
a

FEDERAL UNIVERSITY OF CEARÁ
DEPARTMENT OF COMPUTATION

MDCC - MASTER AND DOCTORATE IN COMPUTER SCIENCE
CRAb - COMPUTER GRAPHICS, VIRTUAL REALITY AND ANIMATION

ARTUR PEREIRA SAMPAIO

TEMPORALLY COHERENT SCULPTURE OF COMPOSITE OBJECTS

FORTALEZA

2017

ARTUR PEREIRA SAMPAIO

TEMPORALLY COHERENT SCULPTURE OF COMPOSITE OBJECTS

Thesis presented to the graduate program in
Computer Science of the Federal University
of Ceará as part of the prerequisites for ob-
taining the title of Doctor in Computer Sci-
ence.

Advisors: Prof. Dr. Raphaëlle Chaine
Prof. Dr. Creto Augusto Vidal
Coadvisor: Prof. Dr. Joaquim Bento
Cavalcante Neto

FORTALEZA

2017

Dados Internacionais de Catalogação na Publicação
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

S181t Sampaio, Artur Pereira.
 Temporally Coherent Sculpture of Composite Objects / Artur Pereira Sampaio. – 2017.
 67 f. : il. color.

 Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2017.
 Orientação: Prof. Dr. Creto Augusto Vidal.
 Coorientação: Prof. Dr. Joaquim Bento Cavalcante Neto.

 1. Sculpting. 2. Interactive Techniques. 3. Agglomerates. I. Título.
 CDD 005

ARTUR PEREIRA SAMPAIO

TEMPORALLY COHERENT SCULPTURE OF COMPOSITE OBJECTS

Thesis presented to the graduate program in
Computer Science of the Federal University of
Ceará as part of the prerequisites for obtain-
ing the title of Doctor in Computer Science.

Approved in: 29 / 08 / 2017.

THESIS JURY

Prof. Dr. Creto Augusto Vidal (Orientador)
Universidade Federal do Ceará (UFC)

Profa. Dra. Raphaëlle Chaine (Orientadora)
Université Lyon 1

Prof. Dr. Joaquim Bento Cavalcante Neto (Coorientador)
Universidade Federal do Ceará (UFC)

Profa. Dra. Emanuele Marques dos Santos
Universidade Federal do Ceará (UFC)

Prof. Dr. Esdras Soares de Medeiros Filho
Universidade Federal do Ceará (UFC)

Prof. Dr. Anselmo Cardoso de Paiva
Universidade Federal do Maranhão (UFMA)

1

To my wife, for the support.

To my brothers, for the inspiration.

To my friends, for the reprieve.

To my parents, for everything.

ACKNOWLEDGEMENTS

To CAPES, FUNCAP and PALSE, for financing this endeavor.

To prof. Raphaëlle, for the leap of faith taken when she took me in, and for

all the insight and hard work she put on our research.

To profs. Creto and Bento, for everything they taught me inside and outside of

class, and for balancing my countless shortcomings with their experience and knowledge.

To the jury professors Emanuele, Esdras and Anselmo, for taking time out of

their busy schedules to watch my presentation and for the invaluable contributions and

suggestions.

To my Ph.D. colleagues Lenz, Lilian, Laise and Arnaldo, for walking this

difficult path beside me.

1

“Every flight begins with a fall.”

(George R.R. Martin, A Game of Thrones)

ABSTRACT

We address the problem of sculpting and deforming shapes composed of small, randomly

placed objects. Objets may be tightly packed - such as pebbles, pills, seeds and grains,

or may be sparsely distributed with an overarching shape - such as flocks of birds or

schools of fishes. Virtual sculpture has rapidly become a standard in the entertainment

industry, as evidenced by the extensive use of software such as ZBrush Pixologic (2017b).

Composites, though, are still usually created in a static way by individually placing each

object or by sculpting a support surface and procedurally populating the final shape, which

raises problems for the generalization of evolving shapes with visual continuity of the

components. Large amounts of geometrical data are generated that must be maintained

and processed, both by the CPU and by the GPU. Whenever the shape is stretched,

pressed or deformed, one has to define how these compositing objects should turn, displace

or disappear inside the volume, as well as how new instances should become visible to

the outside. It is difficult to rely on a physical system to perform that task in real time.

The system we suggest can be constructed upon any uniform mesh-based representation

that can be deformed and whose connectivity can be updated by operations such as edge

splits, collapses, and flips. We introduce the notion of CompEls as composing elements

used to populate the mesh, with aperiodic distribution. These can be automatically

updated under deformation. The idea is to sculpt the shape as if it were filled with little

objects, without handling the complexity of manipulating volumetric objects. For this

purpose, we suggest exploiting the properties of the uniform sampling of the surface with

distances between vertices greatly exceeding the CompEls distances. Both the surface and

the CompEls are immersed into deformation fields, such that the update of the uniform

sampling can be used to track the movement of the CompEls, to identify those which

should disappear inside the shape, and empty areas where further CompEls should be

generated. This system uses GPU optimizations to efficiently perform the rendering of

individual components. To our knowledge, no previous sculpting system allows the user

to simultaneously see and sculpt agglomerates in such a fast and reliable fashion.

Keywords: Sculpting, Interactive techniques, Agglomerates.

LIST OF FIGURES

Figure 1 – An ant bridge reveals nature sculpting through dynamic agglomerates. . 14

Figure 2 – Gaudi’s Salamander in Barcelona, Spain shows how agglomerates are

used in the depiction of real objects. 15

Figure 3 – Deus Ex Machina confronts Neo. The swarm of bugs forming the machine-

god’s face illustrates an industry inspiration for our work. 15

Figure 4 – 2D grid-based modeling example. 18

Figure 5 – Feature insertion in fixed topology systems. 20

Figure 6 – 2D FFD example. 21

Figure 7 – 2D DMFFD example. 21

Figure 8 – Three different scenarios with varying detail quantity and size. 25

Figure 9 – ”Benjaman Kyle”, by Miguel Endara. The artist used around 2.1 million

ink dots to convey shape, shading and depth. 26

Figure 10 –Wang Tile and Corner Tile atlases created from all possible tiles for 2

colors. 28

Figure 11 –Texture bombing used to create different shapes with the appearance of

agglomerates and corresponding composing elements. 29

Figure 12 –Sculpting flowchart. 32

Figure 13 –Modified sculpting flow of the Freestyle framework (Stanculescu, Chaine,

and Cani, 2011). 33

Figure 14 –Freestyle (Stanculescu, Chaine, and Cani, 2011) basic operations. 35

Figure 15 –CompEl definition and placement. 36

Figure 16 –Promotion and demotion of elements in a system of two layers. Left →
bottom → right: three elements, under deformation, move towards each

other. One of the set is moved to a new layer, away from the surface,

where it can be removed if necessary. Right→ top→ left: two elements,

under deformation, are set to be separated, creating a void zone. An

element is inserted in a new layer, if one does not already exist, and

moves to the surface to fill the gap. 37

Figure 17 –Initializing a system of CompEls. Left: input CompEls and accompany-

ing textures. right: initial sphere before and after CompEl insertion over

its surface. 38

Figure 18 –Splitting an edge at its center. Left: CompEls in f before split. Right:

Distribution of CompEls between f1 and f2 after V4 splits the edge V1V2

at its center. 40

9

Figure 19 –Modified edge split algorithm. Left: face before split of V1V2. Top-right:

näıve approach produces overcrowded and overly sparse regions. Bottom-

right: modified approach. 42

Figure 20 –CompEls redistribution on edge collapse. The original and modified con-

nectivities are shown overlaid in black and gray, respectively. CompEls

are colored according to their originating faces. Their original positions

are the ones in Figure 20a. 43

Figure 21 –Vertex naming convention example for the proposed heuristic. 43

Figure 22 –Example of closest points determination. The dotted line reveals the

shortest segment between edges V X and and V ′V1. CompEls in V1V X

are lifted to the subregion V1P
′
1X of triangle V1V

′X. CompEls in the

subregion P1V
′X of the triangle VWX are moved to the subregion P ′1V

′X

of triangle V1V
′X. 45

Figure 23 –Region lifting and CompEl inheritance for the triangle V1V X. a) Original

CompEl positions after collapse. b-c) Region correspondence calculation

between V1V X and V ′XV1. d) Lifted CompEls from triangle V1V X. e)

CompEl inheritance. CompEls in the highlighted region of VWX will be

moved to V ′XV1. f) Final CompEl distribution for triangle V ′XV1. . . . 46

Figure 24 –Quad region lifting and CompEl inheritance for the triangle V2V V1. . . . 47

Figure 25 –Region lifting under stop condition. It is treated as two quad region

liftings using Vi+0.5 as the divisor. The dashed lines in red show the stop

condition, where the calculated P ′i+1 would fall in point r, outside the edge

V ′Vi+1. The dotted CompEls in red show the CompEl placement if the

lifting took place using the quadrangle P ′iViVi+1P
′
i+1. Dotted CompEls in

cyan show their final position by using the virtual vertex Vi+0.5. 48

Figure 26 –Edge flip. Left: edge V1V2 shows P . Center: flipped edge revealing P ′.

Right: final result with CompEls recolored according to their new faces. . 49

Figure 27 –CompEl redistribution on ring join operations. 50

Figure 28 –Back CompEl culling. 51

Figure 29 –Particle Squish. 52

Figure 30 –Carnival mask sculpted using our framework. Left: input CompEls and

accompanying textures. Center: initial sphere mesh and intermediate

steps of the sculpting process, with and without CompEls on the outer

surface. Right: final rendering. Sculpt time: 4 minutes. 55

Figure 31 –“My World”. Example sculpture by a 6-year-old from candy meshes,

populated as to show the number of CompEls that can be drawn at

interactive rates. A zoomed view shows individual CompEls. The artist

is shown on the left, looking at his creation. Sculpt time: 5 minutes.

Total number of CompEls: 91.456. Face count per CompEl: 150. 56

10

Figure 32 –Performance of our CompEl rendering algorithm with respect to Fig-

ure 31. Tests executed in a 800x600 resolution. The large bumps in

CompEl rendering performance in the 15.000 to 35.000 range is due to

occlusion, that is, a few CompEls inserted that are randomly rendered

before the rest, causing the others to not generate any fragments. 57

Figure 33 –Back CompEl culling. 58

Figure 34 –Example sculpture created from a sphere. Left: pills used as CompEls

show their relative frequency and texture distribution. Right: the final

result. Sculpture time: 12 min. e = 797. For this example, a single layer

is used. 59

Figure 35 –Intersection prevention between solid elements using only optical defor-

mations. 61

Figure 36 –The same rock mesh can be used with different textures to generate

different CompEls. 61

Figure 37 –Adding variation by per-vertex noise and per-instance orientation to a

single rock mesh. 62

SUMMARY

1 INTRODUCTION . 13

1.1 Contextualization . 13

1.2 Objectives . 14

1.3 Proposal . 16

1.4 Organization . 16

2 RELATED WORK . 17

2.1 Sculpting . 17

2.1.1 Volume sculpting . 18

2.1.2 Surface sculpting . 19

2.2 Sculpting composites . 23

2.2.1 Agglomerate sketching . 24

2.2.2 Composite extraction . 25

2.2.2.1 Stippling . 26

2.2.2.2 Tiling . 27

2.2.2.3 Texture bombing . 28

2.3 Final considerations . 29

3 TEMPORALLY COHERENT SCULPTURE OF COMPOS-

ITE OBJECTS . 31

3.1 Maintaining a uniform set of anchors on the shape during

sculpting . 31

3.1.1 Model updates under freestyle sculpting. 33

3.2 Description of outer layers of a shape by a system of CompEls 34

3.3 Generation and update of CompEls under deformation 36

3.3.1 Temporal coherence and continuity under freestyle sculpting . 39

3.3.1.1 Edge split . 39

3.3.1.2 Edge collapse . 41

3.3.1.2.1 Collapse update . 43

3.3.1.3 Edge flip . 48

3.3.1.4 Change in topological genus . 49

3.3.1.5 Finishing touches . 49

3.4 Rendering . 50

3.4.1 “Back CompEl” Culling . 50

3.4.2 Visual intersection prevention . 51

3.4.3 Variability . 52

3.5 Final considerations . 52

4 RESULTS . 54

12

4.1 Completeness and distribution quality 54

4.2 Performance . 55

4.3 Temporal continuity . 57

4.4 Intersection prevention . 58

4.5 Variability . 59

4.6 Final considerations . 60

5 CONCLUSION . 63

5.1 Limitations . 63

5.2 Future work . 64

REFERENCES . 65

13

1 INTRODUCTION

Sculpting is the process of creating an object by modifying, carving or adding

material. In computer graphics, this means deforming a digital object using virtual tools.

