Fernandes de
Macêdo (Orientador)

Universidade Federal do Ceará (UFC)

Prof. Dra. Karine Bennis Zeitouni
(Co-Orientador)

Universidade de Versailles Saint Quentin en
Yvelines (UVSQ)

Prof. Dr. João Paulo Pordeus Gomes
Universidade Federal do Ceará (UFC)

Prof. Dr. Marco Antônio Casanova
Pontifícia Universidade Católica do Rio de

Janeiro (PUC)

Prof. Dr. Francesco Corona
Universidade Federal do Ceará (UFC)

Prof. Dr. João Eduardo Ferreira
Universidade de São Paulo (USP)

À Deus, por cuidar sempre de mim.

AGRADECIMENTOS

This acknowledgement is to express my thankfulness to all who helped me over

these years.

First, I would like to thank our God for giving me the strength to achieve my dream:

become a doctor in Computer Science. To my parents, Paulo Sérgio Oliveira Coelho da Silva

and Silvia Helena Linhares Coelho da Silva, for their moral and education support in my whole

life. To my brother Paulo Junior who I love so much and who always made me happy when I got

stressed. To my fiance Nicolas who faced my dream as his dream and for his endless love.

My first deepest gratitude is to my advisor, Prof. Jose Macedo. It has been an honor

for me to be one of his PhD students. I really appreciate all his great contribution in my thesis,

encouragement and all the opportunities I had so far.

Thanks to my co-advisor Prof. Karine Zeitouni who welcomed me in Universite de

Versailles Saint Quentin en Yvelines (UVSQ) where I spent one year of my thesis very focused.

It was an excellent and conscientious support. She was always available to advice me. I would

like to also thank Prof. Marco Casanova who collaborated over these years, sending me very

good remarks and notes to support this thesis.

To all my friends from ARIDa: Samara, Toni, Régis, Bruno, Flávio, Thiago, Lívia,

Gustavo, Camila, Victor, Davi, Peres, Erick, Igo and Francesco; To my friends from InfoLab

in Greece: Despina, Panos, Marios for all very good time that we spent in Greece and Brazil,

thanks also to Prof. Yannis Theodoridis, Prof. Nikos Pelekis and Prof. Kostas Patroumpas who

gave me many advices during my stage there; To my friends from UVSQ in France: Hanane

Ouksili, Dai Hai, Twiza, Mariem, Ali Masri, Raef Mousheimish, Amino, Naila Bouchemal,

Mary, Nicoleta Preda, Ameni, Tarek and Nathan. Also to my very close friends Márcio, Atslands,

Hylleia, Cristiana, Amanda, Rafaela, Marina, Isabel, Arthur, Valterfi, Esther, Robson and Lara. I

am very grateful for all their cheerfulness and friendship.

To my colleagues and students of UFC Quixadá Campus where I teach, thanks to let

me take one year off in order to dedicate my time only to work on my thesis. To the professors

of ARIDa research group who always motivated me over these years.

And lastly to all professors and colleagues that I had collaborated for all their full

cooperation that made them a big part of this work.

"Uma criança, um professor, um livro e uma

caneta podem mudar o mundo. Educação é solu-

ção."

(Malala)

RESUMO

A mineração de dados de trajetória permitem caracterizar o comportamento de movimento

(isto é, congestionamento, flocks, swarms, leadership, entre outros padrões de movimento),

impulsionando novas aplicações e serviços. O rastreamento de objetos móveis se torna onipre-

sente em muitas aplicações, o que gera grande interesse na análise de dados de trajetória e na

mineração destes dados. A maioria das abordagens permite detectar padrões de movimento em

dados históricos de objetos, mas não padrões atuais. Abordagens recentes para clusterização

online de objetos móveis se restringem a analisar posições instantâneas. Dessa forma, estes

trabalhos não conseguem capturar o comportamento dos objetos em movimento ao longo do

tempo. Ao monitorar continuamente as subtrajetórias de objetos móveis em intervalos de tempo,

ao invés de apenas a última posição, é possível obter uma visão sobre o comportamento atual e

potencialmente detectar padrões de mobilidade em tempo real.

A análise em tempo real dos dados de mobilidade pode oferecer conhecimento para entender

melhor a dinâmica da cidade em curso, bem como a detecção de irregularidades e anomalias

à medida que acontecem; Este estudo é relevante para tomada de decisão. Entre os possíveis

padrões, nesta tese consideramos principalmente o agrupamento (clusterização) de sub-trajetórias

e a evolução do movimento dos objetos. Descobrir esses padrões pode ajudar na re-engenharia

do tráfego de grandes cidades, ou para detectar prontamente eventos (por exemplo, acidentes de

carro, passeatas, entre outros) à medida que eles acontecem.

Na primeira linha de investigação desta tese, abordamos o problema de descobrir e manter os

clusters baseados em densidade utilizando streams de trajetórias no Espaço Euclidiano, levando

em consideração que a maioria dos objetos em movimento muda de posição ao longo do tempo.

Dessa forma, esta tese propõe o framework CUTiS (ClUstering Trajectory Stream), um algoritmo

incremental para resolver este problema. CUTiS é capaz de monitorar a evolução dos padrões de

movimento (clusters), bem como a adesão dos objetos em movimento aos padrões já existentes.

Nossos experimentos foram conduzidos em dois conjuntos de dados reais e os experimentos

mostram a eficiência e a eficácia do nosso método comparando a dois concorrentes DBSCAN

(ESTER et al., 1996) e TraClus (LEE et al., 2007).

Como segunda linha de pesquisa, esta tese teve como objetivo melhorar a eficiência do algoritmo

CUTiS. Desta forma, foi proposto uma estrutura de indexação para dados de sub-trajetória

com base em space filling curve. Esta abordagem tem a propriedade de mapear um espaço

multidimensional para um espaço unidimensional tal que, para dois objetos que estão próximos

no espaço original, existe uma alta probabilidade de que eles fiquem próximos no espaço alvo

mapeado (THAT et al., 2016). Essa propriedade foi utilizada para otimizar range queries de uma

sub-trajetória de um objeto no algoritmo de clusterização incremental. Nossos experimentos

foram conduzidos em um conjunto de dados reais e eles mostram a eficiência e a eficácia do

nosso método em comparação com a nossa proposta anterior CUTiS, e as abordagens DBSCAN

e TraClus.

Como terceira linha, investigamos o mesmo problema de descoberta e manutenção de clusters

de sub-trajetórias em uma rede rodoviária, já que muitos objetos em movimento se movem na

rede rodoviária em aplicações reais. Dessa forma, foi proposto como solução o Net-CUTiS,

um algoritmo de clusterização incremental para sub-trajetórias de objetos com restrição de

movimento em rede rodoviária. A eficiência e a eficácia do Net-CUTiS foram comparadas

usando um conjunto de dados real com a abordagem NETSCAN (KHARRAT et al., 2008) e

DBSCAN (ESTER et al., 1996).

Palavras-chave: Clusterização. Trajetória. Padrão de Mobilidade.

ABSTRACT

Mining trajectory patterns allows characterizing movement behavior (i.e. congestion, flocks,

swarms, leadership, among others), which leverages new applications and services. Movement

tracking becomes ubiquitous in many applications, which raises great interests in trajectory

data analysis and mining. Most existing approaches allow characterizing the past movements

of the objects but not current patterns, because they use only historical trajectory data. Recent

approaches for online clustering of moving objects location are restricted to instantaneous

positions. Subsequently, they fail to capture moving objects’ behavior over time. By continuously

tracking moving objects’ sub-trajectories at each time window, rather than just the last position, it

becomes possible to gain insight on the current behavior, and potentially detect mobility patterns

in real time.

Real-time analysis of mobility data may offer novel tools to better understand ongoing city

dynamics, as well as the detection of regularities and anomalies as they happen; all in all, this can

represent an invaluable tool when tackling decision-making tasks. Among the possible patterns,

in this thesis we mainly consider (sub)-trajectory clustering and its evolution. Discovering such

patterns may help to re-engineer effectively the traffic within a city, or to promptly detect events

at the city level (e.g., car accidents) as they happen.

In the first line of investigation we tackle the problem of discovering and maintaining the density

based clusters in trajectory data streams in Euclidean Space, despite the fact that most moving

objects change their position over time. We propose CUTiS, an incremental algorithm to solve

this problem, while tracking the evolution of the clusters as well as the membership of the moving

objects to the clusters. Our experiments were conducted on two real datasets and the experiments

show the efficiency and the effectiveness of our method comparing to two competitors DBSCAN

(ESTER et al., 1996) and TraClus (LEE et al., 2007).

As a second line of research, we aim at improving the efficiency of the CUTiS algorithm. In

this way, we propose an indexing structure for sub-trajectory data based on a space-filling curve.

This approach has the property of mapping a multidimensional space to one-dimensional space

such that, for two objects that are close in the original space, there is a high probability that they

will be close in the mapped target space (THAT et al., 2016). We take advantage of this property

to optimize range queries from a moving object sub-trajectory on the incremental clustering

algorithm. Our experiments were conducted on a real data set and they show the efficiency

and the effectiveness of our method compared to our previous proposed CUTiS, DBSCAN and

TraClus.

As a third line, we investigate the same problem of sub-trajectory clustering discovery and

maintenance on a Road Network since many moving objects move on the road network in real

applications. We propose Net-CUTiS an incremental clustering algorithm for road network

constraint movement. The efficiency and effectiveness of Net-CUTiS were compared using a

real dataset with NETSCAN (KHARRAT et al., 2008) and DBSCAN (ESTER et al., 1996).

Keywords: Trajectory Clustering. Road Network. Mobility Pattern.

LISTA DE ILUSTRAÇÕES

Figura 1 – Three components of the distance function for line segments from(LEE et al.,

2007). 28

Figura 2 – Example of Flock, Convoy, Swarm and Gathering from (ZHENG, 2015) . . 33

Figura 3 – Example of clustering moving objects at three consecutive timestamps . . . 35

Figura 4 – Example of detecting and discovering frequent cluster evolution pattern . . 40

Figura 5 – Example of detecting cluster evolution pattern for three consecutive time

windows . 52

Figura 6 – CUTiS’ framework structural overview. 55

Figura 7 – Micro-Group Maintenance . 68

Figura 8 – Micro-Group Sub-trajectory Clustering . 69

Figura 9 – Analysis of Taxi data set from Fortaleza: (a) Recall and (b) Precision for

clusters detection for 5 time windows. 74

Figura 10 – Analysis of Taxi data set from Fortaleza: Recall and Precision for outliers

detection for 5 time windows. 75

Figura 11 – Analysis of Efficiency on Taxi data set from Fortaleza 76

Figura 12 – Comparison between clusters shapes of DBSCAN, TraClus and CUTiS

(varying the micro-group radius) for 2 time windows using Taxi data set

from Beijing . 77

Figura 13 – Effectiveness Analysis: (a) Recall and (b) Precision for detecting clusters

using Taxi data set from Beijing . 78

Figura 14 – Effectiveness Analysis: (a) Recall and (b) Precision for detecting outliers

using Taxi data set from Beijing . 79

Figura 15 – Efficiency Analysis: (a) Total Running Time for 5 time windows using Taxi

data set from Beijing and (b) Running Time of Micro-group maintenance and

clustering . 81

Figura 16 – Micro-group evolution pattern for (a) radius=eps and (b) radius=3eps on the

5 tracked time windows using Taxi data from Beijing 82

Figura 17 – Micro-group evolution pattern found by CUTiS* during 5 tracked time windows. 83

Figura 18 – Comparison between clusters shapes of DBSCAN, TraClus and CUTiS*

(varying the micro-group radius) for 2 time windows using data of Scenario I. 83

Figura 19 – Effectiveness Analysis Scenario I: (a) Precision and (b) Recall for detecting

clusters . 84

Figura 20 – Effectiveness Analysis Scenario II: (a) Precision and (b) Recall for detecting

clusters . 84

Figura 21 – (a) and (b): Efficiency Analysis (Improved Running Time by using our

proposed index); (c) and (d): Efficiency Analysis of Clustering Approaches 86

Figura 22 – Demonstration Scenarios. 88

Figura 23 – Network Paths Discovery Process . 93

Figura 24 – Micro-groups Discovery on Road Network 94

Figura 25 – Clustering Sub-trajectory on Road Network by merging Micro-groups . . . 94

Figura 26 – Difference between a sub-trajectory (a) before adding the shortest path

between each two consecutive positions and (b) after 95

Figura 27 – Network paths from 17:30 to 18:30 on 4th of February 2008 for "densified"T-

DRIVE dataset . 97

Figura 28 – Network Path Cardinality Distribution . 98

Figura 29 – Dense Path Cardinality Distribution for Scenario I 98

Figura 30 – Dense Path Cardinality Distribution for Scenario II 98

Figura 31 – Efficiency Analysis: Sub-trajectory Clustering Discovery using Net-CUTiS. 99

Figura 32 – Efficiency Analysis: Sub-trajectory Clustering Discovery using NETSCAN. 99

Figura 33 – (a) Number of Sub-trajectory Clusters found by NETSCAN and (b) Net-

CUTiS for the Scenario I and Scenario II. 99

Figura 34 – For the Scenario II, the execution time of running DBSCAN with Synchro-

nous Shortest Path distance versus Net-CUTiS. 100

Figura 35 – Representative Trajectories for the 1st Time Window 101

Figura 36 – Representative Trajectories for the 2nd Time Window 101

Figura 37 – Representative Trajectories for the 3rd Time Window 101

Figura 38 – Representative Trajectories of each cluster found by Net-CUTiS using Scena-

rio I dataset for three consecutives time windows. 101

Figura 39 – Representative Trajectories for the 1st Time Window 103

Figura 40 – Representative Trajectories for the 2nd Time Window 103

Figura 41 – Representative Trajectories of each cluster found by Net-CUTiS using Taxi

dataset of Fortaleza, Brazil. 103

LISTA DE TABELAS

Tabela 1 – Notation for this chapter . 44

Tabela 2 – Events that may result on Actions . 45

Tabela 3 – Number of trajectories and clusters for Taxi dataset from Fortaleza, Brazil

for the observed timestamps in these experiments according to Table 4 . . . 49

Tabela 4 – Some clusters evolution patterns for a Taxi Fleet dataset from Fortaleza, Brazil 50

Tabela 5 – Some Frequent Sequence Cluster Evolution Patterns for Taxi Fleet dataset

from Fortaleza, Brazil . 51

Tabela 6 – Notation used throughout the chapter . 56

Tabela 7 – Number of Clusters . 82

SUMÁRIO

1 INTRODUCTION . 18

1.1 Motivation . 18

1.2 Research Problems . 19

1.3 Thesis Contribution . 22

1.4 Thesis Organization . 24

2 STATE OF THE ART . 25

2.1 Trajectory Data Management . 25

2.1.1 Trajectory Index . 26

2.1.2 Distance and Similarities between Trajectories 27

2.1.3 Trajectory Compression . 29

2.2 Trajectory Pattern Mining . 30

2.2.1 Moving Together Patterns . 31

2.2.2 Cluster Evolution Pattern . 35

2.2.3 Trajectory Clustering . 36

2.2.3.1 Clustering of Trajectory Data in Euclidean Space 36

2.2.3.2 Clustering of Trajectory Data on Road Network 37

3 FREQUENT EVOLUTION PATTERN DISCOVERY 39

3.1 Definitions . 41

3.2 Proposed Solution . 45

3.2.1 Definitions of Actions and Conditions . 45

3.2.2 Naive Approach . 46

3.3 Experimental Evaluation . 49

3.4 Discussion . 52

4 CUTIS: CLUSTERING ON TRAJECTORY DATA STREAM 53

4.1 Problem Statement . 53

4.2 CUTiS: Clustering on Trajectory Data Stream 54

4.2.1 Distance Function . 56

4.2.2 Choosing a representative trajectory . 58

4.2.3 Micro-groups definition, discovery and maintenance 59

4.3 Density-based Sub-trajectory Clustering 65

4.4 Example of CUTiS approach . 66

4.5 CUTiS*: Indexing Trajectory Data . 69

4.5.1 Overview . 69

4.5.2 Grid construction and spatial indexing . 69

4.5.3 Selection of representative candidates . 70

4.5.4 Range query computation . 71

4.6 Experiments . 72

4.6.1 Evaluation Metrics . 72

4.6.2 CUTiS Evaluation . 74

4.6.2.1 Experiments Results for Taxi Fleet Dataset from Fortaleza 74

4.6.2.2 Experiments Results for Taxi Data Set from Beijing 76

4.6.3 CUTiS* Evaluation . 81

4.7 Discussion . 86

5 NET-CUTIS: CLUSTERING ON TRAJECTORY DATA STREAM ON

ROAD NETWORK . 89

5.1 Distance Function on Road Network . 90

5.1.1 Incremental Clustering Algorithm . 92

5.2 Net-CUTiS Example . 92

5.3 Experiments . 95

5.4 Discussion . 103

6 CONCLUSION . 105

6.1 Summary of thesis contributions . 105

6.2 Open Directions . 107

REFERÊNCIAS . 110

17

1 INTRODUCTION

1.1 Motivation

The huge volume of collected trajectories opens new opportunities for discovering

hidden mobility patterns. These patterns allow characterizing individual mobility as well as

groups sharing similar trajectories for a certain time interval. Usually, this analysis is done

off-line by applying data analysis and mining techniques on the previously collected data. This

allows characterizing the past movements of the objects but not the current mobility patterns.

Nowadays, many services involve tracking moving objects (e.g., persons, vehicles, animals)

to report their trajectory continuously (e.g., every second or every minute). Analyzing these

data while they are generated may bring a real added-value in the comprehension of the city

dynamics, and the detection of regularities as well as anomalies, which is essential for decision-

making. Among these patterns, we mainly consider in this thesis the sub-trajectory clustering

and its evolution. Such discovery may help the search for effective re-engineering of traffic, or

dynamically detecting events or incidents at a city level.

Tracking applications need to deal with the incremental nature of spatio-temporal

data. Indeed, data arrive rapidly in a short period of time, and the size of the data set keeps

growing as time goes by. The exploration of the entire data stream might not be very useful since

the information to be extracted may be outdated. Analyzing the data while it arrives can provide

much better comprehension of current cluster patterns and their evolution over consecutive

periods of time. By current cluster patterns, we mean that the groups of moving objects having

similar sub-trajectories over the last time window. Thus, by tracking sub-trajectories rather than

just the last position, it becomes possible to gain insight on the current behavior, and potentially

detect suspicious behaviors or remarkable events the moment they happen. However, finding

clusters in these data streams in quasi real time is challenging because all tracked moving objects

may change their positions every time, and clusters may also change accordingly. Furthermore,

new moving objects may appear, and others may stop and disappear. These changes may affect

the formation of clusters. The exploration of the stream over different intervals of time (time

windows) can provide the users much better comprehension of the evolving behavior of the

clusters. However, executing the clustering algorithm from scratch every time window may lead

to a high cost since we have a large volume of streaming data.

Approaches exist for online clustering of the positions of moving objects, but they

18

are restricted to instantaneous positions. Furthermore, they fail to capture the moving objects

displacement behavior along time. The majority of existing mobility pattern approaches, as

trajectory clustering, flocks, convoys, swarms, gathering (ZHENG, 2015), analyze historical

sub-trajectory data; no solution exists for clustering and maintaining clusters of sub-trajectories

in real time. That is why we claim that our study is relevant.

In this thesis, we address the problem of online discovery of mobility patterns

and their evolution by tracking the sub-trajectories of moving objects (for both scenarios, in

Euclidean and Road Network Space) at each time window. We consider that moving objects may

change their positions continuously; new moving objects appear and others disappear from the

system during an observed time interval. In the next section, we describe the research problems

addressed by this thesis.

1.2 Research Problems

The traditional trajectory model in the literature captures the movement of an object

in geographical space over some period of time. Nowadays, the movement of people or vehicles

within a given area can be observed from the digital traces left behind by the personal or vehicular

mobile devices, and collected by the wireless network infrastructures. For instance, mobile

phones leave positioning logs, which specify their localization, or cell, at each moment they are

connected to the GSM network; analogously, GPS-equipped portable devices can record their

latitude-longitude position at each moment they are exposed to a GPS satellite, and can transmit

their trajectories to a collecting server (GIANNOTTI et al., 2007).

The pervasiveness of ubiquitous technologies guarantees an increasing availability of

large amounts of spatio-temporal data. Therefore, there is an opportunity – and a challenge – to

discover online, from these trajectories, spatio-temporal patterns that convey useful knowledge.

For example, consider a private company’s transportation system that tags and tracks its vehicles

as they move around. The devices report the trajectories on a continual basis (e.g., every minute,

every hour). With such data, it is possible to support drivers’ decisions related to displacement

through the city in real time (i.e., traffic jams or accidents). Such discovery may help the search

for effective re-engineering of traffic solutions in the context of smart cities. A second issue is that

the maintenance of these patterns over continuous data streams needs to be done in an efficient

way, which is challenging since all tracked moving objects may change their positions every time

they report, and the patterns may also change accordingly. Moreover, new moving objects may

19

appear and others may stop and disappear. These operations may change the previous patterns

found.

However, to execute mining algorithms from scratch every time window may lead to

a high cost since we have large volumes of streaming data. It is not only the performance which

is affected by applying mining algorithms from scratch; moreover, it is the semantic information

about the patterns and how these patterns evolve according to small changes in the movement of

objects. Typical evolution patterns include: (1) a new pattern appears, (2) a pattern disappears,

(3) an existing pattern splits into different patterns, (4) two or more existing patterns merge into

one pattern, and (5) an existing pattern survives as time goes by (SPILIOPOULOU et al., 2006).

For instance, imagine a traffic jam as a sequence of merges, or as an evolution of groups of

objects which keep their movement similar in space and time. By tracking the small changes of

these moving objects, we can capture in (quasi) real time when a traffic jam occurs and how long

it is going to last. Then, in this thesis, we continuously track the moving objects in small time

intervals (also called time windows) in order to capture how the small changes in the movement

behavior of objects affect the patterns and how they evolve in time.

For trajectory patterns, there exist many works to handle online trajectory cluste-

ring. These approaches consider the movement in Euclidean space, while showing reasonable

performance for clustering unconstrained trajectories (e.g. the free movement of animals th-

rough a forest or the movement of hurricanes across an ocean). However, they do not take into

account that all tracked moving objects may change their sub-trajectory at each time interval;

tracking may start for new moving objects and may stop for others. Furthermore, trajectory

clustering should take into account the traffic locality characterized by the spatial constraints of

the underlying network as well. The distance between two moving objects on a road network

is equivalent to the length of the shortest path connecting them, while in Euclidean spaces

this is simply given by the length of the segment connecting the objects. In this way, it is

more challenging to discover online trajectory clustering on a road network, since the distance

computation can be a bottleneck.

We aim to support potential applications which need to track moving objects, such

as a company which needs to track how its taxi fleet is moving around the city. Furthermore,

we need to detect, for a shipping company, when a deliverer is deviating from the common path

and how long it takes. This thesis solution offers a framework which is able to provide semantic

information online by capturing the patterns and their evolutions in time for objects that move in

20

Euclidean or on Road Network space.

Considering these observations and the objective of this thesis, the main challenges

which this thesis addresses are:

1. (Challenge 1) Trajectory Clusters have applications in monitoring hot traffic paths, analy-

zing people’s movement, discovering common hurricane paths, and understanding city

dynamics. For these types of applications, there is a need to track trajectory clusters

online. How can we discover spatio-temporal patterns online as sub-trajectory clustering

for unconstrained trajectories?

2. (Challenge 2) In this thesis, we consider that new moving objects might start being

tracked and others may stop and disappear. Moreover, the tracked objects might update

their position as time goes by. How can we efficiently maintain the spatio-temporal patterns

over a continuous trajectory data stream?

3. (Challenge 3) As the tracked moving objects evolve as time goes by, the mobility patterns

also evolve. How can we detect the frequent evolution (or a sequence of evolutions) of

spatio-temporal patterns over a continuous trajectory data stream?

4. (Challenge 4) As the majority of objects have constrained movement in a real application

and the traditional network distance computations (as shortest path distance) are costly,

how can we discover online, and in an efficient way, trajectory clusters on a road network?

In the next section, we discuss the main contribution of this thesis based on the

problems presented.

21

1.3 Thesis Contribution

The main contributions of this thesis are the following:

• Since typical cluster evolution patterns include appear, disappear, expand, shrink, split,

merge, and survive (SPILIOPOULOU et al., 2006), we propose a model for cluster

evolution patterns which captures the evolution and interaction of these clusters over time,

and the frequent sequence evolution patterns of the moving object data. Discovering

frequent patterns is not reduced to counting how many times a pattern occurs in the dataset.

It is computationally costly to calculate the frequency for every possible sequence of

cluster evolution in the data set. The results were published in (SILVA et al., 2014b). This

proposal refers to our Challenge 3.