Unlike sculpting real materials, computer graphics sculpting systems are limited in how

much geometry they are able to track and update in each step of the sculpting process.

For that reason, virtual sculpting requires the development of a host of different strategies

to optimize performance and to maintain the illusion of working with a real object. The

problem is even more complex when sculpting agglomerate objects, collections of otherwise

independent objects assembled in a larger scale form. In fact, the challenge is so great,

that little research has been done in the direction of sculpting such materials. Literature

on the subject is usually limited to extracting a composite from a support shape, which

can be produced with traditional sculpting techniques and applications.

In our research, we developed efficient ways of digitally sculpting and rendering

agglomerates. The remainder of this chapter outlines the context in which this research is

inserted (Section 1.1), the objectives we pursue (Section 1.2), how we propose to achieve

those objectives (Section 1.3) and how the rest of this work is organized (Section 1.4).

1.1 Contextualization

Agglomerate materials are common in nature: rock piles, armies of ants, castles

of sand, beautiful works of tiled art - basically any group of similar, randomly oriented

elements that, when viewed together, form a larger scale shape. Mankind quickly learned

how to create such materials to produce compelling art. Figures 1 and 2 illustrate such

composites in nature and in real-world sculptures.

With the development of computer graphics, humans discovered a new canvas

onto which they could create and display their art. Modeling virtual objects quickly

became essential to the entertainment industry.

Today, artists expect to use abilities developed from real-life sculpting in digital

environments. Many systems now allow users to sculpt objects as they would do with

virtual clay.

In that context, the industry naturally began to use agglomerates in digital

settings. Since they are free from real material constraints, which are usually static once

sculpted, such agglomerates can display dynamic shapes, as can be seen in Figure 3.

Unlike regular, non-composite sculpted objects, deforming an agglomerate

shape has an effect on the distribution of its composing elements. In the real world,

an artist would create an agglomerate by either:

• placing each composing element in its final position, one by one, or;

• designing an intermediate support shape and populating it afterwards.

14

Figure 1: An ant bridge reveals nature sculpting through dynamic agglomerates.

Source: (Land, 2016).

Though both approaches have traditionally been used in computer graphics

settings, the sheer object count and the possibility of employing automation to determine

the position of each individual element has usually favored the latter strategy. This means

that artists were prevented from experiencing the agglomerate material until completion

of the support shape. This limitation is even more serious when the object is meant for

animation.

Despite its importance and obvious limitations, though, little research has

been done in the direction of sculpting and animating such agglomerates in computer

environments.

Representing and updating those kinds of assemblies efficiently remains an

open problem. The large quantity of elements on a surface and the polygons required to

represent them can cripple even powerful GPUs.

1.2 Objectives

This work aims to develop a technique that allows for the efficient represen-

tation, sculpture and rendering of agglomerate objects. With the deformation of the

agglomerate, composing elements should change position and appear or disappear auto-

matically amidst the group of elements. Artists expect to be free to deform such shapes or

to create animations without worrying about placing each individual composing element.

The sculpting process should be experienced in real time and with temporal continuity,

15

Figure 2: Gaudi’s Salamander in Barcelona, Spain shows how agglomerates are used in
the depiction of real objects.

Source: (Boyton, 2017).

Figure 3: Deus Ex Machina confronts Neo. The swarm of bugs forming the machine-god’s
face illustrates an industry inspiration for our work.

Source: (Robertson, 2003).

avoiding sudden appearance and disappearance of composing elements between frames.

The specific objectives of this work are:

• To maintain a user-defined composing element density throughout the sculpted ob-

ject and sculpting session;

• To allow objects to move according to the deformation field, regardless of the con-

nectivity of the support shape;

• To allow close objects to move apart if a deformation field so requires;

• To have objects appear from and disappear to the interior of the support shape;

• To have objects move smoothly, to avoid popping effects;

• To prevent object intersection whenever possible;

• To allow object variability in color, shape, orientation and pose (for animated ob-

jects).

16

1.3 Proposal

At the core of our proposed method, we use a state of the art sculpting frame-

work (Stanculescu, Chaine, and Cani, 2011) to maintain a quasi-uniform triangular mesh

as a proxy for the underlying shape. Composing elements can then be sampled at the

desired rate from the surface’s faces. Under deformation, we track face area updates

to trigger insertion or removal of elements to maintain the required density. We move

composing elements about faces participating in each connectivity update, triggered by

the sculpting framework, in order to achieve minimal element displacement, insertion and

removal.

We apply instance-based deformations in the rendering pipeline to minimize

visual intersection between elements.

We use instance-based rendering to minimize bandwidth between the CPU and

the GPU. We add extra per-instance ids that can be sampled at the rendering pipeline

to perform texture, shape, orientation and animation variation.

1.4 Organization

The remainder of this thesis is organized as follows.

In Chapter 2, we present and discuss the most relevant work related to our

research. We proceed to review both the surface sculpting and agglomerate material

generation fields. We also discuss the applicability of state of the art techniques to our

problem, to better explain the importance of our research.

In Chapter 3 we detail our method, algorithms and techniques. We begin by

describing our composite shape representation system and how it relates to the underlying

sculpting framework. This explanation is followed by sections that explain in-depth how

such system is initialized and maintained throughout the sculpting section. Finally, we

present additional rendering optimization and variability strategies.

Chapter 4 reveals the results of our algorithms. We propose different evaluation

criteria for our intended applications, and evaluate how our technique performs in each

one.

Lastly, we present a summary of our work in Chapter 5. We also discuss its

limitations and possibilities for future research.

17

2 RELATED WORK

This chapter is divided into two parts. Section 2.1 reviews the most relevant

literature pertaining sculpting in general. Since our work is a sculpting application in

essence, the two major competing sculpting strategies are described and compared against

each other, in their usefulness for the purposes of our research. Section 2.2 then details

literature pertaining the sculpture and representation of composite objets specifically.

In it, we discuss the use, the applicability and the limitations of different methods of

producing agglomerates in a real-time sculpting application.

2.1 Sculpting

Virtual sculpting is a set of modeling techniques designed to replicate, in a

digital environment, the experience of a sculptor in their work with clay or other materials

in a realistic and intuitive way. Information and control over the exact position of each

item that constitutes the model is withheld from the user in favor of a simpler approach

to the modeling process. The technique seeks to reconcile ease of description of the object

intended by the user with flexibility, speed and good topological and geometrical quality.

By simulating the work of a sculptor, the technique allows the generation of

organic models, such as characters and environments for games and animations, with great

ease. Its level of abstraction and relative difficulty in describing perfectly flat surfaces

or edges with high curvature however, limit, but not impair, its use in engineering or

architecture.

Moreover, because it is easy to learn and use, the technique has been gaining

in popularity amongst artists and studios. This trend has been strengthened by the

the development of hardware capable of high model editing speeds, and of haptic input

devices.

In general, sculpting applications simulate forces acting on the surface of an

initial object, generated using blocking techniques, which deforms in response to the

stimulus. The sequence, position, duration and intensity of the force stimuli are controlled

by the user by means of a circular brush tool positioned in the 3D space. The tool is

a three-dimensional analog to the cursor widely used in 2D image editing software. It

establishes the center and the radius of the region to be sculpted, labeled Region of

Interest (RoI). Additional input, such as the tool’s normal, can also be easily conveyed.

The generation of algorithms and the choice of the best representation for

sculpting systems, therefore, are the biggest challenges in the development of sculpting

software. Volume representations, for instance, are able to perform boolean operations

easily, enabling the creation and removal of holes and new features in the solid trivially.

Their usual caveat is the presence of high memory footprints, no explicit connectivity

18

information, and aliasing effects and sampling issues in surface regions not aligned with the

coordinate axes. In their turn, boundary representations (B-reps) present faster processing

and rendering, more compact storage and explicit surface and connectivity information.

As a downside they tend to display a more rigid structure, with greater difficulty in

representing boolean operations and addition or removal of material. Both sculpting

strategies and pertaining research are discussed in depth in the following sections.

2.1.1 Volume sculpting

As discussed in (Aghdaii, Younesy, and Zhang, 2012), a number of sculpting

frameworks use volumetric models with adaptive topology. Those systems operate by

locally carving and merging materials under the action of the user. Also known as grid-

based methods, algorithms based on such strategies represent solids as uniform or adaptive

scalar fields. The object is represented as a discrete density function sampled in each node,

called a “voxel”, where a density value is stored. The object’s surface is implicitly defined

as an isosurface, and extracted using the marching-cubes algorithm (Lorensen and Cline,

1987).

(Galyean and Hughes, 1991) were the first to introduce a sculpting system

based on volumetric models. Such systems allow the addition and removal of material

interactively by changing the density values stored in the voxels. A 2D illustration of

their operation can be seen in Figure 4.

Figure 4: 2D grid-based modeling example. Red and black points indicate, respectively,
voxels with high and low material density. The boundary of the object is calculated by
interpolating these densities. Left: pre-deformation space. Right: geometry changes as a
result of the brush.

Source: the authors.

19

Such systems have been extended with the introduction of adaptive resolution

(Ferley, Cani, and Gascuel, 2001) and fixed volume editing (Dewaele and Cani, 2004).

In this kind of representation, it is quite straightforward to implement volume

operations, such as digging or adding clay to the solid. A tool moving through the 3D

space, capable of inducing local changes in the voxel values, controls the insertion of

details. Topological operators, such as opening and closing cuts and holes, can also be

implemented in a trivial manner and without the need for any special mechanism. The

technique further ensures the formation of closed, manifold, self-intersection free solids.

The success of commercial software that use volumetric representations (Pilgway, 2017)

attests to the efficiency of this type of representation.

As hinted in the previous section, though, the strategy is not without caveats.

Though they are straightforward to implement, volumetric sculpting systems need to

store large amounts of data, of the order of the cube of the available space for modeling.

The explicit surface also needs to be extracted for processing and rendering. Current

algorithms available for the task are liable to sampling, aliasing and continuity artifacts

as sections of the surface need to be constantly re-extracted. The continuity issues, most

of all, is of special concern to our research’s goal. While updates on an undifferentiated

surface material can be overlooked by the user, resampling entire regions of composing

elements can cause unbearable discontinuities.

2.1.2 Surface sculpting

Boundary representations and sculpting systems, in turn, appear as the most

widespread in computer graphics. This preference is mainly due to the increased rendering

and geometric processing speeds promoted by the existence of boundary and connectivity

information (Eyiyurekli and Breen, 2010).

While a number of works deal with the editing of point-based surfaces (Zwicker

et al., 2002), the majority focuses on sculpting triangular meshes to represent objects. This

is the case for the majority of commercial sculpting applications. This choice favors higher

performances by promoting a reduction of traffic between the application and the graphics

card (Hernandez, 2011), but usually comes at the cost of not supporting changes in mesh

topology. In early systems, changes in the model were limited to vertex displacements.

As these displacement algorithms always operated on the same set of vertices, successive

geometric operations tended to reduce vertex density. This could hinder the addition of

details and features to the model after a certain limit. Figure 5 illustrates the issue.

Seeking to minimize this limitation, most applications in the industry, such

as Blender (Blender Foundation, 2017) and ZBrush (Pixologic, 2017b), allow the user

to perform uniform subdivision on the model. This global boost in vertex density may

produce overly dense regions outside the RoI. It also increases the size of the final model

20

Figure 5: Feature insertion in fixed topology systems.

(a) Initial model.

(b) Model after inflate operation. Affected
region presents low vertex density, hinder-
ing further detail insertion.

Source: the authors.

while requiring the user to know, even if only a little, about the details of the underlying

representation.

A different approach to sculpting, in turn, was the development of Direct Ma-

nipulation Of Free-Form Deformation (DMFFD) by Hsu, Hughes, and Kaufman (1992).

The technique is an extension of FFD (Free-Form Deformation), described by Sederberg

and Parry (1986), that allows it to be considered a sculpting technique. It consists of

involving the model space in a three-dimensional parallelepipedic grid (hereafter called

FFD grid). By changing the position of the control points of the grid, the contained

object can be deformed.

The objects’ constituent elements, such as vertices, are parameterized with

respect to the FFD grid. The initial position of each element is set as a weighted average

of the positions of the control points. The editing of an object is thus made indirectly

through manipulation of the FFD grid. The parameterization only needs to be done once,

when creating the grid. Figure 6 illustrates a 2D example of the technique.

The extension, DMFFD, consists in allowing the user to edit the object directly.

To Gain and Dodgson (2001), to deform an object with the manipulation of FFD grid

points can be complicated and not very intuitive. Points of the grid can even be hidden

inside the model, making them difficult to access, especially in 3D applications.

The technique consists of mapping, to the FFD grid, changes requested by the

user. The user indicates changes by moving mesh points directly to a target position.

Editing this way generates displacement vectors called restrictions. The idea is to iden-

tify changes in the FFD grid that would allow the selected point to move according to

the restriction. By displacing the grid, the region around the point used to define the

restriction can be moved by reapplying the original parametrization.

21

Figure 6: 2D FFD example.

(a) 2D FFD grid. Control points evenly
distributed.

(b) Grid after deformation by the user.
The contained object is distorted to con-
form to the original parametrization.

Source: Gain and Dodgson (2001).

The technique employed to determine these changes in the FFD grid is the

least squares. It aims at moving each control point as little as possible. The evaluation of

a displacement is made by weighing the proximity of a point to the one used in determining

the restriction. Figure 7 illustrates a DMFFD example in 2D.

Figure 7: 2D DMFFD example.
(a) A single point of an object
is selected and a restriction (red
arrow) is defined, indicating the
expected displacement.

(b) Control points displaced in
order to conform to the restric-
tion.

(c) Modified FFD grid is ap-
plied to the original object.

Source: Gain and Dodgson (2001).

Although the system uses adaptive resolution in the object’s representation,

the quality of features inserted by DMFFD are closely linked to the density of the FFD

grid points. When that density becomes sufficiently small, the representation of new

features can become problematic.

Sculpting systems based on triangular meshes such as those proposed by (Gain

22

and Marais, 2005) and (Stanculescu, Chaine, and Cani, 2011), in turn, used adaptive

subdivision and decimation for the addition and removal of features in an intuitive and

efficient manner. Those systems are also able to maintain topological and geometrical

quality despite the deformation requested.

Such systems also have the merit of incorporating to B-reps capabilities almost

exclusively related to volumetric modelers. Examples of such features are fixed-volume

editing and self-intersection prevention, possible in both works, and topological modifiers

(Stanculescu, Chaine, and Cani, 2011), such as creating and closing holes in the mesh.

The work of Gain and Marais (2005) uses spatial warping techniques to deter-

mine displacement vectors at the vertices, along with the adaptive refinement algorithm

proposed by Gain and Dodgson (2001). The refinement algorithm takes into account edge

lengths and angle between the normals at its incident vertices, performing local subdi-

vision and collapses after certain thresholds. Despite its advantages, sculpting with this

method still depends on the use of haptic interfaces in order to become intuitive. To the

authors, without the diffusion of this type of interface, manipulating tools in 3D space

with just a mouse or touch screen can be somewhat tedious and laborious.

Since then, several applications managed to deform and refine a mesh in real

time, by embedding it into a deformation field (Stanculescu et al., 2013). Deformation

fields are vector fields or more general position functions that return displacement vectors

used to produce local perturbations on surfaces (Gain and Marais, 2005). It assigns a

displacement to each point of the evolving surface. Those fields may be defined in the

ambient space, while still holding properties such as volume preservation (Angelidis et al.,

2006), (von Funck, Theisel, and Seidel, 2006) or detail preservation (Sumner, Schmid, and

Pauly, 2007) of the shape being deformed. They can also depend on differential properties

of the surface or even on features to be preserved (Stanculescu, Chaine, and Cani, 2011).

Laplacian editing (Sorkine et al., 2004) can be used to extend the deformation field be-

tween a fixed part of the shape being deformed and a handle. An extension of Laplacian

editing can be used to preserve details when stretching adaptive meshes (Dekkers and

Kobbelt, 2014). Although such systems can convey a wider range of operations, the per-

formance cost related to updating and solving sparse linear systems usually restricts their

use, in the context of solid sculpting, to mesh posing and detail-preserving deformations.

(de Goes and James, 2017) exploit closed-form analytical expressions to produce a wide

family of deformation tools with physical realism and real-time feedback.

Hernandez (2011) extended Blender (Blender Foundation, 2017) by incorpo-

rating adaptive resolution in its sculpting pipeline. The paper attempts to establish a

theoretical basis for adaptive resolution systems. It also attempts to describe the in-

ner workings of commercial systems that already offer adaptive subdivision tools to the

market, but without technical documents that reveal their internal mechanics, such as

Sculptris (Pixologic, 2017a).

23

The resulting system allows the user to add mesh features in any level of

detail (LoD), keeping an adequate density throughout the model. The author defines

the operators of subdivision, collapse and relaxation, to be used along with traditional

sculpting operators, namely domain selection and sculpting (vertex displacement).

The system described in (Stanculescu, Chaine, and Cani, 2011) seeks to main-

tain an uniform triangle density by changing their connectivity (addition/removal of tri-

angles and edge rotation operations). The work is based on the maintenance of a good

quality, quasi-uniform mesh, in which the edges’ lengths of all triangles are within a pre-

determined range. The lengths of the edges within the RoI are monitored at each brush

stroke. Edges whose lengths exceeds the threshold value are subdivided (edge split), while

edges smaller than the minimum are collapsed (edge collapse).

Limiting the minimum size of edges not only cleans excessively dense regions,

but also gives support to genus changes. The mesh, after being made compliant with the

maximum and minimum sizes, has the movement of its vertices limited to a fraction of

the minimum edge size. The approximation of two vertices can thus be detected before an

intersection occurs. In cases where the distance between two non-adjacent vertices is less

than a limit value, the neighborhoods of the two vertices are merged by connecting their

1-rings. The strategy allows authors to replace expensive polygon intersection tests by

simpler sphere collision ones. Though fast intersection detection and prevention between

multiple rigid objects has been vastly studied, the proposed solutions so far tend to be

too slow for real-time (Tang, Manocha, and Tong, 2010).

For the purposes of this research, it is interesting to maintain a quasi-uniform

distribution of vertices and good quality triangles on the mesh. A local sampling per-

formed on a good quality triangle grid will present distribution patterns similar to a

jittered grid sampling. It is also important to track and correctly manage connection

updates, in order to ensure that existing composing elements are not suddenly inserted

or removed. The framework described by (Stanculescu, Chaine, and Cani, 2011), thus,

strikes as an ideal support onto which our research can be built.

2.2 Sculpting composites

A composite is an assemble of parts that form a larger-scale figure or shape.

An ideal composite sculpting framework, though, does more than just create a proxy

through concatenation. Besides closeness to the intended shape, a user creating such

composites can also be concerned with several other aspects of the agglomerate object

and of the sculpting experience, such as: the number of frames per second (fps); temporal

continuity; the position, quantity, density and distribution of each composing element;

their individual aspect, uniqueness, how they interact with and if they intersect each

other; and how those elements are preserved or how smoothly they evolve through the

24

sculpting session. The temporal continuity that we aim to obtain is similar to the one

defined by Medeiros et al. (2014). Objects should be inserted, displaced and removed

without popping effects or loss of visual continuity between frames.

As stated in (Ma et al., 2013), the biggest challenge in creating an agglom-

erate is controlling the position of individual objects. Similarly to what happens in real

composite sculpture, users had to place each composing element in its final position. This

could be done either by simply adding elements floating in an empty 2D or 3D space or by

first creating an intermediate representation and to use automated methods to populate

it with smaller elements afterwards. The remainder of this section classifies the related

work into techniques that automatize either approach.

Research concerning the automatic positioning of surface elements or details

under surface deformation or sketching will be called agglomerate sketching. Section 2.2.1

provides further discussion on the subject.

On the other hand, approaches that generate an agglomerate from an inter-

mediate shape will hereafter be dubbed composite extraction algorithms. An in-depth

literature review of such methods is presented in Section 2.2.2.

2.2.1 Agglomerate sketching

What we call agglomerate sketching or agglomerate surface editing frameworks

are those that employ common sculpting techniques to insert and manage details on a

changing shape. Users usually expect to have new composing elements added along a

brush curve or to have previously defined patterns automatically managed through surface

deformation.

Abdrashitov et al. (2014) employ a sketch-based interface to interactively cre-

ate 2D mosaics. The user is able to add new details to an object along curves and contours.

The framework is also capable of automatically converting images to mosaics in a way

that more closely resembles a Texture bombing technique (Section 2.2.2.3).

More recently, research has been done on detail-preserving deformation (Rohmer,

Hahmann, and Cani, 2015). The possible edits are those that do not drastically affect

the overall aspect of a shape, like the stretching of one part. The method is capable of

maintaining temporally coherent details on a meshed surface stretch with local updates

performed on the geometry and on the connectivity. For instance, the number of details

increases on an enlarging area. Details are represented as high frequency changes applied

on top of the objects’ surfaces. Furthermore, new details are added at the location of

preexisting ones and moved, scaled and rotated to their final position. Figure 8 illustrates

the technique. Though capable of decoupling mesh and detail resolutions, their method

is not intended for agglomerate material representation, for large-scale deformations or

for real-time applications.

25

Figure 8: Three different scenarios with varying detail quantity and size.

Source: (Rohmer, Hahmann, and Cani, 2015).

2.2.2 Composite extraction

As a whole, composite extraction algorithms and frameworks are capable of

producing very high quality element distributions and images. Extensive research has

been done on how to generate and render such composites.

Users can usually expect their composite material to present desirable element

distributions, such as regular, blue noised or even sample-based ones (Emilien et al.,

2015). This a posteriori element sampling can either be limited to the object’s surface or

encompass the entire volume (Peytavie et al., 2009). Usually, the representation of the

support shape does not need to be exact or to have high quality. It can result from the

rough meshing of an implicit surface or from any other meshing design. Constraints to

the quality of the facets are desirable but, ultimately, not required, since the composite

material’s extraction usually involves a parameterization of the shape.