• We propose CUTiS (standing for ClUstering Trajectory Stream), an incremental clustering

algorithm for trajectory data streams with these main characteristics: (1) most of the

objects change their sub-trajectories data at each time interval, (2) new moving objects

appear, and (3) others disappear from the system. Because we do clustering for each time

window rather than for the whole trajectory, the clusters we find are actually sub-trajectory

clusters. We define a new structure, called micro-group, to represent the relationships

among moving objects. A micro-group is a small and dense group of moving objects

around a representative trajectory (which tries to represent the overall behavior of the

group) at each time window. This adapts to many situations such as families staying

together or persons sharing the same trip using public transport. Then, micro-groups may

evolve, e.g., merge or split in the next time period. In our experiments, the maintenance of

the structure of micro-groups presents less computational cost than running the clustering

algorithm from scratch at each time window. The results were published in (SILVA et al.,

2016b; SILVA et al., 2016a). This proposal refers to our Challenges 1 and 2.

• We designed and developed a demo which implements the framework CUTiS for three

mobility patterns: (1)Micro-group Sub-trajectory, (2) Density Based Sub-trajectory Clus-

ters and (3) Trajectory Flocks. In this case, a trajectory flock is a subset of moving object

trajectories (with at least m moving objects) that stay together (according to a radius r)

in the same micro-group for more than a time interval threshold (k time windows). The

major difference between our flocks and micro-groups is the time interval constraint in the

first. At each time window, the demo enables the user to see the micro-groups’ movement

(as well as its evolution) and the mobility patterns discovered. The experiments allow the

22

comparison with many approaches in the state of the art, from both perspectives of quality

and performance. The results were published in (SILVA et al., 2016d). This proposal

refers to our Challenges 1 and 2.

• We developed an indexing structure for sub-trajectory data based on a space-filling curve

which is a curve whose range contains the entire 2-dimensional unit square (or more gene-

rally an n-dimensional unit hypercube). It has the property of mapping a multidimensional

space to one-dimensional space such that, for two objects that are close in the original

space, there is a high probability that they will be close in the mapped target space (THAT

et al., 2016). We take advantage of this property to optimize the range queries from a

moving object sub-trajectory on the incremental clustering algorithm, since during the

clustering processing we need to retrieve the trajectories’ neighbors of a moving object

trajectory. In this way, we develop CUTiS*. The proposed index improves the performance

without losing quality in the clusters’ results as we show in our experiments conducted on

a real dataset. The results were published in (SILVA et al., 2016c). This proposal refers to

our Challenges 1 and 2.

• We proposed and developed extended solution to scenarios with spatio-temporal cons-

traints, developing the methods to discover the clusters for road network constraint tra-

jectories. We proposed two contributions in this scenario: (1) a spatio-temporal distance

function for trajectory data considering its movement on a road network, and (2) an in-

cremental clustering approach for road network constraint trajectory data. We call this

approach Net-CUTiS. This proposal refers to our Challenge 4.

23

1.4 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2 we discuss the

state of the art related to this thesis. In particular, we present works related to trajectory data

management. Later, the works that proposed approaches to find mobility patterns such as flocks,

swarms, and convoys, among others, and trajectory clustering in Euclidian and Road Network

constraint movement are presented.

Chapter 3 describes our naive solution to detect cluster evolution patterns and how

to detect a frequent sequence of evolutions. In Chapter 4 we present our framework CUTiS for

Euclidean Space and in Chapter 5 Net-CUTiS for Road Network constraint movement. In both

chapters, the evaluation of our approach is presented for real datasets by evaluating the efficiency

and effectiveness compared with our competitors. The framework CUTiS presents three main

contributions:

• A novel definition of micro-group that we believe enables the computation of interesting

patterns.

• An incremental algorithm to maintain micro-groups and to capture their evolution patterns

on trajectory data streams.

• A sub-trajectory clustering algorithm based on time, space, and angular distance functions.

Finally, Chapter 6 we draw conclusions and propose future works based on this

thesis.

24

2 STATE OF THE ART

In this Chapter, we discuss the relevant state-of-the-art considering the main contribu-

tions of this thesis: CUTiS (standing for ClUstering Trajectory Stream), CUTiS* and Net-CUTiS

which is our proposed solution for clustering of road network constraint trajectory data. Specifi-

cally, this Chapter has the following structure. In Section 2.1, the works about trajectory data

management. Then, we discuss about the trajectory pattern mining in Section 2.2.

It is worth noticing that the contributions of this thesis can be included in the area of

trajectory data management which deals with the traveling history of a moving object. A more

comprehensive survey on trajectory data management can be found in (DENG et al., 2011). The

works in this field started more than two decades ago, motivated by the need to store, index,

model, and query trajectory data. We focus and present in details only the related work relevant

to the contributions of this thesis

2.1 Trajectory Data Management

Mobility data has been fostered by the widespread diffusion of wireless technologies,

such as the call detail records from mobile phones and the GPS tracks for navigation devices,

society-wide proxies of human mobile activities. These data open new opportunities for disco-

vering the hidden patterns and models that characterize the trajectories humans follow during

their daily activity, network traffic flow analysis and travel time reliability analysis. The huge

volume of collected trajectories opens new opportunities for discovering the hidden patterns

about mobility behaviors. These patterns may apply to characterize the individual mobility as

well as groups sharing similar trajectories for a certain time period.

A trajectory is usually defined as the spatio-temporal evolution of moving objects

(e.g., persons, vehicles, animals). This evolution is typically represented as a sequence of

positional observations represented by x and y coordinates of time-stamped sample points.

Mining huge volumes of trajectories is very time-consuming, as we need to access different

samples of the trajectories or different parts of a trajectory many times. This calls for effective

data management techniques that can quickly retrieve the trajectories (or parts of a trajectory)

needed. Different from a moving object database that is concerned with the current location of

a moving object, the trajectory data management introduced in this section deals with the real

displacement (trajectory shape) of a moving object.

25

2.1.1 Trajectory Index

Before designing an access method, we need to be aware of the nature of the data,

the types of queries and the method’s usefulness. Range queries are typical queries which

retrieve the trajectories intersecting a spatial (or spatio-temporal) range. A trajectory can be

treated as spatial (3D) data itself, and thus may be supported by a spatial access method. By

regarding the time as the third dimension besides the 2D geographical space, building an index

3D-Rtree (THEODORIDIS et al., 1996) on a trajectory dataset, it is possible to answer such

range queries by retrieving the nodes within the 3D query box. The 3D-Rtree works well for

indexing trajectories generated in the near recent (e.g., in the past few hours). When the time span

of the trajectories to be indexed lasts for a long period (i.e., more segments of newly generated

trajectories will be inserted into a 3D-Rtree index), the overlap among 3D boxes bounding

segments of different trajectories occur more often (ZHENG, 2015).

Another problem not addressed by any of the traditional index for spatio-temporal

data (Quadtree (TZOURAMANIS et al., 1998), R-tree and variations (NASCIMENTO et al.,

1999)) is the preservation of trajectories. The first proposal in this direction was Spatio-Temporal

R-tree (called STR-tree) which organizes line segments not only according to spatial properties,

but also by attempting to group the segments according to the trajectories they belong to. STR-

tree is an extension of 3D R-tree however STR-tree tries to keep line segments belonging to the

same trajectory together. As a result, when intersecting a new line segment, the goal is to insert it

as close as possible to its predecessor in the same trajectory. The second, the Trajectory-Bundle

tree (hereafter called TB-tree) which aims only for trajectory preservation and leaves other spatial

properties aside. Its main idea is to bundle segments from the same trajectory into the leaf nodes

of the R-tree. The trajectory is distributed over a set of disconnected leaf nodes. Both access

methods were proposed in (PFOSER et al., 2000).

(POPA et al., 2010) proposed PARINET an index to efficiently retrieve the trajec-

tories of objects moving on networks. The structure of PARINET is based on a combination

of graph partitioning and a set of composite B+-tree local indexes. PARINET is designed for

historical data and relies on the distribution of the data over the network as for historical data,

the data distribution is known in advance. Because the network can be modeled using graphs,

the partitioning of the trajectory data is based on graph partitioning theory and can be tuned for a

given query load. The data in each partition is indexed on the time component using B+-trees.

(POPA et al., 2011) proposed T-PARINET which is an extension of PARINET for trajectory data

26

flows.

2.1.2 Distance and Similarities between Trajectories

When answering clustering trajectories, we need to calculate the distance (alter-

natively, similarity) between two trajectories. The distance discussed below is divided by for

Euclidean Space and Road Network. Although there is significant research work performed

on the trajectory similarity on moving objects, the vast majority of the proposed approaches

assumes that objects can move freely without any motion constraints.

The work of (ANKERST et al., 1999) presents a time and space distance function

in Euclidean space. From a conceptual viewpoint to compute the distance we need to compute

the infinite set of distances for each timestamp (e.g., and, afterward, to aggregate them by an

integral). The paper (FRENTZOS et al., 2007b) proved that this integral can be computed on

O(1) and can be efficiently computed by Trapezoid Rule. (FRENTZOS et al., 2007b) provided

also bounds for the approximation error. This distance function is well explained in Chapter 4.

Some outlier points from a trajectory may cause a big distance between trajectories,

the concept of the Longest Common Subsequence (LCSS) (VLACHOS et al., 2002) is employed

to address this issue. The LCSS-based distance allows one to skip some noise points when

calculating the distance of trajectories, using a threshold δ to control how far in time we can go

in order to match one point from a trajectory to a point in another trajectory. Another threshold

ε is used to determine whether two points (from two different trajectories) are matched. The

distance function Edit Distance on Real Sequence (EDR) (CHEN et al., 2005) is similar to LCSS

in using a threshold ε to determine a match, while assigning penalties to the gaps between two

matched subtrajectories.

The work of (LEE et al., 2007) proposed a distance function distance(STi,k,

STj,k) for any (sub) trajectories (let’s say, STi,k and STj,k) which is a weighted sum of three

terms: (1) The aggregate perpendicular distance (d⊥) that measures the separation between two

trajectories, (2) the aggregate parallel distance (d‖) that captures the difference in length between

two trajectories, and (3) the angular distance (dθ) that reflects the orientation difference between

two trajectories. Formally,

distance(STi,k,STj,k) =ω1∗dist⊥(STi,k,STj,k)+ω2∗dist‖(STi,k,STj,k)+ω3∗distθ (STi,k,STj,k)

27

(2.1)

These components were adapted from similarity measures used in the area of pattern

recognition (CHEN et al., 2003). Each sub-trajectory is composed of line segments, imagine that

Li belongs to STi,k and L j belongs to STj,k. Then, Li = siei and L j = s je j. Here, si, ei, s j, and e j

represent d-dimensional points. The three components which compose the distance function are

illustrated in Figure 1. The angular distance component is used in this thesis, and more details

will be given in Chapter 4.

Figura 1 – Three components of the distance function for line segments from(LEE et al., 2007).

The work of (NANNI; PEDRESCHI, 2006) proposes a similarity measure of trajec-

tories of objects along time and therefore is computed by analyzing the way the distance between

the objects varies. More precisely, it restricts to consider only pairs of contemporary instantiation

of objects, i.e., for each time instant the similarity compares the positions of the objects at that

moment, thus aggregating the set of distance values obtained this way. The distance between

two trajectories Tj and Tk is computed as follows

D(Tj,Tk)|T =

∫
T d(Tj(t),Tk(t))dt

|T |
(2.2)

where d(Tj(t),Tk(t)) is the Euclidean distance, T is the temporal interval over which

trajectories Tj(t) and Tk exist, and Ti(t)(i ∈ {1,2}) is the position of object Ti at time t. Such a

definition requires a temporal domain common to all objects, which, in general, is not a hard

requirement (NANNI; PEDRESCHI, 2006).

The first work to propose a trajectory similarity function on networks was (HWANG

et al., 2005). The authors propose a simple similarity measure based on POIs (points of interest).

They propose a filtering method based on spatial similarity and refining similar trajectories based

on temporal distance. In order to determine the spatial similarity between trajectories, they define

28

that two trajectories are similar in space by a set of pre-defined points of interest P if all points

of P lie in both trajectories, otherwise they define the two trajectories as dissimilar.

Other papers as (TIAKAS et al., 2006; TIAKAS et al., 2009) also proposed spatio-

temporal similarity function for trajectory on the road network. There are three different

methods proposed in order to retrieve similar trajectories in space-time: (1) searching for similar

trajectories based on spatio-temporal distance between trajectories; (2) filtering trajectories

based on temporal similarity and refining similar trajectories based on spatial distance; (3)

filtering trajectories based on spatial similarity and refining similar trajectories based on temporal

distance.

Recently (PELEKIS et al., 2016) proposed a new distance function for two timelines.

A mobility timeline is a sequence of LifeSteps (firstly defined (PELEKIS et al., 2014; PELEKIS

et al., 2015)), and each LifeStep can be abstracted as a pair of values (θ , κ), where θ is a

spatio-temporal value that provides an approximation of a portion of the movement of the user

(i.e., an Minimum Bounding Box (MBB)), and κ provides a corresponding text description (i.e.,

as a set of keywords) given semantics to θ . The distance metric proposed can be decomposed into

two parts, one measuring the distance of the spatio-temporal components and another measuring

the distance of the textual components. (PELEKIS et al., 2016) applies this distance function in

the proposed clustering algorithm Sem-T-Optics which follows T-Optics (NANNI; PEDRESCHI,

2006) clustering algorithm.

2.1.3 Trajectory Compression

Trajectory Compression aims to compress the size (e.g., the cardinality of the set

of time-stamped positions) of trajectory, but it does not affect its usefulness. By compressing

trajectories, we can have an overhead reduced in communication, processing and data storage.

There are two categories for trajectory compression: offline compression, which reduces the size

of a trajectory already generated. Another one is online compression, which reduces the size of a

trajectory while the object moves.

Douglas Peucker (DOUGLAS; PEUCKER, 1973) is the most effective batch algo-

rithm for compression (POPA et al., 2015). It takes as input a data series of 2D points and a

user-defined threshold value to output subseries of the input data. The idea of Douglas Peucker

is to replace the original trajectory by an approximate line segment. It recursively partitions the

original trajectory into two sub-trajectories by selecting the point in the original trajectory which

29

contributes to the biggest error (e.g., perpendicular Euclidean distance). We call this point as

splitting point. This process continues until the error between the approximation and the original

trajectory is below a specified error.

Douglas Peucker is a commonly used compression technique, however, it is not

suitable for moving object trajectory applications. Mostly because it operates on the basis

of perpendicular distance. Due to the continuous nature of moving objects, the proposals of

(MERATNIA; ROLF, 2004) are related to Douglas Peucker, but taking both spatial and temporal

factors into account.

The paper of (KELLARIS et al., 2013) proposes two trajectory compression techni-

ques, one online and another offline. As the first step, it applies a map matching algorithm to

associate each trajectory position to one road segment on the road network. As a second step, it

compares if a sub-trajectory can be represented by the shortest path between its endpoints. The

authors adopted the Minimum Description Length (MDL) (GRÜNWALD et al., 2005) principle

to compress, in this way a sub-trajectory is replaced by the shortest path in the original trajectory

when this shortest path has the least value for MDL.

(POTAMIAS et al., 2006) proposed two algorithms for online trajectory compression.

The algorithm uses the coordinates, speed, and orientation of the current point in order to calculate

a safe area where the next point might be located. If the next incoming points belong to the safe

area, it can be ignored. In order to define a safe area, basically it can be calculated using the last

point or the last chosen point.

The paper (POPA et al., 2015) compresses trajectories which are road network

constraint. As a first step, it discovers the network paths (a sequence of consecutive road

segments) or which its road segments are all crossed by a set of the same trajectories. The

second step is to describe all trajectories in the data set using these paths (mapping function).

The third step is to compress all trajectories by applying the Douglas Peuker algorithm using

as a function the Synchronous Network Distance. In Chapter 5, we will explain our proposed

distance function for the trajectories constraint to road network movement and it uses (POPA et

al., 2015) compression algorithm.

2.2 Trajectory Pattern Mining

In this section, we overview two major categories of moving together patterns (e.g.,

moving object clusters and trajectory clustering) that can be discovered from a single trajectory

30

or a group of trajectories.

2.2.1 Moving Together Patterns

Clustering algorithms, which group similar data to reveal overall distribution patterns

and interesting correlations in datasets, has achieved brilliant success in analyzing static datasets

(ESTER et al., 1996; ANKERST et al., 1999; MACQUEEN, 1967; GUHA et al., 1998; ZHANG

et al., 1996; ESTER et al., 1998; YIU; MAMOULIS, 2004; DAI; LIN, 2012; HE et al., 2011;

SILVA et al., 2014a). These works proposed algorithms for three different clustering paradigms,

i.e., k-partitioning, density-based and hierarchical clustering. However, all these solutions

are clustering algorithm for static datasets. The work of (ESTER et al., 1998) proposes an

approach to generate clusters in an incremental way. An extensive research has also been done

for clustering moving objects, which could catch interesting pattern changes during the motion

process and provide better insight into the essence of the mobile data points.

(LI et al., 2004) applies micro-clustering of moving objects, thus obtaining algo-

rithms that dynamically maintain bounding boxes of clusters. A micro-cluster denotes a group of

objects that are not only close to each other at the current time, but also likely move together for

a while. Due to the difference of positions and velocities of objects within a micro-cluster, the

objects tend to scatter after a period of time, which may break the requirement of micro-cluster

since they will not be adjacent to each other any more. However, the numbers of maintenance

events (e.g., split and collision of micro-cluster(s)) involved are usually prohibitively large.

The paper (JENSEN et al., 2007) proposes a fast and effective scheme for the

continuous clustering of moving objects. It presents a dynamic summary data structure for

clusters that enables frequent updates to the data without the need for global reclustering.

An average-radius function is used that automatically detects a cluster split events, which, in

comparison to (LI et al., 2004), eliminates the need to maintain bounding boxes of clusters with

large amounts of associated violation events. Moreover, (JENSEN et al., 2007) considers in its

strategy that each cluster has a maximum capacity (e.g., radius which means the furthest distance

between two objects that belong to the cluster), which might not make sense for density-based

clusters.

(LI et al., 2013) proposes a framework that efficiently supports the online discovery

of moving objects that travel together. The framework adopts a sampling-independent approach,

monitors clusters continuously and records the histories of clusters. The evaluation of groups is

31

only dependent on the most recent history, so that the framework is amenable to online processing.

The work of (LI et al., 2013) tracks all cluster evolution patterns and define the conditions that

may lead to these evolutions.

Another related work is (LEE et al., 2014). It focuses on the cluster evolution

tracking problem on highly dynamic networks. (LEE et al., 2014) takes the event evolution

tracking task in social streams as an application, where a social stream and an event are modeled

as a dynamic post network and a dynamic cluster respectively. (LEE et al., 2014) summarizes

the network by a skeletal graph and monitor the updates to the post network by means of a

sliding time window. It formalizes cluster evolution patterns using a group of primitive evolution

operations and their algebra. Two incremental computation algorithms (split and merge clusters)

are developed to maintain clusters and track evolution patterns as time rolls on and the network

evolves. Unlike previous approaches, their evolution tracking algorithm performs incremental

bulk updates in real time. (LEE et al., 2014) is related to our work, considering that all cluster

evolution patterns are observed. However,it works for social networking, moreover, it does not

consider the update operation as we consider that a moving object trajectory can change its

position as time goes by.

A very related topic to this study is to discover collective patterns among moving

objects, as flock (GUDMUNDSSON; KREVELD, 2006; GUDMUNDSSON et al., 2004), swarm

(LI et al., 2010a), convoy (JEUNG et al., 2008a; JEUNG et al., 2008b), travelling companions

(TANG et al., 2012; TANG et al., 2013), herds (HUANG et al., 2008), gathering (ZHENG et

al., 2013), among others (ZHENG, 2015). In the following, we discuss these patterns in more

details.

These patterns can be differentiated between each other based on the following

factors: the shape of a group, the number of objects in a group, and the duration of a pattern.

Specifically, a flock is a group of objects that travel together within a disk of any user-specified

size for at least k consecutive timestamps. A major concern with flock is the predefined circular

shape, which may not well describe the shape of a group in reality, and therefore may result in

the so-called lossy-flock problem. To avoid rigid restrictions on the size and shape of a moving

group, the convoy is proposed to capture the generic trajectory pattern of any shape by employing

the density-based clustering. Instead of using a disk, a convoy requires a group of objects to

be density connected during k consecutive time points. While both flock and convoy have a

strict requirement for consecutive time period, swarm is a cluster of objects lasting for at least k

32

(possibly non-consecutive) timestamps. While convoy and swarm patterns need to load entire

trajectories into memory for a pattern mining, the traveling companion uses a data structure

(called traveling buddy) to continuously find a convoy/swarm like patterns from trajectories that

are being streamed into a system. So, the traveling companion patterns can be regarded as an

online (and incremental) detection fashion of convoy and swarm (ZHENG, 2015). As an online

algorithm to find flocks, the work of (VIEIRA et al., 2009) finds online flocks with the longest

duration in moving object data stream.

(HUANG et al., 2008) proposes new conceptual definitions for a spatio-temporal

pattern named herd and four types of herd evolvements: expand, join, shrink, and leave. We will

discuss all these evolution patterns in the next section. Herd evolvements are identified through

measurements of Precision, Recall, and F-score.

Finally, (ZHENG et al., 2013) discovers patterns, called gathering, which is a

trajectory pattern modelling various group incidents such as celebrations, parades, protests,

traffic jams and so on. Formally, each cluster of a gathering should contain at least mp so-called

participators, which refer to the objects appearing in at least kp groups of this gathering. A key

observation is that these incidents typically involve large congregations of individuals, which

form durable and stable areas with high density. Since the process of discovering gathering

patterns over large-scale trajectory databases can be quite lengthy, (ZHENG et al., 2013) further

develop a set of well thought out techniques to improve the performance. These techniques,

including effective indexing structures, fast pattern detection algorithms implemented with bit

vectors, and incremental algorithms for handling new trajectory arrivals.

The published approaches to find these patterns are very sensitive to specific parame-

ters and find these patterns offline for historical datasets.

Figura 2 – Example of Flock, Convoy, Swarm and Gathering from (ZHENG, 2015)

Figure 2 illustrates the majority of these patterns. Imagine the parameter k=2, a

33

group (o2,o3,o4) is a flock from t1 to t3 (Figure 2 (a)). A convoy can be composed by including

o5 into the group, since (o2,o3,o4,o5) is density-based connected from t1 to t3. A swarm is

derived from the five objects during the non-consecutive time period t1 and t3. In the Figure 2(b),

if we consider kp = 2 and mp = 3, then (C1,C2,C4) is a gathering. As C5 is too far away from C2

and C3, (C1,C3,C5) is not a gathering.

Another paper in this context is (LEE et al., 2015) that proposes a framework of

mining historical trajectory dataset, in order to find UT-patterns which are informally defined as

sets of moving objects that are closely related in terms of location, time, or both.

There exist some approaches for clustering of moving objects data stream. The

majority of data-stream clustering algorithms are based on k-means (SILVA et al., 2013). These

clustering algorithms are incompetent to find clusters of arbitrary shapes and cannot handle

outliers. There are two main algorithms for data stream clustering density-based: DenStream

(CAO et al., 2006) and D-Stream (CHEN; TU, 2007). In general, data stream clustering

algorithm develops suitable data structures for storing statistic summaries about clusters and

save the computation for incremental clustering from one snapshot data to the next (as a feature

vector (DenStream (CAO et al., 2006)) or grid data structure (D-Stream (CHEN; TU, 2007))

which are extensively used in many data stream clustering algorithms (SILVA et al., 2013)).

It is unfeasible to use these data structures, since our problem (1) deals with moving

object sub-trajectory data; (2) does not consider fading time window or decay factor as in

D-Stream (CHEN; TU, 2007), since we aim at tracking moving objects, the process to remove a

moving object from the dataset occurs when a moving object stops to send its positions for a

long time (until some threshold is reached). Furthermore, we consider in our problem that all the

moving objects change their sub-trajectories every time window different from DenStream (CAO

et al., 2006) and we can receive new moving object data; (3) we aim at capturing the similarity

in time, space and angular movement of moving objects sub-trajectories during a time window.

The papers (GUHA et al., 2000; AGGARWAL et al., 2003) proposed clustering

approaches for data streams. Different from the previous, they do discover density-based clusters.

However, they are not addressed for trajectory data.

The next section discusses how groups of moving objects, which shares the same

space at the same time, evolve as time goes by. We call this phenomenon as cluster evolution

patterns.

34

2.2.2 Cluster Evolution Pattern

Imagine the following scenario, illustrated in Figure 3: at time t, there are three

clusters and some outliers in the data set. Consider that each point in the data set is a moving

object and each cluster represents a high density area, for example. After δ t units of time, the

objects of clusters C1 and C2 moved into the same space and they are merged to only one cluster.

Observe that on Figure 3, we label to cluster C1 the objects that belonged to cluster C2 on the

previous time. This phenomenon is called cluster evolution pattern and it can happen in a real

scenario (imagine a highway that has two roads which merge at some point). Note that, for

cluster C3, more moving objects were added to the dataset between t +δ t and t +2δ t. Cluster

C3 at time t + 2δ t can represent, for example, the increase of vehicles in an area and it may

represent a congested area.