As a downside, the optimization techniques involved in those methods are

generally not intended for real-time applications or for dynamic surfaces. The corollary

is that the user cannot see the desired agglomerate pattern before the end of the design

process of the intermediate shape. This can be a problem for the design of object clouds,

where it becomes very difficult to have an idea of the final shape’s outer silhouette without

the presence of the actual objects. The problem is even more severe in the representation of

animations, where temporal continuity or coherence is also of concern. Merely resampling

elements on updated regions of an animated surface can cause significant visual artifacts,

due to sudden changes associated with rapid object insertion and removal, as described by

Schwarz and Stamminger (2009). A common approach to minimize the cost of positioning

such elements over the surface is to delay their involvement until the rendering pipeline. At

rendering stage, element positioning can be determined with the aid of adaptive sampling

functions and projections, capable of reacting to changes in shape density. However, they

still rely on previous parameterization and, thus, are not directly usable for our purposes.

In this section, we classify the different types of composite extraction algo-

rithms based on how each composing element is represented or rendered: stippling, tiling,

and texture bombing.

26

2.2.2.1 Stippling

An intuitive way to use individual elements to represent a composite shape is

to use dots (called stipples). That process of rendering images is called stippling. For the

purpose of our research, a stipple can later be transformed into the anchor of an orientable

texture unit. But dots can be used not only to represent images and contours, but also to

darken or highlight sections of an image. The invention of this type of art is attributed

to Giulio Campagnola around 1510 (Simpson and Wood, 1987). A hand-made example

of the technique can be seen in Figure 9.

Figure 9: ”Benjaman Kyle”, by Miguel Endara. The artist used around 2.1 million ink
dots to convey shape, shading and depth.

Source: (Endara, 2017).

When producing stippling procedurally, one usually aims at obtaining blue

noise samplings (Vanderhaeghe et al., 2007). Hierarchical tiles with different levels of

resolution (Ostromoukhov, Donohue, and Jodoin, 2004), (Wachtel et al., 2014) can be

used to generate adaptive samplings in images with fast timings (except for preprocessing

costs).

With respect to meshes, Pastor, Freudenberg, and Strothotte (2003) use a dy-

namic stippling generation system that operates directly on adaptive subdivision meshes.

Their hierarchical framework and mesh surface can be edited for nearly isometric deforma-

tions. The direct use of their framework is limited for the scope of this research, however,

since they rely on fixed topology, shape and overall connectivity. An additional limitation

is the tight coupling between vertices and stipples. Medeiros et al. (2014) alleviate the

27

shape restriction and the tight coupling by precomputing a hierarchical Poisson disk sam-

pling on the surface. It can be later evaluated and rendered according to an importance

function. Their system, however, uses fixed connectivity meshes.

2.2.2.2 Tiling

Textures are also a fast and reliable way of adding information to meshed

surfaces without requiring any additional geometry description. For that reason, they are

natural candidates for representing composites. Tiled composite textures can be mapped

to large surfaces by reusing texture cells. The use of textures in such a way is called tiling.

From the point of view of our research, a composite could be created by ape-

riodic tile packing and good surface parameterization, such as the one by (Ying, Li, and

He, 2014). This makes it unecessary to generate individual compositing elements on the

surface. The resulting textured surface can also be made non-periodic while retaining

most of the attributes of the tile packing. Most of the related research outlined in this

section follows this strategy (Wei, 2004), (Li et al., 2010), (Vanhoey et al., 2013).

The tile packing is usually created from methods such as Wang Tiles (Grünbaum

and Shephard, 1986) and Corner tiles (Lagae and Dutré, 2006), which have an expensive

preprocessing step: the construction of a good distribution, such as Poisson Disk Distri-

bution, of the initial tile packing, and surface parameterization.

The first step, as described by Lagae et al. (2008), involves producing a finite

set of tiles used to pave the surface being textured. Each tile is square-shaped, has fixed

orientation, and displays tags or colors in its edges (Wang Tiles) or corners (Corner Tiles).

The different possible color combinations will produce the different stencil combinations

that will be stamped on the surface. Edges or corners with the same color are painted in

a way that there is no discontinuity. This strategy will produce the atlas illustrated in

Figure 10.

In both strategies, the atlas is reorganized over a large square texture in such

a way that adjoining tiles touch at an edge or a corner of the same color. Tiles along

the edge of the texture must also match colors with their respective mirror tiles in each

direction to prevent discontinuities.

After surface parameterization, the resulting tiled texture can be mapped on

the fly by Direct Stochastic algorithms implemented by hashing functions, as discussed

in (Lagae et al., 2008). In order to generate the most photorealistic agglomerate mate-

rials, recent research has expanded the idea to 3D texture mapping. This allows for the

representation of complex details on parameterized shapes (Koniaris et al., 2014), (Meng

et al., 2015).

The main restriction to this kind of strategy to our intended application on

dynamic meshes is that re-parameterization after deformation may be time consuming

28

Figure 10: Wang Tile and Corner Tile atlases created from all possible tiles for 2 colors.
(a) Wang Tiles. (b) Corner Tiles.

Source: the authors.

or may be temporally non-preserving. Surface tracking methods can ensure consistent

parameterization (Bojsen-Hansen, Li, and Wojtan, 2012) and insertion of details (Mercier

et al., 2015) through animations, even on large-scale surface deformations, but, so far, have

not been able to do it in real-time.

2.2.2.3 Texture bombing

Texture bombing is a more direct approach to using textures for agglomerate

extraction. It involves sampling texture or mesh elements directly on the target surface

(Dischler et al., 2002). Unlike regular textures, no combined or tiled texture atlases are

ever produced through the rendering process. Instead, elements are placed on the surface

directly through parameterization, and rendered individually. The combined rendering of

each element produces the composite image. This allows for greater user control since,

unlike tiled textures, adding new elements to the shape has no impact on other surface

regions. The technique can also result in reduced memory usage, as each different type

of composing element need only be stored once.

Sampling variation and rendering efficiency can be improved by adding noise

and by precomputing levels-of-detail (Wang et al., 2013). Figure 11 shows agglomerates

produced by their technique.

A common limitation is the requirement of static connectivity and geometry.

Changing the underlying mesh connectivity would require recalculating all texture and

element particle maps. de Groot et al. (2014) reduce this limitation somewhat by per-

forming only local parameterization. This allows for small deformations on the surface

with consistent texturing and real-time rendering. 2D texture decals can then be placed

on the surface at user-specified positions. It is not, however, targeted at accumulating or

29

Figure 11: Texture bombing used to create different shapes with the appearance of ag-
glomerates and corresponding composing elements.

Source: (Wang et al., 2013).

large scale deformations. Nonetheless, for the purposes of our research, texture bombing

remains the closest technique to what we try to accomplish. In that regard, our algorithms

can be thought of as texture bombing on dynamic meshes.

2.3 Final considerations

In this chapter, we overviewed the different approaches to both general sculpt-

ing and composite material generation. The unique characteristics as well as similarities

of the different strategies in each domain were analyzed and explained.

In the domain of sculpting, we opted for the use of a surface method over a

volume one, due to the better tracking of individual samples the former provides. We

found the work of Stanculescu, Chaine, and Cani (2011) to be optimal as the basis for our

technique, as it provides good triangle quality and sampling distribution whilst actively

tracking connectivity updates.

Regarding composites, the strategies we described can be visually compared

in Table 1.

We found that the bulk of the literature to which these techniques pertain re-

volves around their a posteriori extraction. To the best of our knowledge, no agglomerate

sculpting framework exists previous to the one we describe in this work. We also found

that neither of the existing composite extraction techniques is capable of simultaneously

providing:

• high quality element distribution;

• real-time rendering and;

• dynamic shapes with visual continuity between frames.

This absence reinforces our belief that our approximative solution can be of

use to the industry and academia. In the next chapter, we present the proposed technique

30

Table 1: Comparison of the different agglomerate object sculpting techniques.

High Quality Real Time
Dynamic Shape With

Visual Continuity

One by one placement Any / Ideal No Yes

Physical Systems Blue noise No Yes

Populate Support Shape
(Meng et al., 2015),
(Peytavie et al., 2009)

Blue noise No No

Stippling (Dots)
(Medeiros et al., 2014)

Blue noise Yes No

Texture (Wei, 2004) Blue noise Yes No

Texture Bombing
(Wang et al., 2013)

Blue noise Yes No

Source: the authors.

in detail.

31

3 TEMPORALLY COHERENT SCULPTURE OF COMPOSITE OBJECTS

In this thesis, we address the problem of sculpting shapes composed of small

3D elements. For now, we exclude the use of shapes considered “too elongated”, such

as hair fibers, since they can be seen as lower dimensional objects. Furthermore, we are

interested in shapes whose component elements can be distant or loosely glued to each

other. Under the action of a deformation field, two touching elements should be able to

separate, if so required.

In Section 3.1, we describe the inner workings of the underlying sculpting

system we use. This system favor a uniform sampling of the evolving shape, which we

use to describe the relative positions of 3D elements to one another.

In Section 3.2, we suggest how composite shapes can be empirically described

by a system of elements referred to as CompEls. We do not implement interaction forces

for this, but only identify local area variations on the shape’s envelope.

Section 3.3 describes how to initialize the CompEl coverage of the shape and

how to update it under the action of a deformation field. Such fields control the positions

of the surface’s vertices and of the CompEls, even when they do not correspond to iso-

metric deformations. Intuitively, CompEls undergo the same deformation of the faces of

the support mesh, whose vertices present uniform sampling, except when a triangle dis-

appears or is split. We suggest fast redistribution schemes aiming at little to no CompEls

displacement in Section 3.3.1. While splitting a triangle is quite natural, the transfer of

CompEls from a destroyed triangle imposes a stretch in sub-regions of neighboring trian-

gles. This is necessary to allow space for the inherited elements. The proposed heuristics

only uses simple barycentric coordinates tests and computation of pairs of closest points

between two edges.

Finally, in Section 3.4 we discuss how to use the graphic card to perform Com-

pEl variation, visual intersection prevention and to speed up the display of the CompEl-

made shapes.

3.1 Maintaining a uniform set of anchors on the shape during

sculpting

A sculpting system is an application responsible for enabling, tracking and

conveying deformations requested by the user. The sculpting process can be seen as a

sequence of edits performed on a surface by brushes, as can be seen in Figure 12.

Since we are interested in empirically simplifying the deformation of a com-

pound shape, it may be worthwhile to get rid of internal components, and to focus on

visible elements only. These are the elements of the outer layers of the evolving shape. We

also need descriptors in order to locally identify the effects of deformation on the surface

32

Figure 12: Sculpting flowchart.

current
model

initialize
model

model needs
editing?

finish

update tool
variables and

viewport

user brushes
over the
surface

evaluate
region of
interest

update model
according
to brush

User actions
no

yes

Source: the authors.

of the shape. Indeed, we aim to know at all times where the surface is contracting and

where it is stretching. This will be useful to avoid computing exact collisions between

components. To this end, we propose to maintain a uniform sampling of a rough envelope

of the shape with a set of anchors. Wherever the shape is deformed isometrically, the

sampling should remain stable. In contrast, the emergence of new samples is an indicator

of the areas of expansion, where new components should become visible. Finally, the

disappearance of samples will identify areas where the shape contracts locally.

It is important, therefore, to locate the components that we track with respect

to the uniform sampling. We do not aim to couple each component with a sample, since

we do not want the elements to be distributed regularly over the surface. Furthermore, we

want the number of samples to be significantly smaller than the number of components.

We suggest connecting the samples into a triangulated mesh to anchor the components

therein. For that aim, we focused on the quasi-uniform meshes proposed by Stanculescu,

Chaine, and Cani (2011) to maintain a nearly uniform sampling of a shape that is sculpted

under the action of deformation fields.

Within the general sculpting flow (Figure 12), that algorithm expands the

“update model” task into two consecutive subroutines, namely “vertex displacement”

and “connectivity updates”. Those subroutines can be iterated over several times before

returning to the “current model” node, under conditions explained in Section 3.1.1.

Vertex displacements are, in our case, simple local evaluations of a displace-

ment field centered at the user’s tool. The “connectivity updates” subroutine is better

explained in Section 3.1.1. This subroutine is also added to the end of the “initializa-

33

tion” step, and ensures that the current model is always quasi-uniform compliant at the

beginning of a sculpting cycle. Figure 13 shows how this model deviates from the general

flow.

Figure 13: Modified sculpting flow of the Freestyle framework (Stanculescu, Chaine, and
Cani, 2011).

current
model

initialize
model

model needs
editing?

finish

update tool
variables and

viewport

need more
displace-

ment?

connectivity
updates

vertex
displacement

evaluate
region of
interest

user brushes
over the
surface

update model according to brush

no

yes

yes

no

Source: the authors.

3.1.1 Model updates under freestyle sculpting.

Quasi-uniform meshes are characterized by a level of detail d, the maximum

distance between two adjacent samples. Unlike similar systems (Lachaud and Montanvert,

1999) previously proposed in image processing, quasi-uniform meshes do not guarantee

a minimum length for the edges but still promote the elimination of edges that are too

short. To that effect, the user also establishes a minimum edge length dmin. The relation

between the two variables is

dmin ≤ d/2. (1)

Whenever the surface is deformed, edges that have become too long are broken

through a sequence of flips or splits, which means that samples moving apart are no longer

34

connected, and that new samples are inserted in between whenever a split is performed.

The sequence that subdivides long edges is followed by a sequence that merges short edge

extremities. When this step is over, all the edges that once again grew larger than d

are flipped or split. This algorithm optimizes the uniformity of the edges, and does not

require any additional step to achieve it. It also does not require a relaxation loop. The

resulting mesh is only consistent with the constraint regarding the level of detail d. The

uniformity obtained in practice turns out to be sufficient for our purpose.

Finally, the “connectivity update” subroutine is also characterized by a min-

imum thickness t, below which the shape breaks locally. In order to ensure an accurate

tracking of the deformation (at the precision d) and of the changes in topological genus,

deformations have to be subdivided into smaller steps of maximum length dmove. The

relation between those variables and d is

4d2move ≤ t2 − d2/3. (2)

Algorithm 1 shows the final pseudocode for the “update model” routine, while

Figure 14 illustrates the four basic connectivity operations invoked by the subroutine. For

an in-depth explanation, the reader is referred to Stanculescu, Chaine, and Cani (2011).

Algorithm 1 The update model routine

1: procedure UpdateModel(dField, mesh, d, dmin, t, dmove)
2: if dmove = 0 then return

3: n← ddField.max/dmovee
4: dField.max← dField.max/n
5: for i← 1, n do
6: mesh.vertices ← Displace(dField, mesh.vertices)
7: mesh ← SplitEdgesGreaterThanD(d, mesh.edges)
8: mesh ← CollapseEdgesSmallerThanDmin(dmin, mesh.edges)
9: mesh ← FlipOrSplitEdgesGreaterThanD(d, mesh.edges)

10: mesh ← JoinRingOfVerticesCloserThanT(t, mesh.vertices)

3.2 Description of outer layers of a shape by a system of CompEls

We suggest to use quasi-uniform meshes as an anchor for the component el-

ements of the shape. Given a quasi-uniform mesh of the input shape, we propose to

populate it with a set of elements that we shall refer to individually as CompEl (Com-

posing Element) hereafter.

Formally, a CompEl is a 3D object anchored in a triangle. They are the indi-

vidual elements rendered when representing an agglomerate object. They are positioned

within a triangle according to each of their barycentric coordinates with respect to that

triangle’s vertices. They are also characterized by a depth level, with respect to the en-

35

Figure 14: Freestyle (Stanculescu, Chaine, and Cani, 2011) basic operations.
(a) Edge split. As the blue edge becomes larger
than d, it is split into two equal segments.

(b) Edge collapse. This operation is performed
if the size of the blue edge is smaller than dmin.

(c) Edge flip. The blue edge larger than d
is flipped. This may be interesting when the
flipped edge’s size is smaller than d and when
a split would create edges smaller than dmin.

(d) Ring join. When two non-adjacent vertices
get within t of each other, the surface changes
topology by removing both vertices and stitch-
ing their 1-rings together.

Source: the authors.

velope of the object, and by an orientation (rotation) relative to that of their support

triangle. Figure 15 visually reveals how a CompEl is created. A thorough explanation of

its defining arguments can be found in Section 3.3.

Whenever a composite shape is deformed, its elements are displaced under

the action of the deformation. If the displacement is not constant throughout the shape,

it is possible to have elements come in contact with or be separated from one another.

The nature of the interactions between components that collide can be very complex to

model, leading to numerical systems that are difficult to solve in real time. Although

not physically accurate, we decided to make a compromise by basing our approach on

empirical descriptions instead. We stress that our goal is to offer the user a magnified

experience of sculpture, still in real time, and we do not necessarily adhere faithfully to the

physics of the real world. The observations we have decided to focus on are the following:

• Elements that move toward and touch each other are clamped in their movements,

they cannot get closer. This implies a change in their position at this time step, com-

pared to the expected position that would have been reached in absence of collision

(position induced by the local deformation of the shape exclusively). Among the el-

ements visible from the outside, some only undergo tangential additional movement

36

Figure 15: CompEl definition and placement.
(a) A CompEl produced from
a rock mesh and three different
textures.

(b) A quasi-uniform Stanford
Bunny before CompEl inser-
tion.

(c) The Stanford Bunny ren-
dered as an agglomerate object.

(d) A CompEl position within
a triangle defined by randomly
picking a position within a tri-
angle.

(e) Its orientation and size are
also specified.

(f) Final CompEl placement
relative to the triangles’s ver-
tices.

(g) The actual number of Com-
pEls inserted on a triangle,
based on a user-defined density
e and the triangle area A.

e*

(h) A side view of the triangle
in Figure 15g reveals how Com-
pEls are distributed over differ-
ent layers.

Source: the authors.

on the surface, while others are pushed inside the shape and disappear behind other

elements.

• Conversely, when the deformation field separates elements that were previously in

contact, new elements in the gap left between them, emerging from the interior of

the shape.

These simple rules result in the expected behavior shown in Figure 16.

3.3 Generation and update of CompEls under deformation

The initial distribution of CompEls is obtained using an accelerated dart

throwing technique on an input quasi-uniform mesh (which can be obtained from a regular

37

Figure 16: Promotion and demotion of elements in a system of two layers. Left→ bottom
→ right: three elements, under deformation, move towards each other. One of the set is
moved to a new layer, away from the surface, where it can be removed if necessary. Right
→ top → left: two elements, under deformation, are set to be separated, creating a void
zone. An element is inserted in a new layer, if one does not already exist, and moves to
the surface to fill the gap.

Surface
(Layer 0)

Layer 1

Source: the authors.

manifold mesh by means of the UpdateModel procedure described in Algorithm 1). The

different CompEl types used can be added to the application as a series of models. Each

model contains not only geometry and connectivity, but also color, texture and animation

information, when applicable.

In addition to the variables d, dmin, dmove and t, required by the Freestyle

framework and described in Section 3.1.1, the user should also provide the target density

ei per CompEl type i, which corresponds to the number of CompEls of that type visible

or partially visible per unit area, and the number of layers n over which the CompEls are

distributed.

CompEls are then inserted in the faces by randomly picking their barycentric

coordinates, their orientation and their depth level. This depth level is just an artificial

information to be used by the graphics card during the rendering step, as described in

section 3.4.

The method is fully parallelizable, as it only requires information from the

given face. Figure 17 illustrates this initialization.

Considering that the faces may not exactly have the same shape or size, each

38

Figure 17: Initializing a system of CompEls. Left: input CompEls and accompanying
textures. right: initial sphere before and after CompEl insertion over its surface.

Source: the authors.

face receives a number of CompEls proportional to its area. In a face f of area a(f), with

CompEl density ei for CompEls of type i, the number ci(f) of CompEls inserted can be

defined as

ci(f) = a(f) ∗ ei. (3)

If one wishes to sculpt a shape with the appearance of being full of CompEls

of a given type i, it is important to choose ei sufficiently large so that:

ei∗(area of the smallest square obtainable from all projections of a CompEl of type i) ≥ 1.

(4)

However, since this calculation is local, it is still possible to have empty regions

if individual faces have areas too small. To mitigate the problem, we propose adding

to c(f)i a random number on the interval [-1, 1] with uniform distribution. The final

definition for the number ci(f) of CompEls then becomes:

ci(f) = a(f) ∗ ei + random[−1, 1]. (5)

This näıve initialization is simple and powerful enough to create a good jittered

grid-like distribution, provided that the faces are approximately regular, with a controlled

area, which is favored by the underlying sculpting framework.

39

3.3.1 Temporal coherence and continuity under freestyle sculpting

Whenever the shape is changing under the action of a deformation field, the

vertices of the quasi-uniform mesh move accordingly and the triangles are deformed. As

described in Section 3.1.1, outgrown triangles are automatically divided into smaller ones,

while triangles too small are collapsed. It is important to set rules for internal evolution

and transfer of CompEls between those triangles.

Wherever the shape undergoes a rigid transformation locally, faces keep their

initial dimensions. In those situations, no CompEl migration is performed between faces

and CompEls do not change position relative to their current support faces. Anywhere

else, we suggest the evolution of CompEls to be directly coupled with the elementary

operations performed on the triangles: flip, split and collapse of edges and the merge of

the 1-ring of two vertices.

The following rules should be interpreted as CompEls migration rules, from

the triangles being destroyed towards the triangles being created and towards neighboring

triangles whose dimensions are impacted by the operation. Those rules remain local and

simple, while still ensuring temporal continuity of CompEls. Thus, the evolution of the

resulting CompEl distribution does not relate to some force equalizing algorithm, as it

is the case with a physical system. The update can be performed in real time, possibly

involving parallelism.

3.3.1.1 Edge split

Splitting an edge that has grown beyond d after applying a deformation results

into replacing its two incident triangles with four others. We first address the case where

the edge is cut in the middle. We suggest a very simple CompEls coordinate update within

these triangles that ensures that CompEls remain where they were positioned before the

division step. Figure 18 illustrates the technique on a face f affected by an edge split.

Split update: Suppose that B(C) = (α, β, γ) is the barycentric coordinates of

a CompEl C with respect to the vertices V1, V2 and V3 of a face f to be split on V1V2

with:

C = αV1 + βV2 + γV3 (6)

a straightforward implementation to the CompEls distribution between each of the two

resulting faces f1 and f2 is simply to transmit to f1 the CompEls whose barycentric

coordinate with respect to V1 is bigger than that to V2, and the remaining to f2. The

barycentric coordinates B’(C) of the CompEls attached to f1 (α > β) thus become:

B′(C) = (α− β, 2β, γ), (7)

with respect to V1, V4 and V3.

40

Figure 18: Splitting an edge at its center. Left: CompEls in f before split. Right:
Distribution of CompEls between f1 and f2 after V4 splits the edge V1V2 at its center.

V4

V2

V3

V1

V4

V2

V3

V1

f
f1

f2

Source: the authors.

This easily demonstrated to be true. As we know that f is split in half, with

the insertion of a vertex V4 in the edge V1V2, we can calculate the coordinates of V4 with

respect to V1 and V2 as

V1 + V2 = 2V4, (8)

we can then update the barycentric coordinates of the CompEl in order to maintain it

immovable as

C = αV1 + β(2V4 − V1) + γV3 = (α− β)V1 + 2βV4 + γV3. (9)

The barycentric coordinates of the CompEls attached to f1 (α > β) thus evolve into:

B′(C) = (α′, β′, γ′) = (α− β, 2β, γ) (10)

as stated above, with (α′, β′, γ′) expressed with respect to V1, V4 and V3, respectively.