Figura 3 – Example of clustering moving objects at three consecutive timestamps

The cluster evolution of moving objects should take into account the objects’ previous

movements, their updated movement as time goes by, including the deletion and insertion of

other moving objects. As we shall see, doing so enables us to capture each clustering change as

it occurs during the continuous motion process. Thus, we aim at tracking the cluster evolution

patterns at each moment from such dynamic dataset. Typical cluster evolution patterns include

appear, disappear, expand, shrink, split, merge and survive (SPILIOPOULOU et al., 2006).

Our paper (SILVA et al., 2014b) presents a naive approach to detect density-based

cluster evolution patterns, considering that the clustering algorithm is executed over all dataset.

35

It is worth noting that this approach is not optimal since we compute clusters at every δ t units

of time and for each execution we will evaluate the cluster evolutions. Motivated by that, we

proposed the framework CUTiS, which is able to automatically detect the cluster’s evolutions

without needing to recluster the data from time to time. CUTiS is the major contribution of this

thesis.

2.2.3 Trajectory Clustering

Usually, trajectory analysis is done off-line, i.e., by applying data analysis and mining

techniques on the previously collected data (ZHENG, 2015). This allows characterizing the past

movements of the objects but not the current mobility patterns. Nowadays, many services exist

that involve moving objects to report their trajectory continuously (e.g., every second or every

minute). Analyzing these data in real time may bring a real added-value in the comprehension

of the city dynamics, and the detection of regularities as well as an anomaly, which is essential

for decision-making. Among these patterns, in this thesis, we consider the trajectory group

constitution and evolution, based on sub-trajectory cluster analysis in real time. Such discovery

may help the search for effective re-engineering of traffic, or dynamically detecting events or

incidents, e.g., at a city level.

In the next section, we discuss clustering trajectory data which finds patterns accor-

ding to the real displacement of moving objects in Euclidean Space.

2.2.3.1 Clustering of Trajectory Data in Euclidean Space

Trajectory clustering is a topic that has gained great interest in the literature (NANNI;

PEDRESCHI, 2006; PELEKIS et al., 2011; LEE et al., 2007; LI et al., 2010b; YU et al., 2013;

MAO et al., 2016). The authors in (NANNI; PEDRESCHI, 2006) proposes a time-focused

clustering of trajectories based on OPTICS algorithm (ANKERST et al., 1999) and present a

time and space distance function in Euclidean space. The paper (PELEKIS et al., 2011) studied

how to cluster uncertain trajectories. However, these approaches tend to generate clusters for the

entire trajectory dataset, hence the fine-grained spatio-temporal relationships between moving

objects are lost. The paper (LEE et al., 2007) proposes TraClus which is an approach to discover

density based sub-trajectory clusters based on DBSCAN algorithm (ESTER et al., 1996). For

trajectory comparison, TraClus focused on spatial criteria and ignored the time dimension. In

this thesis, we compared our approach with TraClus.

36

Some of the applications may like daily patterns or every minute patterns if they

are online. For example, a private company’s transportation that tags and tracks its vehicles

as they move around. The devices report the trajectories on a continual basis as streams (e.g.,

every minute, every hour). With such data, it is possible to support drivers’ decisions related to

displacement through the city in real time (i.e., traffic jam or movement habits through the city

can be found by trajectory cluster analysis). Such discovery may help the search for effective

re-engineering traffic solutions in the context of smart cities.

There exist some approaches for clustering trajectories data stream. The work (LI

et al., 2010b) proposed efficient algorithms for maintaining and updating the clusters when

new trajectories stream are received. However, it does not consider the temporal aspects of the

trajectories. As such, moving objects whose trajectories are in the same cluster may not actually

stay together temporally. Paper (YU et al., 2013) proposed a trajectory clustering algorithm to

extract some patterns similar to the convoy pattern (JEUNG et al., 2008c). The paper (MAO

et al., 2016) proposes an online trajectory clustering over a sliding window composed of two

components: a micro-clustering that extracts the summary of trajectory stream in the window,

and a macro-clustering component that re-clusters the previously extracted summaries according

to user’s request. However, both papers (YU et al., 2013; MAO et al., 2016) do not track the

cluster/group evolution neither the up-to-date moving objects trajectories as time goes by.

2.2.3.2 Clustering of Trajectory Data on Road Network

Note that the clustering methods discussed in the last section are dedicated for

trajectories in free spaces (i.e., without a road network constraint). In this section, we will discuss

trajectory clustering approaches which only consider road network constraint movement.

The work of (LI et al., 2007) proposes a density-based algorithm called FlowScan,

which finds the “hot routes” based on the definition of ’traffic density-reachable’. It is essentially

a trajectory clustering algorithm based on traffic density, which clusters trajectories by dense line

segment. The paper (HAN et al., 2012) proposes NEAT a road network aware approach for fast

and effective clustering of spatial trajectories of mobile objects travelling on road networks. This

method takes into account the physical constraints of the road network, the network proximity

and the traffic flows among consecutive road segments to organize trajectories into spatial clusters.

The clusters discovered by NEAT are groups of sub-trajectories which describe both dense and

highly continuous traffic flows of mobile objects.

37

(ROH; HWANG, 2010) proposed a new distance function for trajectory based on

Hausdorff distance which measures how far two trajectories of a metric space are from each

other. It considers the network constraints to derive the proposed similarity measure with a

focus on shortest path distance. Moreover, it proposes a trajectory clustering algorithm based

on hierarchical clustering. It is not an online algorithm neither considers the time as a metric to

measure the similarities between trajectories as we do.

The paper (KHARRAT et al., 2008) proposes NETSCAN which finds density based

clusters. The minimal required density for a road segment is α moving objects crossing it. At

first, NETSCAN finds the dense paths which mean a sequence of neighbor road segments. The

maximal density difference between neighbour segments is equal to ε to be in the same dense

path. NETSCAN does not ensure the same moving objects cross a dense path. The trajectory

clustering algorithm consists in grouping the trajectories according to their similarity to each

dense path generated. For each dense path, it computes the similarity with each trajectory of the

dataset. If the similarity is above the threshold value σ , then the trajectory is kept in the cluster.

More precisely, the common part between the trajectory and the dense path is added to the cluster.

The number of returning clusters is equal to the number of dense paths. The time is relaxed

and the same moving object trajectory can be associated with different clusters. NETSCAN is

compared with the evaluation of our approach for clustering road network constraint trajectories.

From the best of authors’ knowledge, there is no incremental approach for trajectory

clustering online on the road network.

In the next chapter, we discuss how to discover frequent evolution patterns on moving

object database.

38

3 FREQUENT EVOLUTION PATTERN DISCOVERY

The problem addressed in this chapter corresponds to the Challenge 3 presented in

the Section 1.2.

Typical cluster evolution patterns include appear, disappear, expand, shrink, split,

merge and survive (SPILIOPOULOU et al., 2006). The cluster evolution of moving objects

should take into account objects previous movements, their updated movement as time goes by,

including the deletion and insertion of other moving objects. As we shall see, doing so enables

us to capture each clustering change as it occurs during the continuous motion process. In this

chapter, we aim at discovering and detecting frequent cluster evolution patterns on a dynamic

moving object dataset.

Many successful and scalable approaches have been proposed (ESTER et al., 1996;

MACQUEEN, 1967; ESTER et al., 1998; YIU; MAMOULIS, 2004; DAI; LIN, 2012; SILVA et

al., 2014a), which have achieved success on clustering static mobility datasets. As we mentioned

before, they answer the question "Where are the moving object clusters?". However, they can not

answer advanced queries like "How moving object clusters evolve over the geographical space?".

This type of query is solved using the approaches proposed on (XU et al., 2014; JENSEN et al.,

2007; LI et al., 2013).

In this chapter, we do not only detect the cluster evolution patterns, but also address

queries like "Which are the frequent patterns of cluster evolution of moving objects trajectories?".

For example, on applications which aim at analysing the traffic behavior. The existing approaches

to detect the evolution patterns can discover where the congested areas are within the city at each

moment and how they evolve in time. However, they can not detect if the congested areas are

frequent throughout the day, the week or during the month.

Many applications need to cope with cluster changes in the mobility domain, among

them traffic management, delivery logistics and crowd monitoring. It is also necessary to provide

insights about the nature of cluster change: Is a cluster corresponding to a group of vehicles

simply disappearing or are its members migrating to other clusters? Is a new emerging cluster

reflecting a new target group of vehicles or does it rather consist of existing customers whose

preferences shift? (SPILIOPOULOU et al., 2006).

We focus on modeling cluster evolution patterns, on detecting the evolutions over

time and the frequent sequence evolution patterns on a dynamic moving object dataset. It is

computationally costly to calculate the frequency for every possible sequence of cluster evolution

39

in the dataset, we aim to avoid this exhaustive computation.

Our proposed approach here is key for mobility applications, for instance, applicati-

ons that need to discover mobility pattern on moving object’s data. A mobility pattern represents

the common behavior of a group or subgroup of trajectories, obtained as a result of a data

mining algorithm. For example, to find gathering pattern on trajectory data (ZHENG et al.,

2013). Informally, a gathering represents a group event or incident that involves the congregation

of objects (e.g., vehicles, people, animals). Examples of gatherings may include celebrations,

parades, large-scale business promotions, protests and traffic jam.

For instance, we may describe a traffic jam as a sequence of evolution patterns

as we show on Figure 4(a): two clusters C1 and C2 appear at time t. After δ t units of time,

C1 and C2 move closer to each other and they merge into one cluster, we label it as C1. At

t + 2δ t , imagine that C1 expands if the traffic jam gets worse. Or C1 shrinks, otherwise.

When the traffic jam is over, the cluster evolution of C1 is disappearing. If this sequence

(appear,merge,expand|shrink,disappear) occurs frequently in the dataset, we claim that the

traffic jam is a frequent pattern. Therefore, to solve our problem in this work, we model all

cluster evolution on a Graph Evolution Cluster over Time (∆evol) as show in Figure 4(b). Then,

we map our problem on discovering frequent paths on ∆evol . The frequent graph paths are

frequent sequences of evolution patterns that occurs in the dataset. We will discuss our solution

on Section 3.2.

Figura 4 – Example of detecting and discovering frequent cluster evolution pattern

On Section 3.2 we present our approach, which does not require to check all the

combinations of possible evolutions to discover which are the most frequent. Furthermore, we

40

present a naive approach to detect clusters evolution patterns, considering that the clustering

algorithm is executed over all datasets. It is worth noting that this approach is not optimal since

we will compute clusters at every δ t units of time and for each execution we will evaluate the

cluster evolutions. After, we discover the frequent sequences of cluster evolution. Chapters 4 and

5 propose an incremental clustering algorithm which is able to online detect cluster evolution.

Our incremental clustering algorithm is an improvement of this first proposal.

3.1 Definitions

In this section, we start by defining the basic notions of moving object, moving object

position and consistent set of moving object positions which are important for the explanation

over this chapter.

Definition 3.1.1. (Moving object) A moving object is a pair ω = (oid,ρ) such that oid is a

unique identifier for ω and ρ(t) : ℜ→ℜ2 is the trajectory of ω such that ρ(t) = (lat, lon) maps

each point in time t ∈ℜ into a pair (lat, lon) ∈ℜ2.

Definition 3.1.2. (Moving object position) Let ω = (oid,ρ) be a moving object and t ∈ℜ. The

position of ω at time t is the triple o = (oid,ρ(t), t).

Definition 3.1.3. (Consistent set of moving object positions at the same timestamp) Let Ω

be a set of moving objects. Let O be a set of positions of moving objects in Ω. Then, O is

consistent iff, for any (i, p, t),(j,q,u) ∈ O, i 6= j and t = u.

We now focus on the evolution of a set of moving object positions that results

from changes in the objects positions and from the deletion and insertion of moving objects in

the dataset. These changes are modelled as events that represent the execution of one of the

operations in the next definitions.

In what follows, let Ω be a set of moving objects and OΩ be the set of all consistent

set of moving object positions of moving objects in Ω.

Definition 3.1.4. (Insertion operation - there is a new moving object position) The insertion

operation o+ : ℜ×Ω×OΩ → OΩ is such that, for each time t ∈ ℜ, each moving object

ω = (oid,rho) ∈ Ω and each set O of positions of objects in Ω at time t, o+(t,ω,O) = P iff

P = O∪{(oid,ρ(t), t)} (if O already contains the position of ω at t, then O remains unchanged).

41

Definition 3.1.5. (Deletion operation - there exists a deletion of a moving object position)

The deletion operation o− : ℜ×Ω×OΩ→ OΩ is such that, for each time t ∈ℜ, each moving

object ω = (oid,rho)∈Ω and each set O of positions of objects in Ω at time t, o−(t,ω,O) =P iff

P = O−{(oid,ρ(t), t)} (if O does not contain the position of ω at t, then O remains unchanged).

Definition 3.1.6. (Update operation - there exists an update on a moving object position)

The update operation o∗ : ℜ×OΩ → OΩ is such that, for each time t ∈ ℜ and each set O

of positions of objects in Ω at time t, o∗(t,O) = P iff P = {(oid,ρ(t), t)/(∃(i,ρ) ∈ Ω)(∃u ∈

ℜ)((i,ρ(u),u) ∈ O∧oid = i}.

Definition 3.1.7. (Event) An event is an instance to an insertion, deletion or update operation

with a specific set of inputs.

To discover cluster evolution patterns, we first need to apply a clustering algorithm

to our dataset. A spatial cluster is a group of entities in spatial proximity. Various clustering

algorithms can be used, including partitioning based, hierarchical, model based, and density

based. We already argued that a density-based clustering is more convenient for our work.

We first define the Jaccard similarity between two sets of consistent moving object

positions at the same timestamp, which will be used in Algorithm 1 on Section 3.2.2 to detect

the evolution patterns of clusters which contain sets of moving objects.

Given O ∈ OΩ, let Oob j denote the set of moving objects with positions in O:

Oob j = {oid/(∃(oid,ρ) ∈Ω)(∃t ∈ℜ)((oid,ρ(t), t) ∈ O}

Definition 3.1.8. (Jaccard Similarity) Let O,P ∈ OΩ. The Jaccard Similarity of O and P is

defined as:

Similar(O,P) =
‖Oob j∩Pob j‖
‖Oob j∪Pob j‖

We use Jaccard Similarity to compare two clusters at two different timestamps and

then, find out the clusters evolution as we will present soon. The following definition introduces

the notion of cluster of moving object positions, omitting the details of the clustering method.

Definition 3.1.9. (Clustering of Moving Object Positions) Let O be a consistent set of moving

object positions. A clustering of O is a partition Ct = {S0, ...,Sm,Out} of O where Out is called

42

the set of outliers. Ct is the set of clusters at time t and ∀i ∈ {0, ...,m} ,Si has the following form

(sidi,OSi) where sidi is a unique identity and OSi ⊆ O is a set of moving objects positions that

belong to Si.

In what follows, let Ω be a set of moving objects and CΩ be the set of all possible

clusterings of consistent sets of moving object positions of moving objects in Ω. For convenience,

we assume that the empty set /0 is in CΩ.

Let EP = {expands,shrinks,survives,merges,disappears,appears,splits} be a set

of evolution modelled here as actions (see Section 3.2.1). In order to detect a frequent cluster

evolution pattern, we model all evolutions on a Graph Evolution Cluster over Time presented in

the following definition.

Definition 3.1.10. (Graph Evolution Cluster over Time) A graph evolution cluster over time

over Ω is a labeled directed graph ∆evol = (N,E,Λ) such that

• ∆evol is acyclic and has a single source, called the root of ∆evol

• Λ assigns a label of the form (p,Si, t) to each node in N, except for the root, where p ∈ EP

and Si is a cluster of a clustering of the set O of positions of moving objects in Ω at time

t ∈ℜ; and Λ labels the root with empty set

• A node in N has an indegree greater than 1 iff it is labelled with ‘merge’; otherwise the

node has indegree equal to 1

• A node in N has an outdegree equal to 0 iff it is labelled with ‘disappear’; otherwise the

node has outdegree equal to 1

Figure 4 shows an example of a graph evolution cluster over time ∆evol . Note that

∆evol is almost a tree, except for the nodes whose labels contain ′merge′. Indeed, the label (p,Si, t)

of a node indicates that cluster Si was the result of applying action p to one or more clusters.

Note that a cluster in a clustering appears, expands, shrinks, survives, merges or disappears into

just one cluster; therefore, the outdegree of all nodes is equal to 1. Furthermore, a cluster in a

clustering may be the result of a merge of other clusters; in this case, and only in this case, the

indegree of the node is greater than 1.

In the following definitions, we define a subgraph and isomorphism of graphs. In

order to calculate how frequent an evolution pattern is, we model each pattern as a subgraph H

of ∆evol . Then, we find all subgraphs of ∆evol which are isomorphic to H. If the number of all

such subgraphs is greater than a threshold σ , we consider that H is a frequent pattern.

43

Tabela 1 – Notation for this chapter
Notation Meaning
Si a cluster
Ct a set of clusters {S0, ...,Sm,Out}

at time t
O a set of consistent moving object positions
Similar(O,P) Similarity function to detect cluster evolution
∆evol Graph Evolution Cluster over Time
Hi a set with all the frequent subgraphs on ∆evol

with cardinality equals to i
F set of frequent subgraphs {H1, ...,Hk}

in ∆evol

σ minimum support to detect frequent patterns

Definition 3.1.11. (Subgraph) Given the graph G = {V (G),E(G)}, where V (G) and E(G) are

set of vertex and edge. A graph H={V (H),E(H)} is a subgraph if and only if V (H)⊆V (G) and

E(H)⊆ E(G).

Definition 3.1.12. (Isomorphism) An isomorphism of graphs G and H is a bijection f between

the vertex sets V (G) and V (H). f : V (G)→ V (H) such that any two vertices u ∈ V (G) and

v ∈V (G), such that {u,v} ∈ E(G) if and only if { f (u), f (v)} ∈ E(H).

Now, we are ready to define our problem statement.

Problem Statement Let O be a consistent set of moving object positions of moving

objects that belongs to Ω at time t. Let Ct be a clustering of O. Assume that our dataset is

dynamic, after δ t units of time, O can change due to the operations previously defined in the

Definition 3.1.4, 3.1.5 and 3.1.6, and let them be stored in Ut+δ t . If Ut+δ t = /0, the set Ct does

not change. Construct a procedure such that, given O, Ut+δ t , Ct :

1. Discovers and detects the cluster evolution of each Si ∈Ct at time t +δ t

2. Generates ∆evol over time as the Definition 3.1.10

3. Finds the frequent cluster evolution patterns F = {H1, ...,Hk} on ∆evol with respect to

support σ

The output contains all clusters Ct+δ t . It also specifies ∀Si ∈Ct , Si evolution pattern

in Ct+δ t and a set of frequent evolution patterns F = {H1, ...,Hk}, such that ∀i ∈ {1, ...,k} ,Hi is

a set of paths with cardinality equals to i on ∆evol that occurs more than a support σ .

44

Tabela 2 – Events that may result on Actions

PPPPPPPPPAction
Event

o+ o- o∗

Si⇒ S′j - - -
{Si1 , ...,Sik}⇒ S′j X - X
S j⇒{S′i1 , ...,S

′
ik} - X X

Si↗ X - X
Si↘ - X X
Si⇒

⊙
- X X⊙

⇒ S′i X - X

3.2 Proposed Solution

Since we aim to propose a cluster evolution approach for moving object dataset,

we need to monitor all cluster evolution patterns. With this idea in mind, we map our solution

to ECA (Event Condition Action) rules. As already defined, an event is the execution of an

operation. A condition represents all the predicates that must be met so that an event happens.

If the condition is true, it results in an action that is a cluster transition from t to t +δ t. These

conditions are used on Algorithm 1 to find the cluster evolution patterns.

Table 1 describes the notation used throughout this chapter.

3.2.1 Definitions of Actions and Conditions

In this section, we define the actions, which represents cluster transitions (evolution)

from t to t +δ t. In each action/transition below, the enumerated sentences must be true. Assume

that at time t the clustering of moving objects is Ct = {S0, ...,Sm,Out}. In time t + δ t, after

the operations in Ut+δ t , Ct+δ t =
{

S′0, ...,S
′
m,Out ′

}
. Let τ ∈ (0,1] (it is difficult to define this

threshold, because Ut+δ t can have many operations that involve many moving objects. In our

experiments, we prefer to use τ = 0,5. This means two clusters of different time instant t and

t +δ t should share at least 50% to be consider one was evolved to the other).

1. Action: Si⇒ S′j

(Cluster Si ∈Ct survives as cluster S′j ∈Ct+δ t).

Condition: Similar(OS′j
,OSi) = 1

2. Action: {Si1, ...,Sik}⇒ S′j

(Two or more clusters Si1, ...,Sik ∈Ct are merged into a single cluster S′j ∈Ct+δ t).

Conditions:

45

a) Similar(OSi1
∪ ...∪OSik

,OS′j
)≥ τ

b) ∀Sr ∈Ct \{Si1, ...,Sik},

Similar(OSi1
∪ ...∪OSik

∪OSr ,OS′j
)< τ

3. Action: S j⇒{S′i1, ...,S
′
ik}

(Cluster S j ∈Ct splits into two or more clusters S′i1, ...,S
′
ik ∈Ct+δ t).

Conditions:

a) Similar(OS′i1
∪ ...∪OS′ik

,OS j)≥ τ

b) ∀OS′r ∈Ct+δ t \{OS′i1
, ...,OS′ik

},

Similar(OS′i1
∪ ...∪OS′ik

∪OS′r ,OS j)< τ

4. Action: Si↗

(Cluster Si ∈Ct expands w.r.t. its size).

Condition: ∃S′j ∈Ct+δ t such that Si ⊂ S′j (that is, Si is a strict subset of S′j).

5. Action: Si↘

(Cluster Si ∈Ct shrinks w.r.t. its size).

Condition: ∃S′j ∈Ct+δ t such that S′j ⊂ Si (that is, S′j is a strict subset of Si).

6. Action: Si⇒
⊙

(Cluster Si ∈Ct disappears).

Condition: ∀S′j ∈Ct+δ t , Similar(OSi,OS′j
)< τ

7. Action:
⊙
⇒ S′i

(Cluster S′i ∈Ct+δ t appears).

Condition: ∀S j ∈Ct , Similar(OS j ,OS′i
)< τ

Table 2 shows the events that may result in each action explained above. We relate

them using ’X’ in the cells of Table 2. When an event may trigger an action, there are conditions

that must be checked. These conditions are defined on each action above. In the next subsection,

we will present a naive approach to detect clusters evolution patterns using the conditions above,

considering that the clustering algorithm is executed over all datasets. It is worth noting that this

approach is not optimal since we will compute clusters at every δ t units of time and, for each

execution, we will evaluate the cluster evolutions.

3.2.2 Naive Approach

Considering Ct as all the clusters found at time t and Ct+δ t as all clusters found at

time t +δ t, we propose a naive strategy (Algorithm 1) to detect the evolution from Ct to Ct+δ t .

46

Algorithm 1: Find each cluster evolution pattern
Input: Similarity matrix M, Ct ,Ct+δ t ,τ,∆evol

1 begin
2 if ∆evol = /0 then
3 root← newVertex(root, 0, t)
4 V (∆evol)←V (∆evol)∪{root}
5 for Si ∈Ct do
6 u← getVertex(∆evol ,sidi)
7 if ∃S′j ∈Ct+δ t and M[Si,S′j] = 1 then
8 Si survives
9 v← newVertex(survives, sidi, t +δ t)

10 V (∆evol)←V (∆evol)∪{v}
11 E(∆evol)← E(∆evol)∪{u,v}
12 else
13 if ∃{S′k ∪ ...∪S′j} ⊆Ct+δ t ,∑

j
r=k M[Si,S′r]≥ τ then

14 Si splits
15 for S′r ∈ {S′k ∪ ...∪S′j} do
16 v← newVertex(split, sidr, t +δ t)
17 V (∆evol)←V (∆evol)∪{v}
18 E(∆evol)← E(∆evol)∪{u,v}

19 else
20 if ∃S′j ∈Ct+δ t ,{Si∪ ...∪Sk} ⊆Ct ,∑

k
r=i M[Sr,S′j]≥ τ then

21 Si,..., Sk merge
22 v← newVertex(merge, sid j, t +δ t)
23 V (∆evol)←V (∆evol)∪{v}
24 E(∆evol)← E(∆evol)∪{u,v}

25 else
26 if @S′j ∈Ct+δ t , M[Si,S′j]≥ τ then
27 Si disappears
28 v← newVertex(disappear, sid−1, t +δ t)
29 V (∆evol)←V (∆evol)∪{v}
30 E(∆evol)← E(∆evol)∪{u,v}

31 else
32 if ∃S′j ∈Ct+δ t , M[Si,S′j]≥ τ then
33 if

∣∣OSi

∣∣> ∣∣∣OS′j

∣∣∣ then
34 Si shrinks
35 v← newVertex(shrink, sid j, t +δ t)
36 V (∆evol)←V (∆evol)∪{v}
37 E(∆evol)← E(∆evol)∪{u,v}

38 if
∣∣OSi

∣∣< ∣∣∣OS′j

∣∣∣ then
39 Si expands
40 v← newVertex(expand, sid j, t +δ t)
41 V (∆evol)←V (∆evol)∪{v}
42 E(∆evol)← E(∆evol)∪{u,v}

43 for S′j ∈Ct+δ t do
44 if ∀Si ∈Ct ,M[Si,S′j] = 0 then
45 S′j appears
46 v← newVertex(appear, sidi, t +δ t)
47 V (∆evol)←V (∆evol)∪{v}
48 E(∆evol)← E(∆evol)∪{root,v}

47

Algorithm 2: Apriori-based approach to detect frequent sequence evolution
Input: ∆evol: a Graph Evolution Cluster, σ :minimum support
Output: H1, ...,Hk a set of frequent subgraphs of cardinality 1 to k

1 begin
2 H1← detect all frequent paths with one vertex in ∆evol
3 k← 2
4 while Hk−1 6= /0 do
5 Hk← /0
6 CHk← candidate−gen(Hk−1)
7 for g ∈CHk do
8 SI← path-isomorphism(g,∆evol)
9 g.count← |SI|

10 if g.count ≥ σ ∧g 6∈ Hk then
11 Hk← Hk∪g

12 k← k+1

This algorithm also generates ∆evol incrementally.