In the case where a deformation is decomposed into steps that are sufficiently

small with respect to d and the minimum thickness t, the split of an edge using its middle

is sufficient to track the deformation with precision d (Stanculescu, Chaine, and Cani,

2011). However, if we want to improve the quality of the mesh produced by the edge

splits, we propose choosing another position for the added vertex that better corresponds

to the sampling strategy proposed by von Funck, Theisel, and Seidel (2006), revealed in

Algorithm 2.

In this case, whenever an edge is split, the new vertex is positioned at the

location corresponding to the deformation field applied at the middle of the edge in the

space before deformation (line 3). This position may not be equidistant from the two

extremities of the deformed edge. We adapt the update of the CompEls so as to take

41

Algorithm 2 The edge split algorithm.

1: procedure EdgeSplit(mesh, edge)
2: faces← edge.faces
3: V4 ← VonFunckTheiselSeidelSplit(edge)
4: for each f ∈ faces do
5: [V1, V2, V3]← f.vertices // V1 and V2 are vertices of edge.
6: f1 ← (V1, V4, V3)
7: f2 ← (V4, V2, V3)
8: mesh.faces← (mesh.faces ∪ {f1, f2})− {f}
9: r ← ||V1V4||/||V2V4||

10: for each compEl ∈ f.compEls do
11: [α, β, γ]← compEl.barycentric // C = αV1 + βV2 + γV3
12: if α ∗ r > β then // f1
13: compEl.barycentric← [α− (β/r), β + (β/r), γ]
14: f1.compEls← f1.compEls ∪ {compEl}
15: else // f2
16: compEl.barycentric← [α + (α ∗ r), β − (α ∗ r), γ]
17: f2.compEls← f2.compEls ∪ {compEl}

these relative distances into account, while still providing a fast scheme. We calculate the

ratio between the distances

r = ||V1V4||/||V2V4|| (11)

as the new threshold for CompEls placement in f1 or f2 (line 12). We, therefore, avoid

overly sparse regions in f1 and overly crowded regions in f2 by updating CompEl coordi-

nates according to lines 13 and 16. An illustration of the procedure is shown in Figure 19.

3.3.1.2 Edge collapse

The collapse of an edge affects all the triangles that are incident to either one

of its vertices: the two that are incident to the edge disappear and the remaining are

distorted.

In the case where the surface is nearly planar, the migration of CompEls

could be obtained by superposing the configurations of the triangles before and after

the edge collapse, with the initial CompEls being projected on the remaining triangles.

This strategy has already been proposed by Hale (1998) for traditional texture update on

edge collapse algorithms. It amounts to not moving CompEls during redistribution (see

Figure 20a).

The overlay of the original and modified projected connectivities results in a

set of convex polygonal cells, whose determination imposes the calculation of a number of

points that, in the worst case, is proportional to the square of the number of neighboring

edges (Cohen, Manocha, and Olano, 1997). Time requirement to correctly place CompEls

during the edge collapses at a given frame, therefore, sharply increases with the number

42

Figure 19: Modified edge split algorithm. Left: face before split of V1V2. Top-right:
näıve approach produces overcrowded and overly sparse regions. Bottom-right: modified
approach.

V2

V3

V1

f1

f2

V4

V2

V3

V1

f1

V4

f2

V4

V2

V3

V1

f

Source: the authors.

of adjoining triangles and of anchored CompEls. Furthermore, if the surface is not flat,

the extension of this approach to the general case requires the determination of a projec-

tion plane that is suitable for all the participant triangles, before and after deformation.

Especially, it is necessary to avoid the folding of the projected surface. The choice of such

a plane is not always obvious or legitimate.

In the following, we propose a simple heuristic that is an order of complexity

faster and that does not require explicit projection calculations. Among the faces that are

affected by the collapse of an edge VW , the two faces VWX and WV Y are destroyed.

The other affected faces are maintained, but their vertex incident to the collapsed edge

(V or W) is moved to the midpoint V ′ of VW . We suggest only redistributing CompEls

on destroyed faces to the remaining ones. In our heuristic, the surviving faces also keep

their own original CompEls, but those are redistributed over a sub-region (of triangular

or quadrangular shape), in order to make room for the CompEls of the triangles being

43

destroyed. Figure 20 reveals the aforementioned operations and visually compares both

approaches.

Figure 20: CompEls redistribution on edge collapse. The original and modified connec-
tivities are shown overlaid in black and gray, respectively. CompEls are colored according
to their originating faces. Their original positions are the ones in Figure 20a.

(a) The slow but ideal distribution. CompEls’
final positions shown match their initial.

Y

V WV'

X

(b) Compel distribution by using the proposed
heuristic. CompEls are shown in their final po-
sition. Colored areas identify the face that will
receive the CompEls in that region.

V'

Y

V W

X

Source: the authors.

3.3.1.2.1 Collapse update

Let V1, .., Vn denote the vertices incident to the new vertex V ′ that are located

counterclockwise between X and Y , and W1, ..,Wm the vertices that are located counter-

clockwise between Y and X. We execute our CompEl distribution by visiting the faces

around V ′ in a specified order according to Algorithm 3. Figure 21 illustrates this naming

convention.

Figure 21: Vertex naming convention example for the proposed heuristic.

V W

XV1

V2

V3

V4 = Vn Y

W
1
 =

 W
m

V'

Source: the authors.

44

Algorithm 3 The edge collapse algorithm.

1: procedure EdgeCollapse(mesh, V , W , f1, f2)
2: X ← f1.vertices− {V,W}
3: Y ← f2.vertices− {V,W}
4: V ′ ← MergeAtCenter(V,W) // 1-ring of V ′ is sorted, starting with X.
5: faces[]← V ′.star // faces is sorted according to 1-ring of V ′.
6: P0 ← X
7: P ′0 ← X
8: for i← 0, faces.count− 1 do
9: Vi ← V ′.1ring[i]

10: Vi+1 ← V ′.1ring[i+ 1]
11: Pi+1, P

′
i+1 ← ClosestCorrespondence(XV, V ′Vi+1)

12: if (Pi+1 ∈ XV)and(P ′i+1 ∈ V ′VI+1) then
13: LiftRegion(faces[i], Pi+1, P

′
i+1)

14: faces[i].compEls← faces[i].compEls ∪ Inherit(f1, Pi, P
′
i , Pi+1, P

′
i+1)

15: else // Stop condition. Begin next loop.
16: Pi+0.5 ← V
17: P ′i+0.5 ← Project(V, V ′V IV I + 1)
18: Vi+0.5 ← Intersection(ViVi+1, V

′P ′i+0.5)
19: LiftRegion(faces[i], Pi+0.5, P

′
i+0.5)

20: faces[i].compEls← faces[i].compEls ∪ Inherit(f1, Pi, P
′
i , Pi+0.5, P

′
i+0.5)

21: V ← Vi+0.5

22: Pi ← Pi+0.5

23: P ′i ← P ′i+0.5

24: f1↔ f2 // Swap f1 and f2. Inherit from the other collapsing face.
25: X ↔ Y // Swap X and Y . Calculate Pi+1, P

′
i+1 using the other apex.

26: i← i− 1 // Do not increment i

27: if Vi+1 = X then // Reached apex. Begin next loop.
28: V ↔ W // Swap collapsing vertex used to Calculate Pi+1, P

′
i+1.

29: V ← V ′

30: W ← V ′

31: mesh.faces← mesh.faces− {f1, f2}

45

In order to determine the CompEls that migrate from VWX to V ′XV1, our

approach computes the pair of closest points P1 and P ′1 that are located on the straight

lines (V X) and (V ′V1) respectively (line 11 of Algorithm 3, as illustrated in Figure 22).

Figure 22: Example of closest points determination. The dotted line reveals the shortest
segment between edges V X and and V ′V1. CompEls in V1V X are lifted to the subregion
V1P

′
1X of triangle V1V

′X. CompEls in the subregion P1V
′X of the triangle VWX are

moved to the subregion P ′1V
′X of triangle V1V

′X.

X

V1

V'

V

W

P1

P'1

Source: the authors.

Closest correspondence: The closest correspondence points P and Q between two para-

metric lines

L1 = P0 + us and L2 = Q0 + vt, (12)

with s and t their respective parameters, can be easily calculated as

P = P0 + u
(u • v)(v • (P0 −Q0))− (v • v)(u • (P0 −Q0))

(u • u)(v • v)− (u • v)2
(13)

and

Q = Q0 + v
(u • a)(v • (P0 −Q0))− (u • v)(u • (P0 −Q0))

(u • u)(v • v)− (u • v)2
, (14)

so long as L1 and L2 are not parallel (Teller, 2006).

If P1 and P ′1 are located within the interior of the segments V X and V ′V1

respectively, these two points can be used to define a kind of local projection of the

CompEls. This migration algorithm can be then described as follows for the first face:

1. (line 13) CompEls initially located in V XV1 are pushed above segment XP ′1 on the

resulting face V ′XV1. Everything happens as if the point V were pushed towards

P ′1, which means that the barycentric coordinates (α, β, γ) of a CompEl C expressed

in P ′1XV1 are the same as its original coordinates in V XV1. We say that the triangle

46

V XV1 is lifted to P ′1XV1. Since we know the barycentric coordinates (µ′1, ν
′
1) of P ′1

with respect to V1 and V ′, the new coordinates of C in the triangle V ′XV1 are:

B′(C) = (α ∗ ν ′1, β, α ∗ µ′1 + γ) (15)

2. (line 14) CompEls of VWX that are initially located within V ′XP1 are lifted to the

triangle V ′XP ′1 by keeping their barycentric coordinates unchanged within those

two triangles. Therefore, their new coordinates within V ′XV1 can be updated using

the coordinates (µ′1, ν
′
1) of P ′1 and the coordinates (µ1, ν1) of P1 within V X using

Equation 15.

Figure 23 visually illustrates both steps.

Figure 23: Region lifting and CompEl inheritance for the triangle V1V X. a) Original
CompEl positions after collapse. b-c) Region correspondence calculation between V1V X
and V ′XV1. d) Lifted CompEls from triangle V1V X. e) CompEl inheritance. CompEls
in the highlighted region of VWX will be moved to V ′XV1. f) Final CompEl distribution
for triangle V ′XV1.

a) d) f)

b) c) e)

XV1

V'

XV1

V
V'

W

XV1

V'

XV1

V'

XV1

V
V'

XV1

V
V'

W W

Area calculations

CompEl displacements

Source: the authors.

We iteratively carry a similar treatment with CompEls contained in the trian-

gles V ViVi+1 for increasing values of i ranging from 1 to a stop condition (line 15) defined

below. In order to determine which of the triangle VWX’s CompEls are reassigned to the

triangle V ′ViVi+1, we compute the pair of closest points Pi+1 and P ′i+1 that are located on

47

the straight lines (V X) and (V ′Vi+1) respectively (line 11). If Pi+1 and P ′i+1 are located

in the interior of the segments V X and V ′Vi+1 (line 13), the following migrations are

performed:

1. (line 13) CompEls initially located in V ViVi+1 are lifted above the segment P ′iP
′
i+1

on the resulting face V ′ViVi+1. This amounts to lifting the initial triangle V ViVi+1

into the quadrangle P ′iViVi+1P
′
i+1. Let C be a CompEl (α, β, γ) in V ViVi+1 and let

C ′ be the position corresponding to the same coordinates (α, β, γ) within V ′ViVi+1.