In our approach we resort to a matrix M that stores in each cell the similarity value

(computed according Definition 3.1.8) between two clusters in different timestamps. In this

matrix, the lines represent the clusters that belong to Ct and the columns represent the clusters

that belong to Ct+δ t . For example, M[Si,S′j] corresponds to the Jaccard similarity of the cluster

Si ∈Ct to cluster S′j ∈Ct+δ t .

While the matrix M is calculated, the Algorithm 1 also generates ∆evol . For each

cluster Si ∈ Ct , the algorithm gets the vertex u on ∆evol that corresponds to the cluster Si. If

∃S′j ∈Ct+δ t , such that M[Si,S′j]>= τ , then the evolution of Si to S′j can be survive, split, merge,

disappear, shrink or expand. A vertex v is created to represent S′j and an edge {u,v} is also

added on E(∆evol). On the case of appear evolution pattern, a cluster S′j ∈ Ct+δ t appears if

∀Si ∈Ct ,M[Si,S′j] = 0. Therefore, a vertex v is created for S′j and an edge {root,v} is added

from root to v on E(∆evol).

Algorithm 1 receives as input M and detects each cluster evolution pattern from

time t to time t + δ t. The complexity of this naive algorithm is O(n2), assume that n is the

order of the number of clusters. This processing can be costly, moreover, it needs to execute

the clustering algorithm from scratch. The next chapter presents a new approach which detects

cluster evolution using operations insert, delete or update of moving objects trajectories at each

δ t units of time, without recomputing all clusters from scratch. However, the approach presented

in the next chapter is not able to detect frequent sequence(s) of evolution patterns.

48

Tabela 3 – Number of trajectories and clusters for Taxi dataset from Fortaleza, Brazil for the
observed timestamps in these experiments according to Table 4

Timestamp #Trajectories #clusters
20:00 1314 18
21:00 1308 27
22:00 1306 38

A drawback of this naive approach is to define an adequate value for τ that represents

the similarity among the clusters. Anyway, this algorithm is useful for our study, since it

represents a brute force approach and reveal the challenges we faced in our work. The next

section presents our experimental evaluation using this naive approach.

After generating ∆evol , we need to find all frequent sequence evolution patterns with

cardinality varying on 1 to k. This is the same of discovering the frequent paths on ∆evol . For that,

we used apriori-based approach discussed on (JIANG et al., 2013). This algorithm is presented

on Algorithm 2. Observe that we can identify the frequent pattern sequences involving three or

more time instances using k ≥ 3.

The basic Apriori-based algorithm is presented (AGRAWAL et al., 1994). In line

6 all frequent (k−1) path are used to generate k path candidates. If any of the k−1 candidate

path are not frequent, then the algorithm safely prunes the candidates. For each candidate g, the

algorithm keeps on SI data structure all the isomorphic path to g on ∆evol (line 8). If the number

of isomorphic path is greater than the support σ , g is a candidate of frequent path or sequence of

evolution patterns. So that, g is stored on Fk.

There are many approaches to efficiently find the isomorphic path to g on ∆evol . They

are also present on (JIANG et al., 2013).

3.3 Experimental Evaluation

The dataset used in the experiments was related to vehicle trajectories of a private

Taxi fleet from the city of Fortaleza in Brazil. It contains for each vehicle a collection of

timestamped positions (latitude and longitude) obtained from a GPS device. Each vehicle

represents one moving object in our experiments. In these experiments we run the density based

clustering algorithm DBSCAN (ESTER et al., 1996) from scratch at every δ t units of time. We

used δ t equals to one hour, the DBSCAN parameters are eps = 50m and minPoints = 5. We

defined τ equal to 0,5.

49

Tabela 4 – Some clusters evolution patterns for a Taxi Fleet dataset from Fortaleza, Brazil

Matrix Element(s) Evolution Pattern
Evolution from 20:00 to 21:00

M[S1,S′1]=1 S1 survives
M[S2,S′3]=0,75, ∀Si ∈C20:00 i 6= 2,

M[Si,S′3] = 0 and |OS2 |>
∣∣∣OS′3

∣∣∣ S2 decreases

M[S5,S′17]=1 S5 survives
M[S9,S′13]=0,46 and M[S11,S′13]=0,1 S9 and S11 merge
∀Si ∈C21:00, M[Si,S′25] = 0 S′25 appears

Evolution from 21:00 to 22:00
M[S1,S′3]=1 S1 survives
M[S2,S′4]=0,83, ∀Si ∈C21:00 i 6= 2,

M[Si,S′4] = 0 and |OS2 |<
∣∣∣OS′4

∣∣∣ S2 increases

∀S′j ∈C22:00, M[S5,S′j]=0 S5 disappears
M[S12,S′7]=0,06 and M[S12,S′15]=0,62 S12 splits
M[S13,S′16]=0,57 and M[S13,S′19]=0,14 S13 splits
M[S15,S′16]=0,05 and M[S15,S′19]=0,57 S15 splits
M[S24,S′25]=1 S24 survives
∀Si ∈C21:00, M[Si,S′1] = 0 S′1 appears

The number of moving objects trajectories used on the first three executions of

DBSCAN is described on Table 3 as well as the number of clusters found. Note that the number

of trajectories is almost the same in all cases, however, there are new, deleted and up-to-date

moving object trajectories between two different timestamps. By using our approach, we can

also discover how long a mobility pattern takes during the observed time interval.

In these experiments, it is our goal to detect for all clusters on every δ t units of time

their evolution pattern. Moreover, to discover all the frequent sequences of cluster evolution

pattern. We believe that a sequence of evolution can describe a mobility pattern as we did before

for modeling traffic jam in the beginning of this chapter.

In the Table 4 we present some cases of cluster evolution patterns found and the

result covers all the patterns discussed before. Note that the clusters do not remain the same for

different timestamps. For example, the cluster S5 ∈C21:00 disappears and the cluster S′1 appears

on C22:00. We did not show all the elements of the two obtained evolution matrices, because it

would not be trivial to visualize.

The results on Table 5 present the frequent sequence of cluster evolution pattern

found by our approach using k=5 and σ=20. The results suggest that evolution patterns and their

frequency can be effectively obtained through the proposed Graph Evolution Cluster over Time

∆evol from moving objects dataset. Observe that merge and split evolutions are more frequently

than others. Both cluster evolutions capture the evolvements and interaction of clusters over time

50

Tabela 5 – Some Frequent Sequence Cluster Evolution Patterns for Taxi Fleet dataset from
Fortaleza, Brazil

Frequent Sequence Evolution Pattern Frequency
k=1

SHRINKS 331
EXPANDS 317

SPLIT 206
MERGE 178

k=2
EXPANDS–SHRINKS 117

MERGE–MERGE 160
SPLIT–SPLIT 150

EXPANDS–EXPANDS 90
k=3

MERGE–MERGE–MERGE 100
SPLIT–SPLIT–MERGE 62

SHRINKS–EXPANDS–SHRINKS 51
EXPANDS–SHRINKS–EXPANDS 45
EXPANDS–EXPANDS–SHRINKS 35

k=4
MERGE–MERGE–MERGE–MERGE 46

SPLIT–SPLIT–SPLIT–MERGE 45
MERGE–MERGE–MERGE–EXPANDS 36

MERGE–MERGE–MERGE–SPLIT 34
SPLIT–SPLIT–MERGE–MERGE 33

k=5
SPLIT–SPLIT–MERGE–MERGE–MERGE 41

SPLIT–SPLIT–SPLIT–MERGE–SPLIT 27
MERGE–MERGE–MERGE–MERGE–EXPANDS 26

SPLIT–SPLIT–SPLIT–SHRINKS–SPLIT 24
SPLIT–SPLIT–MERGE–MERGE–SPLIT 23

as we aimed. Moreover, our approach does not reduce to counting for all the possible sequence of

cluster evolution patterns, how many times a pattern occurs. We prune some possible sequence,

this is less computationally expensive.

Figure 5 presents another experiment using the same dataset of taxi in Fortaleza.

In this experiment, we show for three consecutive time windows some of the cluster evolution

patterns captured by our proposed Algorithm 1. Each cluster is represented by a single color.

Not all evolution patterns found are presented here to ease viewing. But we can easily see, the

differences between the clusters by comparing the three time windows. For each time window,

we executed the DBSCAN algorithm from scratch.

In the next section, we propose CUTiS which does not execute the clustering algo-

51

Figura 5 – Example of detecting cluster evolution pattern for three consecutive time windows

rithm from scratch and captures the clusters evolution patterns online. However, CUTiS works

for trajectory data and it can not capture the frequencies of evolution patterns as the approach

presented in this chapter. So even, this chapter proposes a naive approach to detect cluster

evolution, it is addressed in the moving objects position and it captures the frequent sequence of

evolution patterns which is new in the literature.

3.4 Discussion

In this chapter, we worked on a model to describe cluster evolution patterns, how to

detect them and discover the frequent sequence of cluster evolution. We claim that some mobility

patterns can be described as a sequence of cluster evolutions. As we described the traffic jam

pattern as a sequence (appear,merge,expand|shrink,disappear). In this way, we need to keep

tracking of the evolution of the moving objects to achieve our goal.

Our proposal is a naive approach which executes DBSCAN clustering algorithm

from scratch every δ t units of time, which can be time-consuming for very large databases.

These results were published in (SILVA et al., 2014b). We extended this work for trajectory data

by proposing CUTiS. Our framework CUTiS automatically detects cluster evolution patterns

while tracking moving object trajectories. CUTiS is given in details in the next Chapter.

52

4 CUTIS: CLUSTERING ON TRAJECTORY DATA STREAM

In this Chapter we present our solution called CUTiS for the Challenges 1 and 2

presented in the Section 1.2. The problem, in general lines, corresponds to online discovery

spatio-temporal patterns in Euclidean Space, while efficiently maintain and detect the evolution

of these patterns as time evolves.

4.1 Problem Statement

In this section we provide the problem definition and the problem statement. We

start by providing the basic notions related to trajectories.

Definition 4.1.1 (Trajectory). The movement of a moving object o j can be described in terms

of a continuous function M j : R≥0→ R2 from the domain of real positive numbers, representing

time instants, to a 2D space. Given an object o j and a time interval [tBegin, tEnd], a trajectory

T R is thus the restriction of the movement M j to the given time interval.

Commonly, in mobility applications the continuous movement of an object is not

completely known. As such, trajectories are often given by means of a finite set of time-stamped

positions, called trajectory points or samples.

Definition 4.1.2 (Trajectory point). Given a moving object o j, a trajectory point, or trajectory

sample, of a trajectory T R j is a tuple (x,y, t), where T R j(t) = (x,y) is the position of object j at

time t (called the timestamp of the trajectory point).

Definition 4.1.3 (Trajectory track). Given a temporally ordered sequence < t1, · · · , tn > of

timestamps, the track of a trajectory T R j for the given timestamps is the temporally ordered

sequence of trajectory points < p1, · · · , pn > , where pi = (xi,yi, ti) and (xi,yi) = T R j(ti).

For the sake of brevity, hereinafter we will use the term trajectory in place of

trajectory track. From the definition of trajectory we can derive the definition of sub-trajectory.

Definition 4.1.4 (Sub-trajectory). Let us consider the trajectory T R j. Let us also suppose that

from T R j we extract the substring ST =< pa, ..., pb >, where 1≤ a≤ b≤ n. We define ST to

be a sub-trajectory of T R j.

At this point we can introduce the concept of input stream.

53

Definition 4.1.5 (Input stream). Let i = [t, t + δ t] be a time window (temporal interval): we

define the set Ii = {(o1,ST1,i),(o2,ST2,i),...,(on,STn,i)} to be an input stream that spans the time

window i, where STj,i represents the sub-trajectory associated with a moving object o j that spans

i.

Hereinafter we assume that there is no overlap between temporal intervals associated

with different input streams.

We aim to track moving objects, as well as to discover sub-trajectory clusters

incrementally, while, at the same time, avoid to execute our clustering algorithms from scratch at

each time window. Since we are considering a stream of (dynamic) data, each sub-trajectory is

manipulated in our proposed solutions according to one of the following operations : (i) a moving

object can appear in the system (thus, the object is inserted into the system), (ii) a moving object

can disappear from the system (thus, the object is deleted from the system), and (iii) moving

objects may update their sub-trajectories during the time window. As such, these operations may

affect the composition of existing clusters.

Definition 4.1.6 (Problem Statement). For each time window i, when an input stream Ii =

{(o1,ST1,i),(o2,ST2,i), ...,(on,STn,i)} is received by the system, the goal is to track moving

objects and update clusters by avoiding to re-compute the clusters from scratch at each time

window. Finally, sub-trajectory clusters should be discovered by taking advantage of movement

similarities between objects, thus taking into account time and space.

In order to discover sub-trajectory clusters having any kind of shape, we recur to

density-based clustering (ESTER et al., 1996) techniques.

4.2 CUTiS: Clustering on Trajectory Data Stream

In this section we present CUTiS, an algorithm that addresses the problem of online

discovery of sub-trajectory clusters, as well as the problem of keeping track of the evolution of

clusters over time, by tracking moving objects across consecutive time windows.

CUTiS, which was first proposed in (SILVA et al., 2016b; SILVA et al., 2016a), is

structurally arranged in four phases (as schematized also in Figure 6):

1. Application of a distance function: To measure the distance between the sub-trajectories

of two moving objects at time window i, that is, STk,i and STj,i, we implement the synchro-

54

Figura 6 – CUTiS’ framework structural overview.

nous Euclidean distance (Section 4.2.1), which accounts for time and space. We highlight

that CUTiS can be used with any distance function suitable for pairs of trajectories.

2. Selection of representative trajectories: given a time window i, for each group

of moving objects and their related sub-trajectories, i.e., the input stream Ii =

{(o1,ST1,i),(o2,ST2,i), ...,(om,STm,i)}, we define the representative trajectory to be a pair

made up by a moving object and a sub-trajectory which “better represents” the behavior

of Ii. To find a suitable representative sub-trajectory (o j,STj,i), CUTiS uses two metrics:

(i) the number of moving objects that have their sub-trajectories similar to STj,i and (ii) a

Gaussian kernel function that estimates the representativeness of STj,i. We delegate the

discussion of this matter to Section 4.2.2.

3. Micro-groups maintenance: We define a new data structure, called micro-group, that

serves the purpose of characterizing small and dense groups of moving objects moving

similarly with respect to some representative trajectory (during some time interval). Intuiti-

vely, the concept of micro-group corresponds to a group of entities that move consistently

together in space for some time – for example, a group of people riding and sharing the

same vehicle.

In this work we propose an algorithm that is able to detect micro-groups, as well as

incrementally maintain and capture their evolution patterns over time. We finally propose

a density-based cluster discovery method that is able to merge different micro-groups. We

refer the reader to Section 4.2.3 for more details.

4. Discover Sub-trajectory Clusters:

Micro-groups rely on the concept of density; as such, clusters of sub-trajectories can be

discovered from micro-groups by means of this property – for example, when certain

conditions apply, merging different micro-groups yields a density-based cluster of sub-

55

Notation Description
ε Distance threshold.
τ Size or density threshold.
ρ Representativeness threshold.

i = [t, t +δ t] A time window.
Ii Input stream associated with time window i.

oi,o j,ok Moving objects.
STj,i Sub-trajectory of o j limited to the time window i.
Oi Set of moving objects that are active during the time window i.

gi,g j,gk Micro-groups.
Rtra j

gi Representative trajectory associated with gi.
ob ject[Rtra j

gi] Moving object that expresses the representative trajectory of gi.
tra j[Rtra j

gi] Sub-trajectory that represents the representative trajectory of gi.
Gi Set of micro-groups at time window i.
c Cluster.
C Set of clusters.

R{tra j}
c Representative trajectories associated with the cluster c.

Tabela 6 – Notation used throughout the chapter

trajectories. Moreover, the usage of micro-groups allows CUTiS to be more efficient than

other approaches – indeed, in the experimental evaluation (Section 4.6) we show how

CUTiS is more efficient than having to run some clustering algorithm from scratch at every

time window (to this end, we use DBSCAN (ESTER et al., 1996) as the baseline). For

more details about this phase, we refer the reader to Section 4.3.

In order to facilitate the readability, Table 6 reports the notation used throughout the

rest of the chapter.

4.2.1 Distance Function

In this Section we present the distance function used by CUTiS to measure the

distance between pairs of trajectories. The function has two levels, where one level deals with

space and time, while the other one deals with the angle of movement.

Definition 4.2.1 (Spatio-Temporal Distance). Given a time window i = [t, t +δ t], the Spatio-

Temporal Distance between the sub-trajectories of two moving objects, STj,i and STk,i, is compu-

ted by means of the synchronous Euclidean distance (NANNI; PEDRESCHI, 2006) DSTj,i,STk,i:

56

distλ (STj,i,STk,i) =

∫ t+δ t
t DSTj,i,STk,i(t)dt

δ t
(4.1)

Let DSTj,i,STk,i(t) be the distance function applied on the sub-trajectories STj,i and

STk,i at time t. Let us also consider the time interval [t, t +δ t] and let n be the number position

updates received during the time interval. Then, we can rewrite Equation 4.1 as:

distλ (STj,i,STk,i) =

n−1
∑

r=1

∫ tr+1
tr DSTj,i,STk,i(t)dt

δ t
, (4.2)

where each tr is the timestamp when at least one of the moving objects report its position. We

note that the above equation requires that sub-trajectories possess at least 2 useful samples, since

CUTiS relies on approximated linear interpolation to estimate the position of a trajectory at a

given time instant.

The Euclidean distance between two objects, where objects move between conse-

cutive timestamps according to some linear function of time, can be defined according to the

definition provided by (FRENTZOS et al., 2007a), i.e.:

DSTj,i,STk,i(t) =
√

at2 +bt + c. (4.3)

Here, a, b, and c represent the factors of the trinomial (a≥ 0). As proved in (FRENTZOS et al.,

2007b), the integral can be computed in O(1) and can be efficiently computed by means of the

Trapezoid Rule (FRENTZOS et al., 2007b):

dλ (STj,i,STk,i)≈

1
2

n−1
∑

r=1
[DSTj,i,STk,i(tr)]∗ (tr+1− tr)

δ t

+

1
2

n−1
∑

r=1
[DSTj,i,STk,i(tr+1)]∗ (tr+1− tr)

δ t
(4.4)

We also note that the Trapezoid Rule guarantees theoretical bounds for what is related to the

approximation error. At this point we can introduce the concept of angle distance.

Definition 4.2.2 (Angle Distance). The angle distance between two sub-trajectories, STj,i and

STk,i, during a time window i = [t, t + δ t] is based on the angle formed by the line segments

making up the sub-trajectories. Since time is discretized, and multiple samples may be contained

57

within the considered time interval, the distance is computed by summing the outputs given by a

function Dθ over the line segments making up the sub-trajectories:

dθ (STj,i,STk,i)≈

n−1
∑

r=1
Dθ [(STj,i(tr),STj,i(tr+1)),(STk,i(tr),STk,i(tr+1))]

δ t
(4.5)

where (STj,i(tr),STj,i(tr+1)) and (STk,i(tr),STk,i(tr+1)) represent the line segments of STj,i and

STk,i, respectively, while tr represents the timestamp when an update holds.

The definition of Dθ is based on the one provided by (LEE et al., 2007), and

it expresses the orientation difference between two line segments. More precisely, let L j =

(STj,i(tr),STj,i(tr+1)), Lk =(STk,i(tr),STk,i(tr+1)) and θ be the smaller intersecting angle between

L j and Lk. The intuition behind is to choose a line segment, let’s say L j, and discover the travelled

length during the rotation. Then:

Dθ (L j,Lk) =

∣∣L j
∣∣∗ sin(θ), if 0◦ ≤ θ < 90◦.∣∣L j
∣∣ , 90◦ ≤ θ ≤ 180◦.

(4.6)

The angle θ can be calculated by means of simple vector operations. Indeed, as L j and Lk

represents line segments, we have that θ can be determined as:

cos(θ) =
~L j~Lk

‖~L j‖‖~Lk‖
(4.7)

At this point we can finally define the distance measure between two sub-trajectories,

STj,i and STk,i:

distance(STj,i,STk,i) = ωθ ∗dθ (STj,i,STk,i)+ωλ ∗dλ (STj,i,STk,i) (4.8)

We note that the weights ωθ and ωλ must be chosen according to the scenario considered –

indeed, dθ and dλ may be characterized by different magnitudes; for the purposes of this work,

we assume that ωθ and ωλ are both equal to 0.5.

4.2.2 Choosing a representative trajectory

Given a group of sub-trajectories, a representative trajectory should describe their

overall movements. The definition that follows try to capture this aspect.

58

Definition 4.2.3 (Representative trajectory). Let us consider the input stream Ii =

{(o1,ST1,i),(o2,ST2,i), ..,(om,STm,i)}. Let also ρ be a representativeness threshold, σ be a

standard deviation, ε a distance threshold and τ a minimum size/density threshold. Then, we

define (o j,STj,i) to be representative trajectory of Ii if and only if the following conditions hold:

1. ∀(ok,STk,i) ∈ Ii, voting(STj,i,STk,i) = e−
distance2(STj,i,STk,i)

2σ2 > ρ

2. Nε(o j) = {(ok,STk,i) ∈ Ii | distance(STj,i,STk,i)≤ ε}, then
∣∣Nε(o j)

∣∣≥ τ

Our voting function (condition 1 in Definition 4.2.3) is based on the voting function

defined in (PANAGIOTAKIS et al., 2012), which uses the Gaussian function to quantify the

representativeness of trajectory line segments. In this work, voting quantifies the representative-

ness of a sub-trajectory with respect to a group of sub-trajectories. In order to be representative,

the “voting” of a sub-trajectory should be significant (i.e., greater than the ρ threshold). As

such, choosing a proper value for ρ is important; in our work, we deemed reasonable to pick up

ρ according to the maximum distance allowed between any sub-trajectory and its representa-

tive. Finally, in CUTiS we choose representative trajectories according to the notion of density

property (dense neighborhood, condition 2 in Definition 4.2.3).

We finally spend some words about the relationship between distance and voting:

on the one hand, if distance is close to zero, then voting is close to its maximum value. In

practical terms, this means that if STj,i is very close (in time and space) to STk,i, then (o j,STj,i)

is a candidate to be the representative of STk,i. On the other hand, when “distance” gets high,

then “voting” gets close to its minimum value, which in turn implies that STj,i is far away from

STk,i: as such, STk,i cannot be represented by STj,i.

4.2.3 Micro-groups definition, discovery and maintenance

In the following we present a new structure that builds on the concept of repre-

sentative trajectory to represent a group of co-moving sub-trajectories: we call this structure

micro-group. Subsequently, we provide a set of algorithms whose purpose is to discover and

maintain micro-groups over time.

We start by providing the definition of micro-group.

Definition 4.2.4 (Micro-group). Let Ii = {(o1,ST1,i),(o2,ST2,i), ...,(om,STm,i)} be an input

stream at time window i; let also Oi be the set of moving objects in Ii, ε be a distance th-

59

reshold, τ be a minimum density threshold, and ρ be a representativeness threshold. Then, a

micro-group g is defined as a subset of Oi that satisfies the following property:

∃o j ∈ g, such that Rtra j
g = (o j,STj,i) is the representative trajectory of g with respect to ε ,

τ and ρ .

We note that a micro-group may be seen as the most primitive form of a cluster of

sub-trajectories. However, in CUTiS we differentiate between the former and the latter by means

of the notion of density-based clustering (ESTER et al., 1996). Accordingly, in the following

we introduce a set of definitions that will be subsequently used to define what is a cluster of

sub-trajectories.

Definition 4.2.5 (Directly Density Reachable). Let Gi be the set of micro-groups at time

window i. A micro-group g j ∈ Gi is directly density reachable from a micro-group gk ∈ Gi w.r.t.

ε and τ , if ∃o j ∈ g j,∃ok ∈ gk, such that the following conditions hold:

1. distance(STj,i,STk,i)≤ ε .