The target position C” of the CompEl C will be placed along the line (V ′C ′): one

determines the intersection P ′(i,C) (resp. V ′(i,C)) of this line with P ′iP
′
i+1 (resp. with

ViVi+1) and we consider the linear mapping of V ′P ′(i,C) into V ′V(i,C). C” is obtained

as the image of C ′ by this linear mapping. This defines the lifting of C into C”.

2. (line 14) CompEls of VWX that are initially located within V ′PiPi+1 are lifted to

the triangle V ′P ′iP
′
i+1 by keeping their barycentric coordinates unchanged within

these two triangles using Equation 15.

Those rules are essentially a generalization of the region lifting shown in Fig-

ure 23, which becomes a particular case for when a P ′ coincides with an apex. Figure 24

shows an example for this general case.

Figure 24: Quad region lifting and CompEl inheritance for the triangle V2V V1.

V W

XV1

V2

V'

P1
P2

V W

XV1

V2

V'

P1
P2

V W

XV1

V2

V'

P1
P2

V W

XV1

V2

V'
V

XV1

V2

W
V'

V

XV1

V2

W
V'

Area calculations

CompEl displacements

Source: the authors.

Stop condition: The index i is incremented until we reach the value I such that Pi+1

and P ′i+1 are not located in the interior of the segments V X and V ′VI+1 (stop condition).

48

In that case, V is projected onto P ′I+0.5 within the triangle V ′VIVI+1. The CompEls of

VWX initially included in V ′PIV are lifted to the triangle V ′P ′IP
′
I+0.5. It is also necessary

to compute a virtual vertex VI+0.5 as the intersection of V ′P ′I+0.5 with VIVI+1. CompEls

located inside the triangle V VIVI+0.5, are lifted within the quadrangle P ′I+0.5P
′
IVIVI+0.5.

When the stop condition is met, we do not move to the next triangle and the index i is

not incremented.

In the same way, if P1 and P ′1 do not belong to the segments V X and V ′V1

respectively, we project V on the triangle V ′XV1 at point P ′ (and compute V0.5 as de-

scribed above). The sub-triangle V ′XV (within VWX) is then lifted to V ′XP ′ (within

V ′XV1). CompEls located inside the triangle V XV0.5 are lifted to the triangle P ′XV0.5,

and no iteration is performed on i. This final case can be better seen in Figure 25.

Figure 25: Region lifting under stop condition. It is treated as two quad region liftings
using Vi+0.5 as the divisor. The dashed lines in red show the stop condition, where the
calculated P ′i+1 would fall in point r, outside the edge V ′Vi+1. The dotted CompEls in red
show the CompEl placement if the lifting took place using the quadrangle P ′iViVi+1P

′
i+1.

Dotted CompEls in cyan show their final position by using the virtual vertex Vi+0.5.

V'

Vi

Vi+1

P'i

P'(i+1)

VV i
+
0.
5

r

Source: the authors.

The same process is performed starting from the edge V Y in the direction of

Vn, from WX in the direction of Wm and from the edge WY in the direction of W1. If any

triangle incident to vertex V ′ is not reached by these four iterations, it keeps its CompEls

unchanged.

3.3.1.3 Edge flip

In nearly planar areas, edge flip is a preferred alternative to edge split and

edge collapse, whenever it is sufficient to restore the level of detail d or the quality of

a triangle. This favors a better stability of the quasi-uniform sampling since it prevents

creation and destruction of vertices.

Using the notation from Figure 26, whenever an edge V1V2 is replaced by its

flipped counterpart V3V4, one first calculates the pair of points P and P ′ on the edges V1V2

and V3V4 that minimize the distance between the lines supported by these edges. Compel

barycentric coordinates are first updated as if V1V2 were to be split in P . CompEls of the

triangle PV3V1 (resp. PV1V4) are then lifted to P ′V3V1 (resp. P ′V1V4) using Equation 15.

49

Since P ′ is on V3V4, we perform the inverse of a split barycentric coordinate update to

merge P ′V3V1 and P ′V1V4 into V4V3V1. The same procedure is performed on the other

side of V4V3.

Figure 26: Edge flip. Left: edge V1V2 shows P . Center: flipped edge revealing P ′. Right:
final result with CompEls recolored according to their new faces.

V1

V2

V3

V4

P

V1

V2

V3

V4

P'

Source: the authors.

3.3.1.4 Change in topological genus

Whenever the distance between two vertices located in different sides of the

quasi-uniform mesh becomes smaller than the minimum thickness t, the shape locally

flattens and breaks. This amounts to anticipating intersections and changes in topological

genus. This change is performed through vertex ring join of the two vertices (Stanculescu,

Chaine, and Cani, 2011). It can cause major topological and visual changes in the mesh.

In order to maintain a minimum temporal continuity, we propose to reuse the faces of the

star of the joining vertices. The faces and their corresponding CompEls are maintained by

merely replacing the joining vertex with one in the other’s 1-ring. This effectively stitches

both 1-rings together, as depicted in Figure 27. No barycentric coordinate update is

performed.

3.3.1.5 Finishing touches

Following the guidelines set in Section 3.2, the proportion of CompEls per unit

of area is maintained after each operation. We create new elements in the deeper layers

of any triangle with a shortage in the number of CompEls. We also promote CompEls

from those layers to upper ones, if necessary. Similarly, CompEls can be pushed to deeper

layers or be destroyed whenever a triangle is too crowded. Both creation and destruction

are performed behind the elements on the surface, while the promotion and demotion are

50

Figure 27: CompEl redistribution on ring join operations.

(a) The original neighborhoods
of two vertices before ring join.

V1

V2

V3

V4

X
Y

W2

W3

W1

(b) The two vertices are re-
moved and the two neighbor-
hoods are stitched together.

V1

V2

V3

V4

W2

W3

W1

(c) Resulting connectivity un-
wind at the edge V3W3 (shown
in green, duplicated)

V1V2 V3V4

W2 W3W1

V3

W3

Source: the authors.

carried over a period of time. With this maintenance strategy, visual artifacts related to

the sudden insertion or removal of CompEls can be minimized or overcome entirely.

3.4 Rendering

Storing and rendering, in real time, a large number of CompEls can be a

considerable technical challenge. A single model can have tens of thousands of CompEl

instances, which can hinder performances due to a sheer triangle count. Taking advantage

of the capabilities of the graphics card can be useful for that challenge. We also use the

programable rendering pipeline to lower visual problems related to CompEls intersecting

one another, which is a problem not commonly present in traditional 2D texture bombing.

Finally, we will explain how our system is compatible with the introduction of variability

in the models of CompEls being used without loosing the benefits of instancing. In this

section, we outline the algorithms employed to improve rendering performance, reduce

inter-object intersection and promote variability.

3.4.1 “Back CompEl” Culling

Backface culling and clipping algorithms are common place in modern graphics

cards. CompEl meshes, after vertex processing in the rendering pipeline, may have already

been automatically clipped out. However, if they have not been clipped, usually, there

will be triangles on their surface facing the camera (always, if they are closed manifold

inside the viewing frustum). In crowded composite objects, this may result in several

hidden CompEls being passed on to primitive assembly and fragment processing.

We can alleviate the problem by discarding all the CompEls that face away

from the camera. At the level of each vertex (in Normalized Device Coordinates (NDC)),

we compare the quasi-uniform mesh normal closest to the CompEl’s barycenter and the

eye vector. If the CompEl is deemed backfacing, we displace the vertex outside the viewing

frustum, resulting in the entirety of the CompEl being clipped. Figure 28 illustrates this

technique.

51

Figure 28: Back CompEl culling. CompEls are shown distributed along a surface in
NDC. The screen and the viewing vector are shown on the left. CompEls placed where
the surface normal forms an angle smaller than 90◦ with the viewing vector, shown dotted
in red, are sent outside the NDC to be clipped.

Source: the authors.

3.4.2 Visual intersection prevention

Intersections in a scene are a constant concern in computer graphics (Gain

and Dodgson, 2001). Applications that work with 3D objects clumped together usually

solve this problem by making use of physical simulations, polygonal collision tests or

other indirect methods, such as bounding boxes, to prevent pairs of rigid objects from

intersecting each other. Collisions may not only be costly to identify, but also troublesome

to solve when more than two objects are involved. Our framework aims at being fully

local in order to better support interactive sculpting times, so we cannot resort to costly

collision detection calculations.

To tackle the issue, we propose a CompEl squish in the rendering pipeline.

After the transformation to Normalized Device Coordinates, we add a displacement to

CompEl vertices perpendicular to the canvas. We move the vertex so that its depth

approaches the same depth as its CompEl’s projected center of mass. As per Gain and

Dodgson (2001), this deformation can be represented as a simple linear scale in a cubic

set of hyperpatches around the CompEl. This squish operator cannot cause any new

self-intersections in a mesh, as long as the scale factor s is less than 100%. Also, since the

displacement is perpendicular to the canvas, only the intersection of objects with different

centers of mass is altered. The rendering of individual CompEls is not affected. In the

limit case, when s = 100%− (as close as possible to, but less then 100%), all CompEls

become equivalent to parallel 2D images, which cannot intersect (Figure 29). Though

arguably ideal for static viewports, applying the squish operator with s = 100%− may

generate animation artifacts.

52

Figure 29: Particle Squish.

(a) View from the camera before (left) and
after (right) squish.

1
2

3

1
2

3
1
2

3

13
2

(b) A hypothetical side view before (left)
and after (right) squish reveals that the
two intersecting CompEls had their ver-
tices moved towards the depth of their re-
spective centers of mass in NDC.

1
2

4
1
2

4 1

2

41

2

4
Source: the authors.

3.4.3 Variability

CompEl models are displayed using traditional instance-based rendering. This

means that we use a single CompEl model, and that the graphics card performs the

numerous mesh instantiations of this model. This alleviates memory requirements in the

graphics card and allows us to render a large number of objects in real time. Variability can

be introduced directly during instancing. Given a very small number of input models, we

are able to synthesize a possibly large number of different CompEls. We control variations

between CompEls originated from the same model by means of a randomization seed,

assigned to each element, that is used by shader operations.

We increase variability by adding low frequency noise to the positions of Com-

pEl vertices. A low frequency noise can be efficiently generated in the graphics card by a

number of algorithms. We opted for a Perlin Noise-like function, as defined by Gustavson

(2005). Noise intensity is evaluated using vertex normals offset by the randomization

seed. The resulting noise strength is applied as a vertex displacement along its normal

direction.

Noise can further be used to randomize the orientation of each CompEl and

the initial frame of its animation, if applicable.

Results of the use of this technique can be seen in Section 4.5.

3.5 Final considerations

In this chapter, we presented our CompEl-based framework. We began by

outlining the requirements and special challenges we took in consideration when modeling

our system. Next, we explained how we used the work of Stanculescu, Chaine, and Cani

(2011) as a support to our own. Then, we explained the nature of our CompEls, how

they are distributed and how they relate to the support shape. We then explained how

we are able to minimize CompEl destruction and creation under the various connectivity

53

updates. Finally, we discussed additional strategies we employ to minimize rendering

overhead and to promote variability.

The next chapter is devoted to the analysis of these strategies and to their

comparison with alternative methods.

54

4 RESULTS

In this chapter, we present and discuss the results obtained with the proposed

model. Over the following sections, we evaluate our technique based on the criteria listed

below:

• Completeness and distribution quality. Our local sampling strategies must

maintain, throughout the mesh, the required CompEl density requested by the

user. If this density, coupled with CompEl size, is sufficient to completely cover the

surface, we must show, in addition, that our algorithm can cover the entire surface,

without empty spaces. The quality of the CompEl distribution is also important.

• Performance and real-time compliance. Our application needs to allow users

to sculpt with several thousand CompEls in real time in order for our method to be

useful in real world applications.