2.
∣∣Nε(o j)

∣∣≥ τ , where Nε(o j) = {o′j ∈ Gi | distance(STj,i,STj′,i)≤ ε}.

3. |Nε(ok)| ≥ τ , where Nε(ok) = {o′k ∈ Gi | distance(STk,i,STk′,i)≤ ε}.

Definition 4.2.6 (Density Reachable). A micro-group gi is density reachable from gk w.r.t. ε

and τ , if there is a chain of micro-groups {gs1 , ...,gsn}, where gs1 = gi, gsn = gk such that gs j+1 is

directly density reachable from gs j .

Definition 4.2.7 (Density Connected). A micro-group gi is density connected to gk w.r.t. ε and

τ , if there is a micro-group g j such that gi and gk are density reachable from g j w.r.t. ε and τ .

At this point, we are able to define a sub-trajectory cluster in CUTiS. Intuitively, a

cluster is defined to be a set of density-connected micro-groups. Outliers represents simply the

set of sub-trajectories in the input stream at time window i, Ii not belonging to any of its clusters.

Definition 4.2.8 (Cluster of sub-trajectories). Let Gi = {g1, ...,gn} be a set of micro-groups

at time window i. Then, a cluster C w.r.t. ε and τ is a non empty subset of Gi that satisfies the

following conditions:

1. ∀g j,gk if g j ∈C and gk is density reachable from g j w.r.t. ε and τ , then gk ∈C.

2. ∀g j,gk ∈C, g j is density connected to gk w.r.t. ε and τ .

We maintain micro-groups over time by tracking their evolution. We remember that

typical evolution patterns are appear, disappear, split, survive, and merge (SPILIOPOULOU et

60

al., 2006). We cover all these kinds of patterns during the micro-group maintenance phase with

the exception of merge, since we see the merging of two or more micro-groups as a sub-trajectory

cluster. Hence, a sub-trajectory cluster may have multiple representative trajectories. This is the

major difference between a cluster and a micro-group.

Once we have the definition of micro-group in place, we need to provide a method

that is able to create micro-groups. The idea is the following: we start by picking up, randomly,

a candidate representative trajectory among the trajectories associated with the core objects

(similarly to DBSCAN). Subsequently, the candidate is evaluated by means of a voting procedure

that is carried on by the core objects: if the candidate is deemed to be enough representative,

the algorithm terminates and returns the candidate, otherwise it goes on to consider the next

candidate among the remaining ones. Algorithm 3 illustrates our strategy.

Algorithm 3: initializeMicroGroups
Input:
• Input stream at time interval i = [t, t +δ t], Ii.
• Distance threshold ε .
• Size threshold τ .
• Representativeness threshold ρ .

Output: Set of micro-groups, Gi.
1 begin
2 Gi← /0; g← /0;
3 Mark all the sub-trajectories in Ii as unvisited;
4 while ∃(o j,STj,i) ∈ Ii s.t. (o j,STj,i) is unvisited do
5 mark (o j,STj,i) as visited;
6 N

o j
ε ← getNeighbourhood(Ii,ε,o j);

7 if |No j
ε | -1 ≥ τ then

8 foreach (ok,STk,i) ∈ Iε not visited do
9 vote← voting(STj,i,STk,i);

10 if vote > ρ then
11 g← g∪{ok};
12 mark (ok,STk,i) as visited;

13 Rtra j
g ← (o j,STj,i);

14 Gi← Gi∪{g}; g← /0;

15 else
16 mark STj,i as ungrouped;

17 foreach STj,i ∈ Ii marked as ungrouped do
18 mark o j as an outlier;

19 return Gi;

The algorithm starts by randomly picking up an unvisited sub-trajectory (o j,STj,i) ∈

Ii, and checks if it can be used as a representative trajectory: if (o j,STj,i) has enough neigh-

borhood density (according to the ε radius and the τ threshold - lines 6 - 7), then a new

61

micro-group “g” is created; in such a case, the algorithm goes on to expand g by inserting

unvisited objects in Ii that votes to be represented by (o j,STj,i) (lines 8 - 12). If, conversely,

(o j,STj,i) has not enough neighborhood density, then o j is marked as ungrouped (lines 15 - 16),

thus indicating that it can be represented by another representative trajectory, or it is an outlier

(lines 17 - 18).

Once all the suitable elements were considered for grouping, (o j,STj,i) is classified

as g’s representative trajectory (line 13) and the algorithm goes on to check if it can create

other micro-groups (line 4). Once no more unvisited elements are present in Ii, the algorithm

terminates by returning the set of micro-groups found during its execution (line 19).

Overall, the initialization cost of Algorithm 3 is O(n2), “led” by the cost in Lines

4 - 16, where n is the number of moving objects. However, we note that this step needs to be

carried out only once, since each micro-group can be dynamically maintained across different

time windows (we outline the presentation of the maintenance procedure in Algorithm 4). We

also note that the initialization cost associated with Algorithm 3 cannot be further reduced, since

we assume that moving objects are continuously updating their positions over time.

Since CUTiS deals with input streams, another key contribution of this work consists

in providing an algorithm that maintains micro-groups over time.

The main challenges associated with a maintenance algorithm are the following: (i)

we need to check for each micro-group whether its representative trajectory is still valid in the

next time window with respect to the previous ones – if this is not the case, then the micro-group

shall disappear or split; (ii) we need to track moving objects whose sub-trajectories are likely

to join some micro-group – for instance, outliers, new objects entering the system, and objects

that migrate from their micro-group to other ones; (iii) for what is related to the remaining cases,

we need some kind of process that allows the creation of new micro-groups. Algorithm 3 is not

deterministic, hence the interest of devising a maintenance algorithm is two-fold: first, running

from scratch the initialization algorithm may lead to totally different micro-groups with respect

to previous time windows. Secondly, without a maintenance algorithm, we would not be able to

track the evolution of micro-groups over time.

As such, CUTiS recurs to a maintenance phase to capture the evolution of patterns

over time, which in turn provides insights about the nature of changes affecting clusters (groups)

of objects. Algorithm 4 presents the pseudocode detailing the maintenance phase.

The algorithm takes in input a micro-group at a time – for the purposes of the

62

Algorithm 4: Incremental Maintenance of a micro-group
Input:
• Input stream at time interval i = [t, t +δ t], Ii.
• A micro-group gi−1.
• Distance threshold ε .
• Size threshold τ .
• Representativeness threshold ρ .
• The set of moving objects that must be removed from gi−1, Oold

gi
.

• The set of moving objects that must update their current status in the transition from gi−1 to gi, Oupd
gi .

Output: A set of micro-groups.
1 begin
2 gi← gi−1−Oold

gi
;

3 foreach o ∈ Oupd
gi do update(o,gi);

4 (o j,STj,i)← Rtra j
gi ;

5 N
o j
ε ← getNeighborhood(Ii,ε,o j);

6 if (|No j
ε | ≥ τ) ∧ (∀ok ∈ N

o j
ε .voting(STj,i,STk,i)> ρ) then // gi survives

7 foreach ok ∈ {gi \N
o j
ε } do

8 if voting(STj,i,STk,i)≤ ρ then
9 gi← gi−{ok};

10 if ∃gz ∈ Gi s.t. voting(tra j[Rtra j
gz],STk,i)> ρ then gz← gz∪{ok};

11 else setOutlier(ok,STk,i);

12 else
13 if |gi| ≥ τ then // gi splits
14 Igi

i ← getInputStream(gi);
15 return initializeMicroGroup(Igi

i ,ε,τ,ρ);

16 else // gi disappears
17 foreach ok ∈ gi do setOutlier(ok,STk,i);
18 gi← /0;

19 return gi;

presentation, we assume that we are considering some micro-group gi−1 – and two sets of

objects: Oold
gi

, which refers to the set of objects that must be removed from gi−1, while the latter,

and Oupd
gi , which refers to the set of objects that have to update their current status. When a

moving object stops sending its positions (because of a GPS connection failure, for instance),

the moving object sub-trajectory positions should be predicted until a timeout is reached. In this

way, we assume that gi−1 ⊆ Oold
gi
∪Oupd

gi and Oold
gi
∪Oupd

gi ⊆ gi−1, i.e., any moving object that is

not removed from gi−1 has to update its current status.

Between lines 2 and 3 the algorithm computes the initial gi, i.e., it removes from

gi−1 the objects belonging to Oold
gi

, and updates the status of the objects belonging to Oupd
gi . Next,

the algorithm has to check whether (o j,STj,i) = Rtra j
gi is still the representative trajectory of gi.

To do this, the algorithm first determines the set of o j’s neighbors (according to the ε radius,

line 5); then, it checks whether (i) the size of No j
ε is greater or equal than τ and (ii) the votes of

the neighbors still support the representativeness of (o j,STj,i) (line 6): if these two conditions

63

hold then gi survives and (o j,STj,i) is still deemed as the representative of gi (w.r.t. τ,ε and

ρ); also, the algorithm checks whether each moving object ok ∈ gi can be still represented by

(o j,STj,i) (line 7): if this is not the case, then the algorithm checks whether ok can be migrated to

another micro-group or not (line 10); if this is possible, then ok is deleted from gi and migrated

to another micro-group; otherwise ok is considered as an outlier (lines 11). In the case that the

conditions at line 6 do not hold, this means that the micro-group represented by gi changed its

overall behavior. as such, the possible outcomes are two: if gi possess enough density (τ), then gi

is split in multiple micro-groups by means of initializeMicroGroups (lines 13 - 15). Conversely,

gi is removed from the system and its objects are considered outliers (Lines 16 - 18).

At this point we can detail the complexity behind Algorithm 4. Let m be the number

of micro-groups at time window i, and nu
i be the number of moving objects which require to

update their current status at time window i. At micro-group level the cost of Algorithm 4 is

O(m∗nu
i), which is due to the operations carried on between lines 7 and 11. Since Algorithm

4 is executed for each micro-group, its total cost is equal to O(m2 ∗ nu
i). Overall, the number

of micro-groups is usually much smaller than the number of moving objects (m� n, and even

nu
i � n); as such, executing Algorithm 4 is more convenient than rebuilding all the micro-groups

from scratch.

We close this section by illustrating how new objects that enter the system are

processed by CUTiS – we note that this represents a notable difference with respect to prior

works (TANG et al., 2012; CAO et al., 2006; CHEN; TU, 2007; LI et al., 2010b), since CUTiS

offers a complete set of operations (i.e., insertions, deletions and updates) to handle data streams

of moving objects. Algorithm 5 presents our strategy.

For each new moving object ok (line 2), Algorithm 5 tries to find a micro-group gi

(Line 3) whose representative trajectory can represent the sub-trajectory of ok – this condition

holds whenever voting(tra j[Rtra j
gi],STk,i)> ρ (Line 4). Objects that do not belong to any micro-

group may be able, togheter with the outliers, to create new micro-groups. As such, we execute

again Algorithm (Line 10) providing in input Inew, deprived of the objects assigned to some

micro-group, and the set of outliers. We note that the insertion of new moving objects may be

able to preserve the existence of micro-groups that have to disappear or split as a consequence of

deletions or updates; however, we leave this issue for future research.

The overall cost of Algorithm 5 is O(nnew ∗m)+O((nnew +nout)
2), where nnew =

|Inew|, m is the number of micro-groups and nout = |Outliers|. In this way, the cost of Algorithm

64

Algorithm 5: Insertion of new moving objects
Input:
• The set of micro-groups at time window i, Gi.
• The representativeness threshold, ρ .
• The subset of the input stream Ii limited to the set of moving objects that entered the system, Inew

i .
• The subset of the input stream Ii limited to the set of moving objects that were labeled as outliers, Outliers.

Output: The set of micro-groups at time window i, Gi, updated.
1 begin
2 foreach {ok,STk,i} ∈ Inew

i do
3 foreach gi ∈ Gi do
4 vote← voting(tra j[Rtra j

gi],STk,i);
5 if vote > ρ then
6 gi← gi∪{ok};
7 Inew

i ← Inew
i − (ok,STk,i);

8 break;

9 if Inew
i 6= /0 then

10 Gi← Gi∪{initializeMicroGroups({Inew
i ∪Outliers},ε,τ,ρ)};

11 return Gi;

3 is limited to the number of new moving objects and outliers considered. All in all, m� n,

nnew� n, and even (nnew +nout)� n, where n is the total number of moving objects.

4.3 Density-based Sub-trajectory Clustering

Existing clustering algorithms need to check the density connectivity of each object

to cluster trajectories (ESTER et al., 1996; ANKERST et al., 1999); this, in turn, makes such

computational approaches expensive. On the contrary, CUTiS exploits the density property

underlying the concept of micro-group to simplify the clustering process and reduce the costs.

We remind that a cluster of sub-trajectories in CUTiS can be a micro-group itself (Section

4.2.3). Moreover, in order to get meaningful clusters, CUTiS also merges a set of micro-groups.

CUTiS decides if two micro-groups are candidates to be merged into a cluster if they are tangent

or intersecting each other. The following definition describes more formally the concept of

micro-groups that are merge candidates.

Definition 4.3.1 (Micro-groups Merge Candidates). Let the micro-group radius rgi be the

distance between the representative trajectory and the farthest sub-trajectory of a moving object

in gi. For the sake of brevity, rgk is the micro-group radius of the micro-group gk. Then, gi and

gk are merge candidates if the following condition holds:

distance(tra j[Rtra j
gi

], tra j[Rtra j
gk

])≤ rgi + rgk

65

.

By filtering out the merge candidates of a micro-group, CUTiS saves computation

in the clustering process. The sub-trajectory clustering algorithm is composed of two phases.

The first phase is to discover the merge candidates of a micro-group (explained before). In

the second phase, CUTiS finally finds the clusters using the merge candidates by checking if

two micro-groups candidates to merge are directly density reachable, and so density reachable.

By merging micro-groups, the final clustering result is a density connected cluster which is

approximated to the one produced by applying the original DBSCAN w.r.t. ε and τ .

Algorithm 6 illustrates how CUTiS finds the merge candidates of a micro-group

(let’s say, gi). For a micro-group gk (Line 2) whose representative trajectory is at a distance to the

representative trajectory of the micro-group gi (Line 3) not greater than the sum of their radius

rgi and rgk (Line 4), then gi and gk are merge candidates (Line 5). Algorithm 6 returns the set of

micro-groups which are merge candidates of the micro-group gi.

Algorithm 6: Merge Candidates
Input:
• A micro-group at time window i, gi.
• The set of micro-groups at time window i, Gi.

Output: The set of micro-groups candidates to be merged with gi, MC.
1 MC← /0
2 foreach gk ∈ {Gi \{gi}} do
3 d← distance(tra j[Rtra j

gi], tra j[Rtra j
gk]);

4 if d ≤ rgi + rgk then
5 MC←MC∪{gk};

6 return MC;

Algorithm 7 first picks a micro-group and initialized it as a new cluster (Lines 4 - 5).

For each micro-group gi in a cluster, the algorithm checks its candidates to merge (Line 8), some

micro-groups are filtered out. For each micro-group gk candidate to merge with gi, the algorithm

checks if they are directly density reachable (Lines 9 - 13). If they are, the algorithm merges

them into the same cluster(Lines 14 - 15). The algorithm outputs the density connected clusters

when all micro-groups belonged to any cluster (Line 17).

4.4 Example of CUTiS approach

In this section we provide a running example of CUTiS. The first thing that CUTiS

has to deal with is the creation (or maintenance) of micro-groups – Figure 7 shows a running

66

Algorithm 7: Sub-trajectory Clustering
Input:
• The set of micro-groups at time window i, Gi.
• Distance threshold ε .
• Size threshold τ .

Output: The set of clusters C.
1 begin
2 while Gi 6= /0 do
3 randomly pick a micro-group gi from Gi;
4 Initialize cluster c← gi, add c to C;
5 remove gi from Gi;
6 foreach gi unvisited in c do
7 mark gi as visited;
8 foreach gk ∈MergeCandidates(gi,Gi) do
9 foreach oi ∈ gi,ok ∈ gk do

10 if distance(oi,ok)≤ ε then
11 ni← |Nε(oi)|;
12 nk← |Nε(ok)|;
13 if ni ≥ τ and nk ≥ τ then
14 c← c∪gk;
15 remove gk from Gi;
16 break;

17 return C;

example limited to this phase. In order to create a micro-group, CUTiS randomly picks up a

moving object, and checks whether its sub-trajectory can be used as the representative trajectory

of a new micro-group: in order to do so, CUTiS checks if the conditions specified in Definition

4.2.3 hold.

More precisely, let us suppose that we have ε = 1 meter, σ = 2 and ρ = 0.17 – as a

consequence, the maximum radius a micro-group can have is ≈ 2 meters; let us finally suppose

that τ = 3. During the first time window two micro-groups are created – this corresponds to

the appear pattern. Once we enter the second time window, the moving objects o5 and o11 stop

to send their positions and, as such, they must be removed from the system. Consequently, the

deletion of o5 entails the splitting of g1 into two micro-groups, i.e., g3 and g4. This process is

carried on by choosing new, suitable representative trajectories among the trajectories composing

g1 – this is done by means of the voting procedure. In the case of g2 the micro-group survives,

Finally, we notice that a new moving object, o16, appears and starts to send its position during the

second time window. CUTiS detects that o16 can be represented by the representative trajectory

Rtra j
g2 of g2 and, as such, includes the object in the micro-group.

At this point we show how CUTiS is able to infer clusters from micro-groups. Each

micro-group is density-based: as such, micro-groups can be used to find density-based clusters

67

Figura 7 – Micro-Group Maintenance

of sub-trajectories, by merging two or more micro-groups. Figure 8 provides the example.

We remind that our clustering algorithm is made up of two phases: first, it finds the merge

candidates; secondly, it performs the actual density-based clustering. Going back to the example

depicted in Figure 8(a), the algorithm finds two merge candidates, g1 and g2, and checks if

distance(tra j[Rtra j
g1], tra j[Rtra j

g2]) ≤ rg1 + rg2 is satisfied. Since this holds, in the second phase

the algorithm checks if g1 and g2 can be indeed merged, that is, if g1 and g2 direct density

reachable (Figure 8(b)). Since we have that o1 ∈ g1,o2 ∈ g2, distance(o1,o2)≤ ε , |Nε(o1)| ≥ τ

and |Nε(o2)| ≥ τ , the algorithm proceeds to merge g1 and g2, thus creating a cluster.

68

Figura 8 – Micro-Group Sub-trajectory Clustering

4.5 CUTiS*: Indexing Trajectory Data

4.5.1 Overview

In Section 4.2 we saw how CUTiS picks up moving objects randomly to create

micro-groups – indeed, for each object CUTiS checks whether the associated sub-trajectory can

be used as the representative trajectory of some micro-group. The drawback underlying this

process is that the whole processing can get expensive, since each candidate sub-trajectory must

be possibly compared against the whole dataset. As such, we aim to optimize this process by

filtering out a relevant amount of objects during the creation of new micro-groups: to achieve this

goal, we modify CUTiS to use spatial indices – from now on, we denote this variant by CUTiS*.

4.5.2 Grid construction and spatial indexing

Initially, CUTiS* builds a uniform grid Gi over the space in which moving objects

move during the time window i.

Definition 4.5.1 (Space partitioning and indexing). Let Gi = (xGi
a ,xGi

b ,yGi
a ,yGi

b) be the minimum

bounding rectangle (MBR) enclosing the space in which moving objects move during the time

window i – as such, (xGi
a ,yGi

a) and (xGi
b ,yGi

b) represent, respectively, the lower-left and upper-right

corners of the MBR; then, we partition Gi according to a uniform grid Gi of N ·M cells of width

W and height H such that the cell ci j covers the following region:

(xGi
a + i ·W, xGi

a +(i+1) ·W, yGi
a + j ·H, yGi

a +(j+1) ·H).

To ensure that the grid covers Gi, constants N, M, W , and H are chosen so that xGi
a +N ·W ≥ xGi

b

and yGi
a +M ·H ≥ yGi

b hold.

As such, each cell Cm,n of Gi possibly encloses a subset of moving objects positions,

69

where m and n indicate the position of the cell in the grid. Let o = (x,y) be the lower-left corner

of the MBR Gi; then, in order to find the cell Cm,n in which a point p = (x′,y′) falls, the following

calculations suffice:

m = d(x
′− x)
W

e and n = d(y
′− y)
H
e (4.9)

Once we have the tools to materialize a uniform grid over the space in which objects

move, the next step is to describe how grids are indexed, such that spatial locality is preserved

(up to some extent). We achieve this goal by means of some space-filling curve, i.e., functions

that map a multidimensional space to a one-dimensional space such that two objects that are

close in the original space are guaranteed to be close in the target space with some probability.

As such, we leverage space filling curves to optimize range queries that involve sub-trajectories

of moving objects. In our work we recur to Hilbert curves (JAGADISH, 1990) – we note that

other types of space-filling curves can be used as well (e.g., Z-order). Consequently, the grid Gi

gets covered by a Hilbert curve, while the index of each cell gets labeled with the related Hilbert

index.

Finally, we report that CUTiS* stores the data related to the mapping of sub-

trajectories (to Hilbert indices) in an ad-hoc data structure, and maintains a B-tree index over it

by means of the attribute combination (Hilbertindex, timestamp).

In the following we present an optimized algorithm that takes advantage of spatial

indices to identify representative trajectories.

4.5.3 Selection of representative candidates

In order to find suitable representative trajectories, the candidate set is derived from

the moving objects falling within dense grid cells, i.e., cells that contain more than τ moving

objects. To take advantage of the fact that space-filling curves preserve spatial proximity (up to

some extent), the candidate set also includes moving objects that fall in cells adjacent to dense

ones. All in all, the usage of a spatial index allows CUTiS* to avoid having to consider the whole

dataset when creating new micro-groups.

70

4.5.4 Range query computation

Range queries are computed in CUTiS during the initialization and maintenance

phase of micro-groups, when retrieving the neighbors of representative trajectories. Range

queries are computed during the execution of the sub-trajectory clustering algorithm as well, to

discover whether two micro-groups are directly density connected.

In (SILVA et al., 2016b) the authors proposed a distance function that considers time

and space. Since each time window i = [t, t+δ t] gets divided into n intervals, each sub-trajectory

of a moving object is augmented to signal its position at the boundaries of the intervals. In order

to optimize the range query involving the sub-trajectory of a moving object o j, CUTiS* queries

the B-tree index (which, we remind, is based on the tuple {Hilbert Index, timestamp}) to retrieve

moving objects that are “possible neighbors” of o j. We sketch out in Algorithm 8.

Algorithm 8: Range Query
Input:
• Input stream at time interval i = [t, t +δ t], Ii.
• A moving object sub-trajectory {o j,STj,i}.
• Distance threshold ε .

Output: A set of moving object, N
o j
ε

1 begin
2 P← /0; N

o j
ε ← /0;

3 foreach (x,y, t) ∈ STj,i do
4 hi← getHilbertIndex(x,y);
5 P← P∪queryBtree(hi, t, Ii);
6
7 foreach {ok,STk,i} ∈ P do
8 if distance(STj,i,STk,i)≤ ε then
9 Nok

ε ← N
o j
ε ∪{ok};

10 return N
o j
ε ;

Algorithm 8 takes in input a moving object sub-trajectory {o j,STj,i} and returns its

neighbors. First, there is a mapping between each position (x,y, t) of the sub-trajectory STj,i

(Line 3) and a hilbert index hi (Line 4). Algorithm 8 performs a query over the B-tree index to

find the moving objects having at least one position associated with the timestamp t and hi. Some

neighbors of o j might fall in cells that are adjacent to hi; as such, we retrieve object positions

that fall within such cells (and are recorded at time instant t as well). This procedure is done in

Line 5. For each “possible neighbor” {ok,STk,i}, Algorithm 8 checks if distance(STj,i,STk,i)≤ ε

is true: if this holds, then {ok} is added to No j
ε (Line 9).

Even though the index proposed for CUTiS* is able to reduce the execution times,

71

some “core” moving objects were not labeled as core objects. Then, using the index in DBSCAN

implementation for instance, can not guarantee the same result as the original DBSCAN. This

fact happens because the index could not retrieve all moving object neighbors in the range query

execution. Even if the index retrieves the moving objects which have sub-trajectory positions

close to each other, it can not guarantee they will be close in the whole sub-trajectory shape. In

this way, by using our proposed index in CUTiS or DBSCAN implementation, it loses accuracy

compared to the original DBSCAN. We experimented this case and we present the results in the

next section.

4.6 Experiments

To the best of our knowledge, there is no other incremental trajectory clustering

algorithm for trajectory data stream. However, for validation purpose, we employ as a baseline

some state-of-the-art methods: TraClus (LEE et al., 2007) and DBSCAN, with the following

changes: (1) at each time window we run DBSCAN and TraClus given as input only the sub-

trajectories of the current time window, and not the complete trajectory; (2) we also adapted

TraClus and DBSCAN to use our distance function, in order to take into account the distance

in time, space and direction. We avoid to compare with (ESTER et al., 1998) because to apply

incremental clustering for each moving object trajectory at each time window is expensive (LI et

al., 2013).

4.6.1 Evaluation Metrics

The DBSCAN’s results are used as the baseline to test the effectiveness (recall and

precision) because (1) DBSCAN has been regarded as the most representative density-based

clustering algorithm and (2) both TraClus and CUTiS(or CUTiS*) share many characteristics

with the algorithm DBSCAN. The effectiveness is measured according to the found clusters

and outliers detection. In our case, the recall measure for outliers detection is the proportion

of correctly classified as outliers (true positives) over DBSCAN’s outliers (true positives+false

negatives). And the precision measure is the proportion of correctly classified as outliers (true

positives) by CUTiS(or CUTiS*) over all the objects classified as outliers (true positives+false

positives) by CUTiS (or CUTiS*). Let Outdbscan
i and Outmg

i be a set of moving object outliers

found by DBSCAN and by CUTiS(or CUTiS*) on the time window i, respectively. The recall

72

and precision for outliers detection are measured as follows:

1. Recalloutlier =
|Outdbscan

i ∩Outmg
i |

|Outdbscan
i |

2. Precisionoutlier =
|Outdbscan

i ∩Outmg
i |

|Outmg
i |

The recall and precision were also measured for the found clusters. At first, we

matched each cluster Cmg
i found by CUTiS (or CUTiS*) with only one DBSCAN cluster Cdbscan

i .

On the matching process, we applied Jaccard Similarity to compare the clusters based on their

moving objects labeled as core (since the set of core moving objects is a deterministic result

in DBSCAN). In this way, the cluster Cmg
i matches with one DBSCAN cluster (for example,

Cdbscan
i) that presents maximum Jaccard similarity value. The recall and precision are applied

for each matched pair to measure the quality of clusters result. The recall for {Cmg
i ,Cdbscan

i } is

the proportion of correctly core moving objects classified by CUTiS (or CUTiS*) in Cmg
i (true

positives) over the core moving objects classified by DBSCAN in Cdbscan
i (true positives+false

negatives). The precision measure for {Cmg
i ,Cdbscan

i } is the proportion of correctly classified as

core moving objects by CUTiS in Cmg
i (true positives) over all the core moving objects classified

in Cmg
i by CUTiS (true positives+false positives). If two or more clusters of CUTiS match with

the same DBSCAN cluster, we gather them in the same matching. We reported the average recall

and precision for all the matched clusters. Let Coredbscan
i and Coremg

i be the set of core moving

objects in Cdbscan
i and Cmg

i clusters, respectively.

1. Recall{C
mg
i ,Cdbscan

i }= |Coredbscan
i ∩Coremg

i |
|Coredbscan

i |
2. Precision{C

mg
i ,Cdbscan

i }= |Coredbscan
i ∩Coremg

i |
|Coremg

i |
We also measured the efficiency of CUTiS (and CUTiS*) against our competitors.

We implemented CUTiS (and CUTiS*) and the baselines in Java, and tested them by using

real data sets. The clustering parameters eps = ε and minPoints = τ are the same for CUTiS,

CUTiS*, DBSCAN and TraClus implementation. We set these parameters according to different

data sets. In all experiments, we studied the influence of micro-group radius (and also the

representativeness threshold ρ , they are related). The micro-group radius is varied according to

the values eps, 2eps and 3eps.

73

Figura 9 – Analysis of Taxi data set from Fortaleza: (a) Recall and (b) Precision for clusters
detection for 5 time windows.

4.6.2 CUTiS Evaluation

4.6.2.1 Experiments Results for Taxi Fleet Dataset from Fortaleza

This dataset is computed from GPS recorded data of a taxi fleet in Fortaleza city,

Brazil. It has around 400 different moving objects. Then, around 400 moving objects trajectories

at each observed time window. It is a small dataset, but it is still dense because the sampling

rate is equals to 1 second. The taxi fleet belongs to a private transportation company that tags

and tracks its vehicles as they move around, and aims to support drivers’ decisions related to

displacement through the city in (quasi) real time (i.e., movement behaviors through the city

that can be found by trajectory clusters analysis). In Figure 9, we evaluated the effectiveness to

cluster sub-trajectories using CUTiS, DBSCAN and TraClus algorithm. We set the time window

size as 5 (five) minutes and the clusters are tracked for 5 (five) sequential time windows. Figure

74

Figura 10 – Analysis of Taxi data set from Fortaleza: Recall and Precision for outliers detection
for 5 time windows.

10 shows the effectiveness of outliers detection.

In Figure 11, note that CUTiS outperforms DBSCAN algorithm for all tested values

of micro-group radius. When (1) micro-group radius=eps, CUTiS is from 20% to 54% faster

than DBSCAN, for (2) radius=2eps, it is from 70% to 90% faster and for (3) radius=3eps, it

is from 88% to 92% faster than DBSCAN. When micro-group radius increases, CUTiS also

outperforms TraClus, because in this case there are less micro-group to be maintained. Even if

TraClus outperformed CUTiS when radius=eps, the obtained clusters do not match with those of

DBSCAN (our baseline).

As presented in Figure 9, we can see the quality of our clusters is higher than TraClus.

CUTiS may misclassify outliers, and the recall for outliers detection decreases (Figure 10(a)).

As expected, when the micro-group radius=eps, CUTiS does not misclassify outliers (since

each micro-group only contains the representative trajectory which is a core object according to

75

Figura 11 – Analysis of Efficiency on Taxi data set from Fortaleza

DBSCAN definition, and its directly density reachable sub-trajectories). However, there are some

false positive outliers as well as in TraClus result. This affects the precision measure showed

in Figure 10(b). This trade-off between precision and recall in outlier detection depends on the

application needs. However we believe that CUTiS is quite satisfactory for both measures since

it does not present very low values. In the next section, we will discuss in detail the experiments

on a much larger number of moving objects, for better illustration of the advantages of CUTiS.

4.6.2.2 Experiments Results for Taxi Data Set from Beijing

This data set contains a real world GPS recorded data from taxis of Beijing (called

T-DRIVE dataset) (YUAN et al., 2011; YUAN et al., 2010). We have used a trajectory subset of

this data set containing around 7,000 moving objects, then 7,000 trajectories referring to taxi

travels around Beijing city at each time window. In the experiments, we set the time window

size as 10 (ten) minutes and the clusters are tracked for 5 (five) sequential time windows. The

sampling rate for T-DRIVE is around 1 minute. We chose to experiment as well with T-DRIVE

(not only the Taxi Fleet dataset from Fortaleza, Brazil) to verify the efficiency of our approach

for a large dataset of moving objects.

Throughout these experiments, we set the CUTiS parameters for the clustering

algorithm equals to ε = 0.4 and τ = 50.

Effectiveness Analysis of the Clustering approach. The effectiveness analysis is

measured by applying the precision and recall metrics introduced above, and compares the shapes

of the clusters in DBSCAN, TraClus and CUTiS where the clustering is computed by merging

micro-groups. We expected that our method finds more clusters than DBSCAN, given the fact

that the merge of two or more micro-groups only compares their representatives trajectories (this

76

Figura 12 – Comparison between clusters shapes of DBSCAN, TraClus and CUTiS (varying the
micro-group radius) for 2 time windows using Taxi data set from Beijing

77

Figura 13 – Effectiveness Analysis: (a) Recall and (b) Precision for detecting clusters using Taxi
data set from Beijing

allows us to save the cost of pairwise sub-trajectory distance computation in DBSCAN). So

each DBSCAN cluster is expected to match with many clusters from CUTiS. Actually, in our

experiments, CUTiS found the same clusters as DBSCAN when the micro-group radius=eps and

micro-group radius=2eps (except very few differences). Figure 12 compares the shapes of the

clusters in DBSCAN, TraClus and CUTiS. Figure concentrates in only two time windows and

each color (blue, red, purple, green and black) represents one DBSCAN cluster. We obtain the

best matches with DBSCAN, in both time windows, especially with radius=eps.

The differences are greater when micro-groups have radius=3eps. In the third time

window, CUTiS included the clusters represented by green and red colors into the same cluster

(represented by blue color). This means that a cluster found by CUTiS contains core objects from

three different DBSCAN clusters. This happens because these core objects can be represented by

their micro-group representative trajectory, however the core objects are not density reachable

objects (according to DBSCAN definition) to be in the same cluster. TraClus did not produce

similar clusters to DBSCAN for both time windows, the clusters represented by red, green and

black colors were not found. Furthermore, there are many moving objects in DBSCAN clusters

that were not clustered by TraClus. The main reason for the difference between TraClus and

DBSCAN results is the preprocessing phase in TraClus which partitions the trajectories which

78

Figura 14 – Effectiveness Analysis: (a) Recall and (b) Precision for detecting outliers using Taxi
data set from Beijing

modifies the similarity since it is applied per partition instead of the whole sub-trajectories.

As expected, CUTiS presents higher precision and recall for cluster detection when

the micro-group radius=eps and micro-group radius=2eps (Figure 13), since the clusters pro-

duced by CUTiS, in these cases, have similar shapes to DBSCAN clusters. Unlike when the

micro-group radius=3eps and for TraClus approach (as we previously discussed). In Figure

12, we highlighted with brown color the misclassified outliers by CUTiS. When micro-group

radius becomes larger, it means that the representativeness threshold is higher, then some outlier

sub-trajectories have enough votes to be reached by one micro-group representative trajectory.

This holds for radius=2eps and micro-group radius=3eps. In this case, CUTiS may misclassify

outliers, and the recall for outliers detection decreases (Figure 14(a)). As expected, when the

micro-group radius=eps, CUTiS does not misclassify outliers (since each micro-group only

contains the representative trajectory which is a core object according to DBSCAN definition,

and its directly density reachable sub-trajectories). However, there are some false positive outliers

as well as in TraClus result. This affects the precision measure showed in Figure 14(b). So

when micro-group radius increases, CUTiS may misclassify outliers but also brings down the

number of false positive outliers. This means the recall decreases and the precision increases for

outliers detection. This trade-off between precision and recall in outlier detection depends on the

79

application needs. However we believe that CUTiS is quite satisfactory for both measures since

it does not present very low values.

Efficiency Analysis of the Clustering approaches. Data stream applications im-

pose a limited memory constrained, it becomes difficult to provide arbitrary-shaped clustering

results using conventional algorithms as DBSCAN. It is unrealistic to provide such a precise

result. In the original DBSCAN, the system has to check the density connectivity for each

moving object sub-trajectory which makes the approach computational costly (showed in Figure

15(a)). To discover density based clusters from trajectory data stream, CUTiS has two steps

namely the creation and maintenance step (Mstep, Algorithms 3, 4 and 5), and clustering step

(Cstep, Algorithm 6). In Figure 15(b), the clustering step dominates the total cost in most of

the time windows. Since to merge micro-groups into a cluster, we need to detect if they are

density connected which is expensive (in the worst case, it is necessary to compare all pairwise

moving objects that belong to these micro-groups). However, the micro-group structure can save

computation in the maintenance processing avoid accessing all data set objects in details. Our

results present more gain in efficiency than DBSCAN when micro-group radius increases (it

maintains less representative trajectories, i.e. less number of micro-groups). As we mentioned

before, TraClus approximated in the experiments most of the time the sub-trajectory to only one

segment. In this case, the distance computation is less costly than consider each sub-trajectory

with many segments as CUTiS did. This is the main reason why TraClus is much faster to do

clustering. However, it only essentially outperformed CUTiS when micro-group radius=eps.

In general, our results present a trade-off between quality and performance, it is

influenced by the micro-group radius value. Generally speaking, when the radius has low

value, i.e. the micro-groups size decreases, it leads to maintain too many representatives (low

performance) but our clustering algorithm produces similar result to DBSCAN (high quality).

By increasing the micro-group radius, CUTiS presents high performance but it may lead to

misclassify outliers (low quality).

Micro-group Evolution Pattern. CUTiS captures the micro-group evolution. Fi-

gure 16 reports the percentage of micro-groups that evolve according to each pattern for all the

tracking time windows. One can clearly see that the proportion of unchanged micro-groups

(micro-groups that survive) is greater when micro-group radius is lower. The intuition is when

the radius is lower, there are more micro-groups, and consequently it is necessary to choose more

representatives. The probability to randomly choose good ones is greater than when micro-group

80

Figura 15 – Efficiency Analysis: (a) Total Running Time for 5 time windows using Taxi data set
from Beijing and (b) Running Time of Micro-group maintenance and clustering

radius increases (less representatives trajectories are chosen). A micro-group splits when its

representative trajectory does not have enough votes to remain the representative in the current

time window. There is less micro-groups that split when radius=eps (CUTiS got more “good”

ones representatives) than when micro-group radius=3eps.

Hence we suggest that in real applications, the user should set higher micro-group

radius to achieve higher performance to cluster sub-trajectories. However, if the priority is to

have quality in the results (considering DBSCAN as the baseline), we suggest to set lower value

for micro-group radius in order to filter out outliers, and to guarantee the algorithm’s sensitivity.

4.6.3 CUTiS* Evaluation

The experiments use a subset of a real world GPS recorded data from taxis of Beijing,

containing around 4,000 trajectories. Two possible scenarios were investigated which were not

investigated before. When a moving object stops sending its positions: (1) Scenario I: it should

be deleted in the next time window or (2) Scenario II: its sub-trajectory positions should be

predicted until a timeout is reached (here the timeout is equals to 2 time windows, i.e., 14

81

Figura 16 – Micro-group evolution pattern for (a) radius=eps and (b) radius=3eps on the 5
tracked time windows using Taxi data from Beijing

Tabela 7 – Number of Clusters
Time Window 1 2 3 4 5
Scenario I 14 10 12 15 14
Scenario II 14 15 22 16 15

minutes). Both scenarios use a time window size of 7 (seven) minutes and the clusters are tracked

for 5 (five) sequential time windows. The number of clusters on the 5 tracked time windows is

shown in Table 7 by using CUTiS* with micro-group radius equals to eps.

Throughout these experiments, we set the CUTiS* parameters for the clustering

algorithm equals to ε = 0.004 and τ = 20.

Micro-group Evolution Pattern. CUTiS* captures the micro-group evolution. For

both scenarios, Figure 17 reports the percentage of micro-groups that evolve according to each

pattern for all the tracking time windows. Each scenario has its peculiarities which affect

the micro-groups maintained. In Scenario I, there exist moving objects deleted at each time

window; hence the proportion of micro-groups that disappear or split is greater than in Scenario

II. However, even if the majority of micro-groups survive and there exist moving objects whose

positions are predicted, Scenario II is not far from the real-world objects. Between 30% to 40%

of micro-group split in Scenario II.

82

Figura 17 – Micro-group evolution pattern found by CUTiS* during 5 tracked time windows.

Figura 18 – Comparison between clusters shapes of DBSCAN, TraClus and CUTiS* (varying
the micro-group radius) for 2 time windows using data of Scenario I.

Effectiveness Analysis. The effectiveness analysis is measured by applying the

precision and recall metrics and comparing the clusters in DBSCAN (the baseline), DBSCAN

with index, TraClus and CUTiS*. In our experiments, CUTiS* found the same clusters as

DBSCAN when the micro-group radius=eps. Figure 18 compares the shapes of the clusters in

DBSCAN, TraClus and CUTiS*. Figure 18 concentrates in only two time windows and each

color represents one DBSCAN cluster. We obtain the best matches with DBSCAN, in both time

83

windows, especially with radius=eps. The clusters found by DBSCAN with index are omitted in

Figure 18 because they are quite similar to DBSCAN clusters except few differences as we will

see later, some cores in DBSCAN are not label as core in DBSCAN with index.

Figura 19 – Effectiveness Analysis Scenario I: (a) Precision and (b) Recall for detecting clusters

Figura 20 – Effectiveness Analysis Scenario II: (a) Precision and (b) Recall for detecting clusters

When micro-groups have radius=3eps, the differences are greater. In the second

time window, CUTiS* included the clusters represented by black and light blue colors into the

same cluster (represented by black color). The clusters represented by red and dark blue colors

are also included into the same cluster (represented by dark blue color). This means that a cluster

found by CUTiS* contains core objects from two different DBSCAN clusters. Indeed, these

core objects can be represented by their micro-group representative trajectory, however the core

objects are not density reachable objects (according to DBSCAN definition) to belong to the

same cluster.

As expected, CUTiS* presents higher precision and recall for cluster detection when

the micro-group radius=eps (Figure 19 and 20), since the clusters produced by CUTiS*, in

these cases, have similar shapes to DBSCAN clusters. Unlike for TraClus and when the micro-

group has radius=3eps, both have in all tracked time windows lower precision and recall values.

TraClus is based on DBSCAN algorithm (LEE et al., 2007). However, TraClus did not produce

similar clusters to DBSCAN for all the tracked time windows. Furthermore, there are many

moving objects in DBSCAN clusters that were not clustered by TraClus. We can clearly see that

84

some clusters were not found in the second time window (e.g., black, light blue, dark blue colors)

in Figure 18. The main difference between TraClus and DBSCAN results is the preprocessing

phase in TraClus which partitions the trajectories, then it modifies the similarity since it is applied

per partition instead of the whole sub-trajectories. So even the prepocessing phase in TraClus

increases its performance, the effectiveness of CUTiS* outperforms it.

Even though our proposed index accelerates the performance for DBSCAN (as we

will see), some “core” moving objects were not labelled as core objects. Then, using the index

in DBSCAN implementation can not guarantee the same result as the original DBSCAN. This

fact happens because the index could not retrieve all moving object neighbors in the range query

execution. Even if the index retrieves the moving objects which have sub-trajectory positions

close to each other, it can not guarantee they will be close in the whole sub-trajectory shape. In

this way, by using our proposed index in DBSCAN implementation, it loses accuracy compared

to the original DBSCAN.

Efficiency Analysis. Figure 21(a) and (b) compare the running time of DBSCAN,

our approach with micro-group radius=eps without the index for trajectory data (called “CUTiS-

eps-without index”) and our approach for micro-group radius=eps with our proposed index

(called “CUTiS*-eps-with Index”). Our goal here is to show the improvement of CUTiS* due to

the proposed indexing scheme. As expected, the performance of our approach using the index

is much better than without index. By using the index, the speed-up of CUTiS* compared to

CUTiS (without index) ranges from 2.5 to 5. In general, CUTiS* spent 10% of the running

time to create the index at each time window (from 30 to 40 seconds). CUTiS* outperforms

DBSCAN, since DBSCAN requires to check the density connectivity for each moving object

sub-trajectory with the whole dataset, which is computationally costly.

To faithfully compare, we adapted the DBSCAN implementation to use the same

index as CUTiS*. Figure 21(c) and (d) show the running time for DBSCAN with index, TraClus

and CUTiS* with micro-group radius=eps and micro-group radius=3eps. As expected, the index

also improved the DBSCAN performance. Even though the running time difference between

CUTiS* and “DBSCAN-with index” is not large, DBSCAN can not track the evolution of

clusters/groups as CUTiS* does and the clusters found by

“DBSCAN-with index” are not the same as those of the original DBSCAN (as we discussed

before, “DBSCAN-with index” lost accuracy compared to the original DBSCAN). Our results

present more efficiency gains than “DBSCAN-with index” when the micro-group radius increases

85

Figura 21 – (a) and (b): Efficiency Analysis (Improved Running Time by using our proposed
index); (c) and (d): Efficiency Analysis of Clustering Approaches

(it maintains less representative trajectories, i.e., a smaller number of micro-groups). TraClus

approximated in the experiments most of the time the sub-trajectory to few segments, as we

mentioned before. In this case, the distance computation is less costly than considering each

sub-trajectory with many segments, as CUTiS* did. The segmentation reduces the computational

complexity and this is the main reason why TraClus is much faster to create the clusters.

In general, CUTiS* presented a trade-off between quality and performance, which

is influenced by the micro-group radius value. Generally speaking, when the radius has a low

value, i.e., the micro-groups size decreases, it leads to maintaining too many representatives (low

performance), but our clustering algorithm produces similar result to DBSCAN (high quality).

By increasing the micro-group radius, CUTiS* presents high performance but it may lead to

misclassify outliers (reducing the quality). Moreover, by using our proposed index, CUTiS*

improved its performance when compared with CUTiS (i.e., without index).

4.7 Discussion

In this chapter, we comprehensively discussed CUTiS, our framework to find mobility

patterns on trajectory data stream. CUTiS addresses the problem of discover and maintain sub-

trajectory clusters at each time window, since each moving object updates its sub-trajectory from

86

time to time, new moving objects appear and others disappear from the system. As each moving

object evolves in time, also cluster evolves. It is inefficient as we showed in our experiments

to compute trajectory clusters from scratch. There is a need to online track trajectory clusters

over sliding window. This problem is also demanded in trajectory clustering applications as

monitoring hot traffic paths, analyzing people’s movement and understanding city dynamics.

Our framework CUTiS is composed by four steps: apply a distance function, cho-

ose representative trajectories, maintain the micro-groups and discover sub-trajectory clusters.

Throughout this chapter, we presented our approach to track moving objects by applying the

Synchronous Euclidean Distance. We define a new structure called micro-group, to capture

and maintain small and dense groups of moving objects around the representatives at each time

window. This adapts to many situations such as families staying together or persons sharing the

same trip using a public transport. Furthermore, their maintenance cost is lower than maintaining

a big cluster during each time window. CUTiS incrementally maintains each micro-group and

captures its evolution patterns from time to time. By merging micro-groups, CUTiS discovers

density based sub-trajectory clusters. Our experiments were conducted on real data sets from

Taxis of Beijing and Taxis in Fortaleza city, and it shows the efficiency and effectiveness of

CUTiS compared to our competitors. These results were published in (SILVA et al., 2016b;

SILVA et al., 2016a).

We also proposed a sub-trajectory index to accelerate the sub-trajectory clustering

processing in CUTiS. Our proposed index is based on a space-filling curve which has the property

of mapping a multidimensional space to one-dimensional space such that, for two objects that

are close in the original space, there is a high probability that they will be close in the mapped

target space. We take advantage of this property to optimize range queries from a moving object

sub-trajectory on the incremental clustering algorithm and develop CUTiS*. The proposed

index improves the performance without losing quality in the clusters results as we show in our

experiments conducted on a real dataset of Taxis of Beijing. These results were published in

(SILVA et al., 2016c).

We proposed a demo tool which was published in (SILVA et al., 2016d) 1 and it

will be integrated to Graphast framework in future (MAGALHÃES et al., 2015). Our demo

implements CUTiS* for online mobility pattern discovery in sub-trajectory data streams. Key

innovations include: (1) Online discovery of mobility patterns and pattern evolution by tracking
1 https://github.com/ARiDa/cutis

87

Figura 22 – Demonstration Scenarios.

the sub-trajectories of moving objects; (2) Micro-group trajectory discovery, density-based

trajectory clusters and trajectory flocks discovery are available functionalities in our demo;

(3) An incremental algorithm to maintain those patterns and capture their evolution on highly

dynamic sub-trajectory data. Demonstration scenarios are showed in Figure 22 using a real

dataset.

88

5 NET-CUTIS: CLUSTERING ON TRAJECTORY DATA STREAM ON ROAD

NETWORK

In the previous chapters we investigated the problem of finding clusters of sub-

trajectories in a 2D Euclidean space, as well as how to update and maintain clusters over time.

In this context, we remember that we employ a distance function that takes as input the sub-

trajectories of two moving objects and determines how similar their movements are. However,

such function does not take into account the fact that, in real-world applications, movements of

moving objects are typically constrained by the road network. As such, in this chapter, we explore

the problem of sub-trajectory clustering on road networks which corresponds to Challenge 4 of

this thesis.

Before delving into the problem, we need to highlight several key differences that

stand between an Euclidean space and a Road Network space:

• The distance between two objects on a road network is equivalent to the length of the

shortest path connecting them, while in Euclidean spaces this is simply given by the length

of the segment connecting the objects.

• While the (x,y, t) coordinate system is the most popular used with Euclidean spaces,

(Sid,d, t) represents a more efficient coordinate system for road network spaces (HWANG

et al., 2005): here, Sid represents a road sector identifier, d represents an offset from the

starting point of the road sector, and t represents a time instant associated with the object

coordinate. Another, alternative representation (TIAKAS et al., 2006; TIAKAS et al.,

2009) omits d: in this thesis, we adopt the latter.

• Road networks require additional data to describe the connectivity between road sectors.

Network connectivity is usually modeled by means of a graph representation, which

is composed of a set of vertices (nodes) and a set of edges (connections). Depending on the

application, the graph may be weighted (each edge has associated a cost) or directed (each edge

has an orientation). In this work, we represent road networks as weighted (the cost associated

with an edge corresponds to its length) and directed graphs.

In this context we assume that spatial coordinates can be matched efficiently to the

edges of a road network. Several algorithms solve efficiently this problem (we refer the reader to

(ZHENG, 2015) for an overview); however, developing an efficient map matching algorithm is

out of the scope of this thesis, hence in this thesis we recur to a naive approach. More precisely,

the map matching algorithm associates each position of a moving object, (x,y), with the nearest

89

edge (road sector), i.e. the edge having the minimum perpendicular distance.

Building on the CUTiS framework, we need to define a distance function capable

to compare sub-trajectories in a road network space. Subsequently, in order to discover sub-

trajectory clusters we first need to choose a representative trajectory and maintain the micro-

groups.

In the following section (Section 5.1) we present two contributions: first, we in-

troduce a spatio-temporal distance function that is suitable for sub-trajectory data constrained

by a road network. Second, on the basis of the aforementioned contribution, we introduce an

incremental clustering approach that is able to detect the clusters online and their evolutions.

5.1 Distance Function on Road Network

Let a road network be represented by a graph G = (V,E), where V is the set of nodes

and E the set of edges (road segments). The trajectory T R j describes the movements of a moving

object o j, it is defined as

T R j = ((e1,(t1, t2)),(e2,(t2, t3)), ...,(en,(tn, tn+1))), (5.1)

where n is the sub-trajectory description length, ei represents an edge in G(V,E), and (ti, ti+1)

represents the time interval during which o j traverses ei (o j enters at time ti and leaves at time

ti+1).

The spatio-temporal distance function proposed in this thesis depends on the concept

of network path: intuitively, a network path represents the longest sequence of road segments

that are shared among many trajectories.

More formally we have the following:

Definition 5.1.1. (Network Path) Consider a set of moving object trajectories T =

{(o1,T R1),(o2,T R2), ..,(om,T Rm)}. Then, npi = ((e1,e2, ...,ek)) is a network path of T if

and only if:

• ∀ j ∈ {2, ...,k−1}, e j−1.end = e j.start

• Let L = {T R1, ...,T Rp} be a non empty set: then ∀ j ∈ {1, ...,k},∀q ∈ {1, ..., p}, ∃tu, tw,

with tu < tw, such that (e j,(tu, tw)) ∈ T Rq.

Consider a sub-trajectory STj,i = {(e1,(t1, t2)),(e2,(t2, t3)), ...,(en,(tn, tn+1))} re-

lated to a moving object o j at a time window i. Consider also a set of network paths

90

NP = {np1, ...,npm}. In order to “summarize” STj,i using NP, we exploit the algorithm proposed

in (POPA et al., 2015). More precisely, given a threshold γ , let EdgesSTj,i = {(e1,e2, ...,en)} be

the set of the edges in STj,i. We claim that STj,i can be represented by means of a network path

np ∈ NP if and only if

∣∣EdgesSTj,i ∩np
∣∣

|np|
≥ γ, (5.2)

and EdgesSTj,i ∩np must be a subpath of np and a subpath of EdgesSTj,i .

When applying the compression over the original sub-trajectories we pre-

serve the information concerning the time domain. For instance, let us suppose that

we have STj,i = {(e1,(t1, t2)),(e2,(t2, t3)),(e3,(t3, t4)),(e4,(t4, t5))} and two network paths,

np1,np2 ∈ NP, where np1 = {(e1,e2)} and np2 = {(e3,e4)}; then, we can say that STj,i =

{(np1,(t1, t3)),(np2,(t3, t5))}, i.e., during the time interval (t1, t3) o j crossed np1, while during

(t3, t5) o j crossed np2.

At this point we can introduce a distance function that is able to compare sub-

trajectories while leveraging the concept of network paths. The rationale is to save a relevant

amount of computation time, since it avoids the usage of the shortest path algorithm during the

clustering.

First, we need to introduce the Network Path Similarity function. The idea behind

this function is to take in input two sub-trajectories and determine if the two sub-trajectories

cross the same network path within close temporal intervals.

Definition 5.1.2. (Network Path Similarity) Let STj,i and STk,i be two sub-trajectories asso-

ciated with the objects o j and ok at time window i. Let also δ be a time tolerance and t a

timestamp. Then, we define the Network Path Similarity (NPS) function to be a boolean funcion

NPS : ST ×ST ×R≥0×R≥0→{0,1} such that:

NPS(STj,i,STk,i,δ , t) =

1 ∃p, STj,i(t) = STk,i(p) ∧ p ∈ [t−δ , t +δ]

0 otherwise

Thanks to Definition 5.1.2, we are now able to introduce the definition of the distance

function that can be used within the micro-group maintenance phase and the clustering algorithm.

91

Definition 5.1.3. (Spatio-Temporal Distance) Given a time window i = [t, t +δ t] and let n =

min(STj,i.length,STk,i.length), the spatio-temporal distance between two sub-trajectories STj,i

and STk,i within a road network is defined as follows:

distance(STj,i,STk,i,δ) =

n
∑

r=1
NPS(STj,i,STk,i,δ , tr)

max(STj,i.length,STk,i.length)
(5.3)

5.1.1 Incremental Clustering Algorithm

In this section we briefly present the differences between CUTiS and NET-CUTiS

when dealing with trajectory clustering. The major differences can be summarized as follows:

• Sub-trajectories that cannot be represented by any network path are considered as outliers

by NET-CUTiS;

• The first step of the clustering algorithm presented in Section 4.3 is to discover merge

candidates before merging pairs of micro-groups. This operation inevitably has to be

modified when the underlying space is a road network, since the concept of micro-group

radius loses its meaning. For the moment, we do not compute the merge candidates in the

clustering phase for Net-CUTiS.

5.2 Net-CUTiS Example

Let us consider a road network G(V,E), where V = {v1,v2,v3,v4,v5,v6,v7} and

E = {(v1,v3),(v2,v3),(v3,v4),(v4,v5),(v3,v6),(v6,v7)}. Figure 23 shows the sub-trajectories

{ST1,ST2,ST3,ST4,ST5,ST6,ST7} map matched on G. Each sub-trajectory contains positions that

occur within the temporal interval [t1, t4].

The first operation carried on by Net-CUTiS is to find out the network paths within

G: by means of the algorithm in (POPA et al., 2015), we are able to find two network paths:

NP1 = {(v1,v3),(v3,v4),(v4,v5)} and NP2 = {(v3,v6),(v6,v7)}. As a side-note, we observe that

notation previously introduced for time-windows were omitted. Indeed, detecting network paths

for any time-window requires negligible computational efforts.

The next step is to represent the original sub-trajectories by means of the network

paths; let us remember that, according to Definition 5.1.1, part of a sub-trajectory can be

represented by means of a network path if (i) the sub-trajectory possesses at least 70% of the

92

Figura 23 – Network Paths Discovery Process

edges making up the network path, and (ii) such edges appear in the same order as in the network

path: for instance, ST1 = {((v1,v3),(t1, t2)),((v3,v4),(t2, t3)),((v4,v5),(t3, t4)))} possesses only

25% of NP1’s edges, while it possesses 100% of NP2’s edges. Accordingly, Net-CUTiS represents

ST1 as {(NP2,(t2, t4))}, i.e., ST1 crosses NP2 during the time interval [t2, t4]. On the other hand,

ST7 represents an outlier, since it cannot be represented by any network path.

Let us suppose that we use the following parameters for micro-groups initialization

and maintenance: (i) ε = 0.5, (ii) τ=2, and (iii) δ equals to one time unit. Overall, from Figure 24

we see that Net-CUTiS finds two micro-groups, g1 = {ST2,ST3,ST4} and g2 = {ST1,ST5,ST6}.

For what is related to the first micro-group of sub-trajectories, g1, ST3 is chosen to be its

representative: as such, our approach goes on to compute the spatio-temporal distance between

ST3 and the other sub-trajectories, according to the function introduced in Definition 5.1.3; as a

result, micro-group g1 is found to be equal to {ST2,ST3,ST4}. Next, a second micro-group, g2,

is created by using ST6 as its representative. By examining the similarity between ST6 and the

remaining sub-trajectories, we have that it is equal to 1 when considering ST5, while it is equal to

≈0,67 when considering ST1; in the latter case, we note that ST1 and ST6 cross the same network

93

Figura 24 – Micro-groups Discovery on Road Network

Figura 25 – Clustering Sub-trajectory on Road Network by merging Micro-groups

path, NP2, yet at different time-stamps: however, once we take into account the time tolerance,

δ , both sub-trajectories are deemed similar in the temporal domain as well. Consequently, g2 is

found to be equal to {ST1,ST5,ST6}.

All in all, we observe that each representative sub-trajectory gives a succinct repre-

sentation of the movements characterizing the set of sub-trajectories included in its micro-group:

this is achieved by taking into account both the spatial domain – we look at the network paths

shared by the sub-trajectories – and the temporal domain – we make sure that sub-trajectories

cross the aforementioned network paths within close temporal intervals.

We conclude the example by showing how Net-CUTiS merges different micro-groups

to create clusters of sub-trajectories 1. More specifically, we remind that Net-CUTiS checks

the density connection between representative trajectories to merge two or more micro-groups.
1 We remind that a single micro-group may represent a cluster as well.

94

Figura 26 – Difference between a sub-trajectory (a) before adding the shortest path between each
two consecutive positions and (b) after

Going back to the example, let us consider three network paths, NP1, NP2 and NP3 (Figure

25, highlighted in black), and the representative trajectories of micro-groups g1 (red) and g2

(blue), i.e., ST1 and ST3 respectively. According to the parameters specified previously, we have

that Nε(ST1) = {ST1,ST2}, Nε(ST2) = {ST1,ST2,ST4}, Nε(ST3) = {ST3,ST4} and Nε(ST4) =

{ST2,ST3,ST4}. As such, micro-groups g1 and g2 merge to create a cluster, since there is a

density connection between their representative trajectories: {ST1,ST2,ST4,ST3}.

The next section discusses our experiments for Net-CUTiS, NETSCAN and DBS-

CAN.

5.3 Experiments

In order to assess the Net-CUTiS approach, the same dataset scenarios discussed

in Section 4.6.3 have been used. First, we need to report a pre-processing phase in the data set

since for a sub-trajectory, two consecutive sample positions are not in continuous edges of the

road network. Then, for each sub-trajectory, between two consecutive sample positions, the

sub-trajectory was fed with the shortest path on the road network between these positions. Figure

26 presents the difference between including the shortest path between two consecutive positions

and keep the data as it is.

Throughout these experiments, we set the Net-CUTiS parameters for the clustering

algorithm equals to ε=0.5, τ=10, ρ=0.5 and δ=5 minutes. Moreover, there exists another

parameter γ used in the compression processing of sub-trajectories into network paths. However,

the choice of γ value has a trade-off between forcing the sub-trajectories to be almost totally

represented by the dense paths and the need to represent many sub-trajectories in the data set

(this means less outliers in the clustering). For both scenarios, we have chosen to set γ=0.7

95

The paper (KHARRAT et al., 2008) proposes NETSCAN which is our competitor

approach. NETSCAN finds density based clusters for network constrained trajectories. At first,

NETSCAN finds the dense paths, i.e. a sequence of neighbor road segments. The minimal requi-

red density for a road segment is α moving objects crossing it. The maximal density difference

between neighbor segments that belong to the same dense path is equal to ε . NETSCAN does not

ensure that a dense path is crossed by the same moving object trajectories, unlike the Definition

5.1.1 of network paths. NETSCAN trajectory clustering algorithm consists in grouping the

trajectories according to their similarity to each dense path generated. For each dense path, it

computes the similarity with each trajectory. If the similarity is above the threshold value σ ,

then the trajectory is kept in the cluster. More precisely, the common part between the trajectory

and the dense path is added to the cluster. In this way, the number of returning clusters is equal

to the number of dense paths.

There are three main drawbacks of using NETSCAN approach compared using Net-

CUTiS: (1) The network paths are semantically well-related to the clustering idea: grouping the

sub-trajectories which share within close temporal interval; (2) Furthermore, the same moving

object trajectory can be associated to different clusters in NETSCAN. This is different compared

to DBSCAN clusters which our approach is based on, a moving object sub-trajectory can only

be associated to one single cluster; (3) NETSCAN does not detect the clusters evolution online.

We believe the clusters found by using Net-CUTiS are more similar to traveling

together patterns such as families staying together or by considering each person as a moving

object and a group of person sharing the same trip using a public transport. We avoid comparing

the effectiveness between Net-CUTiS and NETSCAN, since the semantics of their clusters

results are not exactly the same. In these experiments, we executed NETSCAN from scratch for

each time window and we set its parameters equal to σ=0.5, α=10 and ε=1.

There are two ways to perform the experiments with Net-CUTiS. First, the network

paths can be discovered from a historical dataset (batch mode) or online at each time window.

When we experimented with a historical dataset from T-DRIVE which holds around 4,000

moving object trajectories during 1 hour, the running time was 183,719 seconds. Figure 27

shows the found network paths. For online discovery of network paths at each time window,

the running time was on average 132,1804 seconds. By executing the network path discovery

in batch mode, the quality of the network paths is higher, since it creates less network paths

described by a long sequence of roads. Moreover, it is less time-consuming.

96

Figura 27 – Network paths from 17:30 to 18:30 on 4th of February 2008 for "densified"T-DRIVE
dataset

Figure 28 reports the distribution of the cardinality of the network paths found. The

cardinality of a network path corresponds to its number of edges or road segments. We also found

few network paths with more than 37 different road segments and less than 339. However, we

omit in Figure 28 in order to ease viewing. Figures 29 and 30 report the dense paths cardinality

distribution found by NETSCAN during the 5 consecutive time windows.

Efficiency Analysis. Figures 31 and 32 present the running time of Net-CUTiS

approach for the both scenarios comparing to NETSCAN (KHARRAT et al., 2008). The running

time is computed by piling the cost of the following steps: (1) the network path discovery

(only computed in the first time window since we have used a historical trajectory dataset);

(2) the compression of moving object sub-trajectories into network paths; (3) the micro-group

maintenance and clustering. The performance of Net-CUTiS has improved compared to CUTiS*

(see Figure 21). The main reason is the moving object sub-trajectories are compressed and

represented by the network paths. Then, the pairwise sub-trajectory comparison does not need to

scan all sub-trajectory positions. By using the network path representation, Net-CUTiS compares

the sub-trajectories in a higher granularity which speeds up the processing time. Note that

Net-CUTiS outperforms our competitor NETSCAN as well (KHARRAT et al., 2008).

NETSCAN discovered in average 3,544 dense paths for the Scenario I and 3,677

dense paths for the Scenario II. Net-CUTiS discovered only 833 network paths for both scenarios

97

Figura 28 – Network Path Cardinality Distribution

Figura 29 – Dense Path Cardinality Distribution for Scenario I

Figura 30 – Dense Path Cardinality Distribution for Scenario II

98

Figura 31 – Efficiency Analysis: Sub-trajectory Clustering Discovery using Net-CUTiS.

Figura 32 – Efficiency Analysis: Sub-trajectory Clustering Discovery using NETSCAN.

evaluated, which is less than the number of dense paths found by NETSCAN. Furthermore,

our clusters might be composed of moving object sub-trajectories represented by one or more

network paths. On the other hand, NETSCAN has only one dense path per cluster. That’s why

NETSCAN discovered more clusters than Net-CUTiS in these experiments. The number of

clusters found by NETSCAN and Net-CUTiS are reported in the Figure 33.

Figura 33 – (a) Number of Sub-trajectory Clusters found by NETSCAN and (b) Net-CUTiS for
the Scenario I and Scenario II.

We also compared the efficiency of Net-CUTiS with DBSCAN. In DBSCAN imple-

mentation, we applied the Synchronous Shortest Path Distance as a distance function. We refer

to the Definition 4.2.1 in order to explain the Synchronous Shortest Path Distance (in fact, we

99

just replaced the Euclidean Distance by the Shortest Path Distance). As we mentioned before, the

shortest path distance computation is computationally costly. Figure 34 reports the comparison

between DBSCAN and Net-CUTiS by using the dataset of the Scenario II. Net-CUTiS takes far

less time than DBSCAN in the 5 consecutive time windows.

We implemented an index structure to accelerate range queries from a moving object

sub-trajectory in the DBSCAN execution. Basically, for each sub-trajectory position we stored

in a B-tree the 3-tuple (road segment id, timestamp, sub-trajectory id). In this way, for each

sub-trajectory, we can query the B-tree by searching all sub-trajectories id where the Euclidean

distance between their road segments would be less or equal to ε at the same timestamp. In this

way, a moving object sub-trajectory and its possible neighbors sub-trajectories have positions

close in space and time. Note that in the road network space, if the Euclidean distance between

two objects is larger than the threshold ε , these objects are not neighbors by using the Shortest

Path distance as a distance measure. After retrieving the neighbors candidates from the index,

our implementation computes the Synchronous Shortest Path distance in order to verify the real

neighbors.

Figura 34 – For the Scenario II, the execution time of running DBSCAN with Synchronous
Shortest Path distance versus Net-CUTiS.

Effectiveness Analysis. Since Net-CUTiS produces clusters semantically different

(according to network path representation (POPA et al., 2015)) from others clustering approaches,

they have no common quantitative measure of the accuracy. Therefore, we evaluated the accuracy

of our approach by visual inspection as already did in the papers (LEE et al., 2007; LI et al.,

2007; HAN et al., 2012; ESTER et al., 1996), among others.

Figure 38 presents the sub-trajectory clusters found in three consecutive time win-

100

Figura 35 – Representative Trajectories for the 1st Time Window

Figura 36 – Representative Trajectories for the 2nd Time Window

Figura 37 – Representative Trajectories for the 3rd Time Window
Figura 38 – Representative Trajectories of each cluster found by Net-CUTiS using Scenario I

dataset for three consecutives time windows.

101

dows using the same dataset of Scenario I. Even compared to TraClus and CUTiS*, Net-CUTiS

produces clusters with longer representative routes: this may be useful to improve the services

offered by location based applications, for instance those that have to deal with the optimization

of bus lines, or offer ride-sharing services (KAMAR; HORVITZ, 2009). In comparison with

Figure 19 in Section 4.6.3, Net-CUTiS produces more compact and meaningful results through a

road network aware sub-trajectory clustering.

The representative trajectories of the clusters in the Figure 38 represent the road

segments where traffic is highly concentrated. You can easily see the sub-trajectories that belong

to the found clusters were crossing roads very close to airports. Moreover, there is one cluster

for all time windows that crossed S32 Jingping Expressway (an expressway in Beijing. We

indicated this expressway with a star in the Figure). Observe how the clusters on S32 Jingping

Expressway continued to lengthen from the first time window to the third. It might indicate the

increasing flow in the network paths of the Expressway. By utilizing the longer network paths

representation to compress the sub-trajectories and to measure the similarity in the clustering

algorithm, Net-CUTiS not only produces meaningful sub-trajectory clusters but also runs very

fast.

We also measure the effectiveness of Net-CUTiS using another real dataset from a

taxi fleet company of Fortaleza, Brazil. This dataset has around 400 different moving objects.

Then, around 400 moving object trajectories at each observed time window. It is a small dataset,

but it is still dense because the sampling rate is equal to 1 second. The taxi fleet belongs to a

private company that tags and tracks its vehicles as they move around, and it aims at supporting

drivers’ decisions related to displacement through the city in (quasi) real time (i.e., movement

behaviors through the city that can be found by sub-trajectory cluster analysis).

For these experiments, we used the time window size equals to 10 minutes. The taxi

fleet company has the majority of its taxis offering the service in popular districts of Fortaleza.

This is what they call Popular Taxi Service. Figure 41 shows the representative trajectories of

the clusters found in three residential districts of Fortaleza: Mondumbi, Conjunto Esperança and

Prefeito José Walter. As already expected, these regions of Fortaleza covered by Net-CUTiS

sub-trajectory clusters are very popular neighborhoods. Comparing both time windows, we can

easily see the increased movement of moving objects sub-trajectories in the Perimetral Avenue

and Bernardo Manuel Avenue. These are the two main routes in Mondumbi district.

102

Figura 39 – Representative Trajectories for the 1st Time Window

Figura 40 – Representative Trajectories for the 2nd Time Window
Figura 41 – Representative Trajectories of each cluster found by Net-CUTiS using Taxi dataset

of Fortaleza, Brazil.

5.4 Discussion

In this chapter, we comprehensively discussed Net-CUTiS, the extension of our

framework CUTiS for constrained movement in the road network space. Net-CUTiS addresses

the same problem presented in the last section, how to online track moving objects and find

the sub-trajectory clusters without having to cluster from scratch. However, in this Chapter we

considered the movement on the road network. The main contribution of this Chapter is the

proposal of a new trajectory distance function which is based on first describing the trajectories

into a set of network paths (POPA et al., 2015) and then compare if two sub-trajectories cross

the same network paths within a close time interval.

103

Our experiments were conducted on real data sets from Taxis of Beijing, and it shows

the efficiency of Net-CUTiS compared to NETSCAN (KHARRAT et al., 2008) and DBSCAN.

We also have an improvement in the efficiency by comparing to CUTiS which uses Synchronous

Euclidian Distance to measure the similarity between two sub-trajectories. Net-CUTiS saves

computation time, since comparing the distance between two sub-trajectories means comparing

the network path(s) identification(s). We also compared the effectiveness of our approach by

using visual inspection for two real datasets.

104

6 CONCLUSION

6.1 Summary of thesis contributions

Moving objects describe the continuous evolution of spatial objects over time. One

feature of moving objects is that their locations and velocity change continuously with time, and

these are reported in the format of trajectory streams, making them more complicated than static

spatial objects (LIU; SCHNEIDER, 2011). Nowadays, many services track and report moving

object trajectories (e.g., of persons, vehicles, or animals) continuously (e.g., every second or

every minute). By analyzing these data in a real time fashion, we bring a real added-value in the

comprehension of city dynamics, and the detection of regularities as well as anomalies, which is

essential for decision-making. Among these patterns, we mainly considered in this thesis the

(sub)-trajectory clustering and its evolution. Another problem addressed in this thesis was how to

efficiently maintain these patterns as the moving object trajectories evolve in time. Furthermore,

we studied our problem in both: Euclidean space and on the Road Network.

First, we proposed a model to describe the cluster evolution pattern and an algorithm

to detect these patterns. We also proposed an algorithm to discover frequent evolution patterns.

CUTiS is the major contribution of this thesis and an improvement of the first proposal discussed

in Chapter 3, since, in the first approach, we needed to cluster the data from scratch. CUTiS

addresses the problem of discovering and maintaining sub-trajectory clusters and its evolution at

each time window, since, as each moving object updates its sub-trajectory from time to time, new

moving objects appear and others disappear from the system. As each moving object evolves

in time, also the cluster evolves. We do not aim at computing the clusters from scratch since it

is computationally expensive. There is a need to online track trajectory clusters over a sliding

window. CUTiS incrementally maintains each group of objects which moves together (called

micro-groups) and captures its evolution patterns from time to time. By merging micro-groups,

CUTiS discovers density based sub-trajectory clusters. Our experiments were conducted on real

data sets from Taxis in Beijing and Taxis in Fortaleza city, and they show the efficiency and

effectiveness of CUTiS compared to our competitors.

In order to improve the efficiency of our proposal, we included a sub-trajectory index

in CUTiS. In this way, we proposed CUTiS*. The proposed index improves the performance

without losing quality in the cluster results, as we show in our experiments conducted on a real

dataset of Taxis of Beijing. Another contribution of this thesis is a proposed demo tool which

105

implements CUTiS* for online mobility pattern discovery in sub-trajectory data streams. The

demo is implemented for patterns such as micro-groups, density-based sub-trajectory clusters,

and trajectory flocks. The other mobility patterns such as convoys and swarms, among others,

will be implemented in the future.

We also proposed Net-CUTiS, the extension of our framework CUTiS for road

network movement constraint. Net-CUTiS tracks moving objects and finds the sub-trajectory

clusters without having to do cluster from scratch. However, it considers the trajectories’

movement constrained to the road network. In this way, we proposed a new trajectory distance

function which is based on first describing the trajectories into a set of network paths (POPA et

al., 2015) and then comparing them to see if two trajectories cross the same network paths with

similarity in time as well.

Another contribution investigated in this thesis was a proposed a version of the

DBSCAN algorithm in a distributed way by using the MapReduce paradigm. This is a first

step of the purposes of distributing CUTiS* and Net-CUTiS in order to achieve a more efficient

trajectory clustering algorithm.

Below, we list all the publications derived from the work which was done during this

thesis.

Conferences

1. Ticiana Linhares Coelho da Silva, Antônio Cavalcante de Araújo Neto, Régis Pires

Magalhães, Victor A. E. de Farias, José Antônio Fernandes de Macêdo, Javam de Castro

Machado. Efficient and Distributed DBSCAN Algorithm Using MapReduce to Detect

Density Areas on Traffic Data. In: 16th International Conference on Enterprise Information

Systems, 2014, Lisbon. p. 52.

2. Ticiana Linhares Coelho da Silva, Karine B. Zeitouni, José Antônio Fernandes de Macêdo.

Online Clustering Trajectory Data Stream. In: International Conference on Mobile Data

Management, 2016.

3. Ticiana Linhares Coelho da Silva, Karine B. Zeitouni, José Antônio Fernandes de Macêdo,

Marco Antônio Casanova. On-Line Mobility Pattern Discovering using Trajectory Data.

In: 19th International Conference on Extending Database Technology, 2016.

4. Ticiana Linhares Coelho da Silva, Karine B. Zeitouni, José Antônio Fernandes de Macêdo,

Marco Antônio Casanova. CUTiS*: optimized online ClUstering of Trajectory data

Stream. In: International Database Engineering & Applications Symposium, 2016.

106

Demo

1. Ticiana Linhares Coelho da Silva, Karine B. Zeitouni, José Antônio Fernandes de Macêdo,

Marco Antônio Casanova. A Framework for Online Mobility Pattern Discovery from

Trajectory Data Streams. In: International Conference on Mobile Data Management, 2016.

Workshops

1. Antônio Cavalcante de Araújo Neto, Ticiana Linhares Coelho da Silva, Victor A. E. de

Farias, José Antônio Fernandes de Macêdo, Javam de Castro Machado. G2P: A Partitioning

Approach for Processing DBSCAN with MapReduce. In: Web and Wireless Geographical

Information Systems. Springer International Publishing, 2015. p. 191-202.

2. Ticiana Linhares Coelho da Silva, José Antônio Fernandes de Macêdo, Marco Antônio

Casanova. Discovering frequent mobility patterns on moving object data. In: the Third

ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems -

MobiGIS ’14. New York: ACM Press, 2014. p. 60.

Book chapters

1. Ticiana Linhares Coelho da Silva, Antônio Cavalcante de Araújo Neto, Régis Pires

Magalhães, Victor A. E. de Farias, José Antônio Fernandes de Macêdo, Javam de Castro

Machado. Towards an Efficient and Distributed DBSCAN Algorithm Using MapReduce.

In: Enterprise Information Systems (pp. 75-90). Springer International Publishing, 2015.

2. Ticiana Linhares Coelho da Silva, Flávio R. C. Sousa, Antônio Cavalcante de Araújo Neto,

José Antônio Fernandes de Macêdo, Javam de Castro Machado. Análise em Big Data e um

Estudo de Caso utilizando Ambientes de Computação em Nuvem. In: Simpósio Brasileiro

de Banco de Dados. (Org.). 1ed.Porto Alegre: SBC, 2013, v.1, p. 1-30.

6.2 Open Directions

As open directions, we will continue to investigate research problems related to this

thesis. We present a few of them below:

1. Since we used the algorithm of (POPA et al., 2015) to discover network paths (Definition

5.1.1) and compress our trajectories with them, we aim at proposing in the future an

incremental algorithm to discover online the network paths. The algorithm proposed by

(POPA et al., 2015) is for historical datasets and does not observe how these network

paths might change as time goes by. This perspective work is an open issue related to the

Challenge 4 of this thesis;

107

2. By proposing an incremental algorithm to maintain the network paths on the road network,

we aim at proposing an online compression technique for trajectory data streams. This

perspective work is an open issue related to the Challenge 4 of this thesis;

3. We aim at studying how we can model and discover other mobility patterns such as convoys

and swarms, gathering by maintaining micro-groups as we did for trajectory flocks and

density-based trajectory clusters. This perspective work is an open issue related to the

Challenge 1 of this thesis;

4. In order to facilitate the micro-group maintenance, we aim at investigating machine

learning algorithms to predict the next positions of a moving object since all the tracked

objects change their position as time goes by. Furthermore, we aim to predict moving

objects’ evolution as well as cluster evolution. This perspective work is an open issue

related to the Challenge 2 of this thesis;

5. We aim to experiment with different distance functions for trajectories by comparing their

efficiency and effectiveness in trajectory clustering algorithms. This perspective work is

an open issue related to the Challenges 1, 2, 3 and 4 of this thesis;

6. We still aim to improve the efficiency of CUTiS* in order to better support potential appli-

cations in the real world-business scenarios and captured patterns and their evolutions in

time for objects that move in Euclidean space. We aim at supporting potential applications

which need to track moving objects, such as a company which needs to track how its

taxi fleet is moving around the city. This perspective work is an open issue related to the

Challenge 2 of this thesis;

7. We aim to provide integration of Net-CUTiS to the Graphast framework. Graphast is a

framework tool that allows developers to compose a number of network models, data im-

porting/exporting services, as well as query services, in order to quickly build applications

on time-dependent networks. The main goal is to allow developers to implement solutions

to different types of problems on time-dependent networks using spatial queries, such

as nearest neighbor queries and optimal sequenced routes (MAGALHÃES et al., 2015).

Graphast does not present any mobility pattern discovery implementations for trajectory

data. This perspective work is an open issue related to the Challenge 4 of this thesis;

8. We aim to distribute and paralellize CUTiS* and Net-CUTiS in order to propose a solution

for large scale mobility data stream.

9. We aim to enhance the CUTiS algorithm to deliver good results without requiring parame-

108

ters’ configuration from the users.

109

REFERÊNCIAS

AGGARWAL, C. C.; HAN, J.; WANG, J.; YU, P. S. A framework for clustering evolving data
streams. In: VLDB ENDOWMENT. Proceedings of the 29th international conference on
Very large data bases-Volume 29. [S.l.], 2003. p. 81–92.

AGRAWAL, R.; SRIKANT, R. et al. Fast algorithms for mining association rules. In: Proc.
20th int. conf. very large data bases, VLDB. [S.l.: s.n.], 1994. v. 1215, p. 487–499.

ANKERST, M.; BREUNIG, M. M.; KRIEGEL, H.-P.; SANDER, J. Optics: ordering points to
identify the clustering structure. In: ACM. ACM Sigmod Record. [S.l.], 1999. v. 28, n. 2, p.
49–60.

CAO, F.; ESTER, M.; QIAN, W.; ZHOU, A. Density-based clustering over an evolving data
stream with noise. In: SDM. [S.l.: s.n.], 2006. v. 6, p. 328–339.

CHEN, J.; LEUNG, M. K.; GAO, Y. Noisy logo recognition using line segment hausdorff
distance. Pattern recognition, Elsevier, v. 36, n. 4, p. 943–955, 2003.

CHEN, L.; ÖZSU, M. T.; ORIA, V. Robust and fast similarity search for moving object
trajectories. In: ACM. Proceedings of the 2005 ACM SIGMOD international conference on
Management of data. [S.l.], 2005. p. 491–502.

CHEN, Y.; TU, L. Density-based clustering for real-time stream data. In: ACM. Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and data
mining. [S.l.], 2007. p. 133–142.

DAI, B.-R.; LIN, I.-C. Efficient map/reduce-based dbscan algorithm with optimized data
partition. In: Cloud Computing, 2012 IEEE 5th International Conference on. [S.l.: s.n.],
2012. p. 59–66.

DENG, K.; XIE, K.; ZHENG, K.; ZHOU, X. Trajectory indexing and retrieval. In: Computing
with spatial trajectories. [S.l.]: Springer, 2011. p. 35–60.

DOUGLAS, D. H.; PEUCKER, T. K. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. Cartographica: The International
Journal for Geographic Information and Geovisualization, University of Toronto Press,
v. 10, n. 2, p. 112–122, 1973.

ESTER, M.; KRIEGEL, H.-P.; S, J.; XU, X. A density-based algorithm for discovering clusters
in large spatial databases with noise. In: KDD. [S.l.: s.n.], 1996. v. 96, p. 226–231.

ESTER, M.; KRIEGEL, H.-P.; SANDER, J.; WIMMER, M.; XU, X. Incremental clustering for
mining in a data warehousing environment. In: VLDB. [S.l.: s.n.], 1998. v. 98, p. 323–333.

FRENTZOS, E.; GRATSIAS, K.; PELEKIS, N.; THEODORIDIS, Y. Algorithms for nearest
neighbor search on moving object trajectories. Geoinformatica, Springer, v. 11, p. 159–193,
2007.

FRENTZOS, E.; GRATSIAS, K.; THEODORIDIS, Y. Index-based most similar trajectory
search. In: IEEE. 2007 IEEE 23rd International Conference on Data Engineering. [S.l.],
2007. p. 816–825.

110

GIANNOTTI, F.; NANNI, M.; PINELLI, F.; PEDRESCHI, D. Trajectory pattern mining. In:
ACM. Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining. [S.l.], 2007. p. 330–339.

GRÜNWALD, P. D.; MYUNG, I. J.; PITT, M. A. Advances in minimum description length:
Theory and applications. [S.l.]: MIT press, 2005.

GUDMUNDSSON, J.; KREVELD, M. van. Computing longest duration flocks in trajectory data.
In: ACM. Proceedings of the 14th annual ACM international symposium on Advances in
geographic information systems. [S.l.], 2006. p. 35–42.

GUDMUNDSSON, J.; KREVELD, M. van; SPECKMANN, B. Efficient detection of motion
patterns in spatio-temporal data sets. In: ACM. Proceedings of the 12th annual ACM
international workshop on Geographic information systems. [S.l.], 2004. p. 250–257.

GUHA, S.; MISHRA, N.; MOTWANI, R.; O’CALLAGHAN, L. Clustering data streams. In:
IEEE. Foundations of computer science, 2000. proceedings. 41st annual symposium on.
[S.l.], 2000. p. 359–366.

GUHA, S.; RASTOGI, R.; SHIM, K. Cure: an efficient clustering algorithm for large databases.
In: ACM. ACM SIGMOD Record. [S.l.], 1998. v. 27, n. 2, p. 73–84.

HAN, B.; LIU, L.; OMIECINSKI, E. Neat: Road network aware trajectory clustering. In:
ICDCS. [S.l.: s.n.], 2012. p. 142–151.

HE, Y.; TAN, H.; LUO, W.; MAO, H.; MA, D.; FENG, S.; FAN, J. Mr-dbscan: An efficient
parallel density-based clustering algorithm using mapreduce. In: Parallel and Distributed
Systems, 2011 IEEE 17th International Conference on. [S.l.: s.n.], 2011. p. 473–480.

HUANG, Y.; CHEN, C.; DONG, P. Modeling herds and their evolvements from trajectory data.
In: Geographic Information Science. [S.l.]: Springer, 2008. p. 90–105.

HWANG, J.-R.; KANG, H.-Y.; LI, K.-J. Spatio-temporal similarity analysis between trajectories
on road networks. In: SPRINGER. International Conference on Conceptual Modeling. [S.l.],
2005. p. 280–289.

JAGADISH, H. V. Linear clustering of objects with multiple attributes. In: SIGMOD. [S.l.:
s.n.], 1990. p. 332–342.

JENSEN, C. S.; LIN, D.; OOI, B.-C. Continuous clustering of moving objects. IEEE TKDE,
v. 19, 2007.

JEUNG, H.; SHEN, H. T.; ZHOU, X. Convoy queries in spatio-temporal databases. In: IEEE.
2008 IEEE 24th International Conference on Data Engineering. [S.l.], 2008. p. 1457–1459.

JEUNG, H.; YIU, M. L.; ZHOU, X.; JENSEN, C. S.; SHEN, H. T. Discovery of convoys in
trajectory databases. Proceedings of the VLDB Endowment, VLDB Endowment, v. 1, n. 1, p.
1068–1080, 2008.

JEUNG, H.; YIU, M. L.; ZHOU, X.; JENSEN, C. S.; SHEN, H. T. Discovery of convoys in
trajectory databases. Proceedings of the VLDB Endowment, VLDB Endowment, v. 1, n. 1, p.
1068–1080, 2008.

111

JIANG, C.; COENEN, F.; ZITO, M. A survey of frequent subgraph mining algorithms. The
Knowledge Engineering Review, Cambridge Univ Press, v. 28, n. 01, p. 75–105, 2013.

KAMAR, E.; HORVITZ, E. Collaboration and shared plans in the open world: Studies of
ridesharing. In: IJCAI. [S.l.: s.n.], 2009. v. 9, p. 187.

KELLARIS, G.; PELEKIS, N.; THEODORIDIS, Y. Map-matched trajectory compression.
Journal of Systems and Software, Elsevier, v. 86, n. 6, p. 1566–1579, 2013.

KHARRAT, A.; POPA, I. S.; ZEITOUNI, K.; FAIZ, S. Clustering algorithm for network
constraint trajectories. In: Headway in Spatial Data Handling. [S.l.]: Springer, 2008. p.
631–647.

LEE, J.; HAN, J.; LI, X. A unifying framework of mining trajectory patterns of various temporal
tightness. In: . [S.l.: s.n.], 2015.

LEE, J.-G.; HAN, J.; WHANG, K.-Y. Trajectory clustering: a partition-and-group framework.
In: SIGMOD. [S.l.: s.n.], 2007. p. 593–604.

LEE, P.; LAKSHMANAN, L. V.; MILIOS, E. E. Incremental cluster evolution tracking
from highly dynamic network data. In: IEEE. Data Engineering (ICDE), 2014 IEEE 30th
International Conference on. [S.l.], 2014. p. 3–14.

LI, X.; CEIKUTE, V.; JENSEN, C. S.; TAN, K.-L. Effective online group discovery in trajectory
databases. TKDE, v. 25, p. 2752–2766, 2013.

LI, X.; HAN, J.; LEE, J.-G.; GONZALEZ, H. Traffic density-based discovery of hot routes in
road networks. In: SSTD. [S.l.: s.n.], 2007. p. 441–459.

LI, Y.; HAN, J.; YANG, J. Clustering moving objects. In: SIGKDD. [S.l.: s.n.], 2004. p.
617–622.

LI, Z.; DING, B.; HAN, J.; KAYS, R. Swarm: Mining relaxed temporal moving object clusters.
Proceedings of the VLDB Endowment, VLDB Endowment, v. 3, n. 1-2, p. 723–734, 2010.

LI, Z.; LEE, J.-G.; LI, X.; HAN, J. Incremental clustering for trajectories. In: DASFAA. [S.l.:
s.n.], 2010. p. 32–46.

LIU, H.; SCHNEIDER, M. Querying moving objects with uncertainty in spatio-temporal
databases. In: SPRINGER. Database Systems for Advanced Applications. [S.l.], 2011. p.
357–371.

MACQUEEN, J. B. Some methods for classification and analysis of multivariate observations.
In: Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability.
[S.l.: s.n.], 1967. v. 1, p. 281–297.

MAGALHÃES, R. P.; COUTINHO, G.; MACÊDO, J.; FERREIRA, C.; CRUZ, L.;
NASCIMENTO, M. Graphast: an extensible framework for building applications on
time-dependent networks. In: ACM. Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems. [S.l.], 2015. p. 93.

MAO, J.; SONG, Q.; JIN, C.; ZHANG, Z.; ZHOU, A. Tscluwin: trajectory stream clustering
over sliding window. In: DASFAA. [S.l.: s.n.], 2016. p. 133–148.

112

MERATNIA, N.; ROLF, A. Spatiotemporal compression techniques for moving point objects.
In: SPRINGER. International Conference on Extending Database Technology. [S.l.], 2004.
p. 765–782.

NANNI, M.; PEDRESCHI, D. Time-focused clustering of trajectories of moving objects. JIIS,
v. 27, p. 267–289, 2006.

NASCIMENTO, M. A.; SILVA, J. R.; THEODORIDIS, Y. Evaluation of access structures for
discretely moving points. In: SPRINGER. Spatio-Temporal Database Management. [S.l.],
1999. p. 171–189.

PANAGIOTAKIS, C.; PELEKIS, N.; KOPANAKIS, I.; RAMASSO, E.; THEODORIDIS, Y.
Segmentation and sampling of moving object trajectories based on representativeness. TKDE, p.
1328–1343, 2012.

PELEKIS, N.; KOPANAKIS, I.; KOTSIFAKOS, E. E.; FRENTZOS, E.; THEODORIDIS, Y.
Clustering uncertain trajectories. KAIS, v. 28, p. 117–147, 2011.

PELEKIS, N.; SIDERIDIS, S.; TAMPAKIS, P.; THEODORIDIS, Y. Simulating our lifesteps by
example. ACM Transactions on Spatial Algorithms and Systems (TSAS), ACM, v. 2, n. 3,
p. 11, 2016.

PELEKIS, N.; SIDERIDIS, S.; THEODORIDIS, Y. Hermessem: A semantic-aware framework
for the management and analysis of our lifesteps. In: IEEE. Data Science and Advanced
Analytics (DSAA), 2015. 36678 2015. IEEE International Conference on. [S.l.], 2015. p.
1–10.

PELEKIS, N.; THEODORIDIS, Y.; JANSSENS, D. On the management and analysis of our
lifesteps. ACM SIGKDD Explorations Newsletter, ACM, v. 15, n. 1, p. 23–32, 2014.

PFOSER, D.; JENSEN, C. S.; THEODORIDIS, Y. et al. Novel approaches to the indexing of
moving object trajectories. In: Proceedings of VLDB. [S.l.: s.n.], 2000. p. 395–406.

POPA, I. S.; ZEITOUNI, K.; ORIA, V.; BARTH, D.; VIAL, S. Parinet: A tunable access method
for in-network trajectories. In: IEEE. 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010). [S.l.], 2010. p. 177–188.

POPA, I. S.; ZEITOUNI, K.; ORIA, V.; BARTH, D.; VIAL, S. Indexing in-network trajectory
flows. The VLDB Journal—The International Journal on Very Large Data Bases,
Springer-Verlag New York, Inc., v. 20, n. 5, p. 643–669, 2011.

POPA, I. S.; ZEITOUNI, K.; ORIA, V.; KHARRAT, A. Spatio-temporal compression of
trajectories in road networks. GeoInformatica, Springer, v. 19, n. 1, p. 117–145, 2015.

POTAMIAS, M.; PATROUMPAS, K.; SELLIS, T. Sampling trajectory streams with
spatiotemporal criteria. In: IEEE. 18th International Conference on Scientific and Statistical
Database Management (SSDBM’06). [S.l.], 2006. p. 275–284.

ROH, G.-P.; HWANG, S.-w. Nncluster: An efficient clustering algorithm for road network
trajectories. In: SPRINGER. International Conference on Database Systems for Advanced
Applications. [S.l.], 2010. p. 47–61.

113

SILVA, J. A.; FARIA, E. R.; BARROS, R. C.; HRUSCHKA, E. R.; CARVALHO, A. C. de;
GAMA, J. Data stream clustering: A survey. ACM Computing Surveys (CSUR), ACM, v. 46,
n. 1, p. 13, 2013.

SILVA, T. Coelho da; ARAUJO, A. C. N.; MAGALHAES, R. P.; FARIAS, V. A. E. d.;
MACEDO, J. A. de; MACHADO, J. C. Efficient and distributed dbscan algorithm using
mapreduce to detect density areas on traffic data. In: . [S.l.]: ICEIS, 2014.

SILVA, T. Coelho da; MACÊDO, J. A. de; CASANOVA, M. A. Discovering frequent mobility
patterns on moving object data. In: ACM. Proceedings of the Third ACM SIGSPATIAL
International Workshop on Mobile Geographic Information Systems. [S.l.], 2014. p.
60–67.

SILVA, T. Coelho da; ZEITOUNI, K.; MACÊDO, J. A. F. de; CASANOVA, M. A. On-line
mobility pattern discovering using trajectory data. In: EDBT. [S.l.: s.n.], 2016. p. 682–683.

SILVA, T. Coelho da; ZEITOUNI, K.; MACÊDO, J. de. Online clustering of trajectory data
streams. In: MDM. [S.l.: s.n.], 2016.

SILVA, T. Coelho da; ZEITOUNI, K.; MACÊDO, J. de; CASANOVA, M. A. Cutis*: optimized
online clustering of trajectory data stream. In: IDEAS. [S.l.: s.n.], 2016.

SILVA, T. Coelho da; ZEITOUNI, K.; MACÊDO, J. de; CASANOVA, M. A. A framework for
online mobility pattern discovery from trajectory data stream. In: MDM. [S.l.: s.n.], 2016.

SPILIOPOULOU, M.; NTOUTSI, I.; THEODORIDIS, Y.; SCHULT, R. Monic: Modeling
and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. [S.l.: s.n.], 2006. p. 706–711.

TANG, L.-A.; ZHENG, Y.; YUAN, J.; HAN, J.; LEUNG, A.; HUNG, C.-C.; PENG, W.-C. On
discovery of traveling companions from streaming trajectories. In: ICDE. [S.l.: s.n.], 2012. p.
186–197.

TANG, L.-A.; ZHENG, Y.; YUAN, J.; HAN, J.; LEUNG, A.; PENG, W.-C.; PORTA, T. L. A
framework of traveling companion discovery on trajectory data streams. ACM Transactions on
Intelligent Systems and Technology (TIST), ACM, v. 5, n. 1, p. 3, 2013.

THAT, T.; HAI, D. et al. Gestion efficace et partage sécurisé des traces de mobilité. Tese
(Doutorado) — Paris Saclay, 2016.

THEODORIDIS, Y.; VAZIRGIANNIS, M.; SELLIS, T. Spatio-temporal indexing for large
multimedia applications. In: IEEE. Multimedia Computing and Systems, 1996., Proceedings
of the Third IEEE International Conference on. [S.l.], 1996. p. 441–448.

TIAKAS, E.; PAPADOPOULOS, A.; NANOPOULOS, A.; MANOLOPOULOS, Y.;
STOJANOVIC, D.; DJORDJEVIC-KAJAN, S. Searching for similar trajectories in spatial
networks. Journal of Systems and Software, Elsevier, v. 82, n. 5, p. 772–788, 2009.

TIAKAS, E.; PAPADOPOULOS, A. N.; NANOPOULOS, A.; MANOLOPOULOS, Y.;
STOJANOVIC, D.; DJORDJEVIC-KAJAN, S. Trajectory similarity search in spatial networks.
In: IEEE. 2006 10th International Database Engineering and Applications Symposium
(IDEAS’06). [S.l.], 2006. p. 185–192.

114

TZOURAMANIS, T.; VASSILAKOPOULOS, M.; MANOLOPOULOS, Y. Overlapping
linear quadtrees: a spatio-temporal access method. In: ACM. Proceedings of the 6th ACM
international symposium on Advances in geographic information systems. [S.l.], 1998.
p. 1–7.

VIEIRA, M. R.; BAKALOV, P.; TSOTRAS, V. J. On-line discovery of flock patterns in
spatio-temporal data. In: ACM. Proceedings of the 17th ACM SIGSPATIAL international
conference on advances in geographic information systems. [S.l.], 2009. p. 286–295.

VLACHOS, M.; KOLLIOS, G.; GUNOPULOS, D. Discovering similar multidimensional
trajectories. In: ICDE. [S.l.: s.n.], 2002. p. 673–684.

XU, K. S.; KLIGER, M.; III, A. O. H. Adaptive evolutionary clustering. Data Mining and
Knowledge Discovery, Springer, v. 28, n. 2, p. 304–336, 2014.

YIU, M. L.; MAMOULIS, N. Clustering objects on a spatial network. In: Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data. [S.l.: s.n.], 2004.
p. 443–454.

YU, Y.; WANG, Q.; WANG, X.; WANG, H.; HE, J. Online clustering for trajectory data stream
of moving objects. ComSIS, p. 1293–1317, 2013.

YUAN, J.; ZHENG, Y.; XIE, X.; SUN, G. Driving with knowledge from the physical world.
In: ACM. Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. [S.l.], 2011. p. 316–324.

YUAN, J.; ZHENG, Y.; ZHANG, C.; XIE, W.; XIE, X.; SUN, G.; HUANG, Y. T-drive:
driving directions based on taxi trajectories. In: ACM. Proceedings of the 18th SIGSPATIAL
International conference on advances in geographic information systems. [S.l.], 2010. p.
99–108.

ZHANG, T.; RAMAKRISHNAN, R.; LIVNY, M. Birch: an efficient data clustering method for
very large databases. In: ACM. ACM SIGMOD Record. [S.l.], 1996. v. 25, n. 2, p. 103–114.

ZHENG, K.; ZHENG, Y.; YUAN, N. J.; SHANG, S. On discovery of gathering patterns from
trajectories. In: ICDE. [S.l.: s.n.], 2013. p. 242–253.

ZHENG, Y. Trajectory data mining: an overview. TIST, p. 29, 2015.

ı

	Folha de rosto
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introduction
	Motivation
	Research Problems
	Thesis Contribution
	Thesis Organization

	State of the Art
	Trajectory Data Management
	Trajectory Index
	Distance and Similarities between Trajectories
	Trajectory Compression

	Trajectory Pattern Mining
	Moving Together Patterns
	Cluster Evolution Pattern
	Trajectory Clustering
	Clustering of Trajectory Data in Euclidean Space
	Clustering of Trajectory Data on Road Network

	Frequent Evolution Pattern Discovery
	Definitions
	Proposed Solution
	Definitions of Actions and Conditions
	Naive Approach

	Experimental Evaluation
	Discussion

	CUTiS: Clustering on Trajectory Data Stream
	Problem Statement
	CUTiS: Clustering on Trajectory Data Stream
	Distance Function
	Choosing a representative trajectory
	Micro-groups definition, discovery and maintenance

	Density-based Sub-trajectory Clustering
	Example of CUTiS approach
	CUTiS*: Indexing Trajectory Data
	Overview
	Grid construction and spatial indexing
	Selection of representative candidates
	Range query computation

	Experiments
	Evaluation Metrics
	CUTiS Evaluation
	Experiments Results for Taxi Fleet Dataset from Fortaleza
	Experiments Results for Taxi Data Set from Beijing

	CUTiS* Evaluation

	Discussion

	Net-CUTiS: Clustering on Trajectory Data Stream on Road Network
	Distance Function on Road Network
	Incremental Clustering Algorithm

	Net-CUTiS Example
	Experiments
	Discussion

	Conclusion
	Summary of thesis contributions
	Open Directions

	REFERÊNCIAS