• Temporal continuity. We must show that we are able to minimize the removal

and insertion of CompEls in the face of connectivity updates. This is necessary

in order for our method to be superior to the simple repopulation of removed and

inserted faces. Additionally, CompEl insertion and removal must be made as smooth

as possible to avoid popping effects when they come in and out of existence.

• Intersection prevention. Ideally, CompEls should not intersect each other upon

rendering.

• Variability. Our CompEl framework should maximize the number of CompEl

variations it can create from a single mesh.

Following the analysis of our system in these dimension, we proceed to compare

it with several competing methods with our final remarks in Section 4.6.

4.1 Completeness and distribution quality

Completeness can be seen as the absence of empty regions on the surface of

the mesh. This is important when the user wants to convey the idea of an object full

of composing elements, not only on the surface. This should usually be true in most

regular uses of our software, as having many faces with no CompEl would mean the user

can displace elements in empty regions of the model. It is not, however, mandatory.

Low eis can, in fact, generate CompEls disconnected from each other, which can produce

interesting effects. Figure 30 reveals an example produced by our technique, with and

without completeness.

Another major concern is with the distribution quality. What configures a good

distribution, however, can vary for each user. A common expectation involves randomness

and uniformity of the distributed elements, without noticeable patterns. With that in

mind, a good target distribution is the Poission-disk sampling (Ying, Li, and He, 2014).

55

Figure 30: Carnival mask sculpted using our framework. Left: input CompEls and ac-
companying textures. Center: initial sphere mesh and intermediate steps of the sculpting
process, with and without CompEls on the outer surface. Right: final rendering. Sculpt
time: 4 minutes.

Source: the authors.

In our system, the user implicitly signals his wish for completeness by estab-

lishing a big CompEl frequency through the ei variable. ei must be big enough so that

a good distribution of CompEls covers the entirety of the surface (Equation 4). Since

our sculpting framework greatly favors good quality triangles, our local distribution al-

gorithm tends to display at least jittered sampling quality levels, which will also result

in completeness at no additional cost. This ensures a nice distribution with the desired

CompEl density throughout the sculpting process.

4.2 Performance

Simulations were performed on a MacBook with 2.2 GHz Intel Core i7 proces-

sor, 8.0 GB of RAM, AMD Radeon HD 6750M 1024 MB graphics card. We used C/C++

and OpenGL 3.3 for graphics.

Unlike procedurally generated models, where users can be tolerant to offline

processing, real time compliance can be a red flag for sculpting applications. Artists expect

to see and evaluate changes to their models as they sculpt before deciding the next batch.

When sculpting agglomerate materials with our framework, a displacement induced on the

surface produces a corresponding movement of anchored CompEls. Since each CompEl

is a mesh object in its own right, this means the user will effectively manipulate massive

amounts of geometric information. That information must be readily available to the

graphics card in quantities it is able to process in interactive rates. Moreover, polygon

intersections can increase the number of overdraws, which negatively impact performance

and can sharply decrease fps. Such intersections are common in applications with several

objects displayed in a tight space, such as ours.

In spite of said limitations, our tests indicate that our frames per second are on

56

par with the rendering of an intersection-free mesh with an equivalent number of polygons,

as can be seen in Figure 32 with respect to Figure 31.

Figure 31: “My World”. Example sculpture by a 6-year-old from candy meshes, populated
as to show the number of CompEls that can be drawn at interactive rates. A zoomed
view shows individual CompEls. The artist is shown on the left, looking at his creation.
Sculpt time: 5 minutes. Total number of CompEls: 91.456. Face count per CompEl: 150.

Source: the authors.

This is due to the heavy use of instance-based rendering and of our intersection

prevention and back CompEl culling algorithms, which greatly reduces the number of

CompEls triangles sent to fragment processing in case of complete composite materials,

as can be seen in Figure 33. Rendering the base mesh, subdivided into a similar number

of polygons, results in equal or slightly slower rendering times, because less polygons are

rejected by the z-buffer algorithm.

One must note, however, that performance can be significantly diminished if

CompEl meshes are dense. Similarly to other rendering algorithms, our fps can also vary

with the number of CompEls displayed in a single frame.

57

Figure 32: Performance of our CompEl rendering algorithm with respect to Figure 31.
Tests executed in a 800x600 resolution. The large bumps in CompEl rendering perfor-
mance in the 15.000 to 35.000 range is due to occlusion, that is, a few CompEls inserted
that are randomly rendered before the rest, causing the others to not generate any frag-
ments.

0 1 2 3 4 5 6 7 8 9

·104

4

8

16

32

64

128

256

Quantity

fp
s

CompEls (150 faces each)
Groups of 150 faces

Source: the authors.

4.3 Temporal continuity

Temporal continuity was of paramount concern throughout our research pro-

cess. Our CompEl redistribution algorithm greatly limits the number of CompEl inser-

tions and deletions on all basic topological operations performed on the anchor mesh, as

can be seen in Table 1, with respect to Figure 34. In our tests, the number of CompEls

created and removed during deformation was reduced by more than 70% when compared

to simply inserting new CompEls on faces created by edge splits and deleting CompEls

on faces destroyed with edge collapses. Their numbers oscillate according to the desired

CompEl frequency and the evolution of the surface’s area, but are otherwise largely inde-

pendent from the insertion or removal of faces and vertices.

58

Figure 33: Back CompEl culling.
(a) Model rendered without culling show sev-
eral CompEls that would be invisible on com-
plete materials.

(b) Model rendered with culling removes a con-
siderable amount of geometry from fragment
generation.

Source: the authors.

Additionally, visual continuity is ensured by the seamless insertion and removal

of CompEls on lower layers of the surface. Should there be too few elements to completely

cover the surface, CompEls are inserted and removed behind a preexisting elements on

an adjoining face. Newly inserted elements sprout seamlessly from inside the sculpted

object. This makes it seem that the CompEl was only initially hidden instead of recently

inserted. Similarly, excess CompEls are first pushed from sight towards the interior of the

shape or behind another element before disappearing.

4.4 Intersection prevention

Intersection between solid composing elements is a common artifact that can

break the illusion of a real composite material. In our system, the only way in which we

limit intersections is through optical deformations by squishing CompEls along the eye

vector. Figure 35 shows that this simple strategy is able to completely remove intersections

from a rendering perspective.

Though arguably ideal for static viewports, applying the squish operator with

s = 100%− (i.e.: as close as possible to but still less than 100%) may generate animation

artifacts. As the camera rotates, CompEls that were behind other CompEls may suddenly

pop to the front. This is a direct consequence of a CompEl’s center of mass becoming

closer to the canvas than another’s. It is also theoretically possible, though not observed

in our tests, to experience z-fighting between squished CompEls. Both of these problems

can be minimized by allowing some small intersection through small reductions of s. This

59

Figure 34: Example sculpture created from a sphere. Left: pills used as CompEls show
their relative frequency and texture distribution. Right: the final result. Sculpture time:
12 min. e = 797. For this example, a single layer is used.

Source: the authors.

causes the transition to spread through multiple frames. It greatly reduces the visual

artifacts while still allowing for very little intersection.

4.5 Variability

Frequently, the user will want to use more than a single “token” object to

construct its agglomerate material. Though the user can include and use multiple separate

meshes when sculpting, they are likely to face memory limitations before conveying every

variation. Procedural variability is, thus, a very important concept to address.

Our CompEl models are displayed using traditional instance-based rendering.

This means that we use a single CompEl model, and that the graphics card performs the

numerous mesh instantiations of this model. This alleviates memory requirements in the

graphics card and allows us to render a large number of objects in real time. Variability

can be introduced directly from the benefits of instancing. Given a very small number of

input models, we are able to synthesize a possibly large number of different CompEls.

The first source of diversification are textures. Increasing the number of differ-

ent textures applied to CompEls can increase variability without increasing the number

of models that need to be stored in the graphic card. Different textures are stored and

made available in an array. The one used can be picked on the fly using the randomization

seed. Figure 36 shows the result of texture variation on a single mesh.

We can promote variability by adding randomized deformations and orienta-

tions per instance. This can cause each object to look unique and the scene more natural,

60

Table 2: CompEl creation and destruction for the sculpture in Figure 34. The number of
CompEls is shown as a function of the required density e.

Quantity
Variable Initial Created Removed Final
Edge Splits 41263
Edge Flips 13573
Edge Collapses 30122
Vertices Ring join 22
Area 12.52 N/A N/A 8.78
Vertices 1026 41270 30197 12099
Faces 2048 82526 60384 24190
CompEls
e = 3986 48882 27469 41844 34507
e = 797 8911 66 3855 5122
e = 341 3328 14 1128 2214

Source: the authors.

while still maintaining the likeness of the base model. Figure 37 shows how adding differ-

ent orientations and per-vertex displacement noise to texture variation can create different

pebbles.

Finally, our system also supports animated models. Those can be useful should

the user wish to create “live” scenes, such as the butterflies on a flower sculpture (such

as the one in Figure 30). Should animation be present on a given CompEl information,

each instance spawns with a randomized starting frame.

Combining several of these differentiation options cause each CompEl to look

alive and unique, and not a mere replica of its peers.

4.6 Final considerations

The results we present in this section reveal an efficient strategy to the virtual

sculpture of composite objects. Despite not conveying as good an element distribution

as previous strategies, we are the first to show to be able to sculpt composites on grand

scales with temporal continuity, in real time with adequate distributions. We consider this

strategy not as a direct competitor to state of the art composite extraction algorithms,

but as the means of producing previews in real time, during the actual sculpting session.

This preview can better guide the artist towards the intended shape, when more involved

algorithms can be employed to produce the final render.

The next chapter concludes this work with an overall discussion of our contri-

butions, the limitations of our approach and the intended future work.

61

Figure 35: Intersection prevention between solid elements using only optical deformations.

(a) Undeformed assembly of CompEls reveal in-
tersections between elements.

(b) A squish operator with s = 100%− com-
pletely removes intersections between Com-
pEls.

Source: the authors.

Figure 36: The same rock mesh can be used with different textures to generate different
CompEls.

Source: the authors.

62

Figure 37: Adding variation by per-vertex noise and per-instance orientation to a single
rock mesh.

Source: the authors.

63

5 CONCLUSION

In this thesis, we presented a new sculpting framework that maintains high

quality and temporally coherent sampling of agglomerate materials. Our algorithms min-

imize CompEl displacement, insertion and removal, while still complying with the defor-

mation requested by the user. Rather than focusing on costly physical interaction between

CompEls, we chose to anchor our elements to the surface. Elements, thus, move about

each other only as the space around them warps.

Our sculpting framework is build on top of a system that greatly favors a

uniform vertex and face distribution on the support shape. That property favors a local

CompEl sampling algorithm, while still producing the illusion of randomness and that of

a full volume. This allows for faster computations in the CPU when compared to physical

simulations or global samplings. We further reduce computations by keeping elements

only on the outermost layers of the shape being sculpted. Object insertion and removal is

performed in the innermost populated layers and behind other CompEls, which eliminates

any popping effects from such operations. Our results show that this method allows for

the deformation of agglomerate materials with tenths of thousands of elements in real

time with relatively high quality.

Our method also produces rendering optimizations in the graphics pipeline.

We can reduce object intersections with visual deformations. This technique displays

elements as if they were entirely separate and non-overlapping with negligible computation

overhead. We further use the underlying surface’s normal at the CompEl’s position to

determine if it is front-facing or back-facing. If it is back-facing we remove it from the

rendering pipeline before fragment generation, saving GPU computation time. Finally,

we use the graphics card to produce element randomization, reducing the uniformity of

elements.

We believe that a real-time, approximate solution to the virtual creation of

composite shapes interests both industry and academia. Our framework allows users to

experience the sensation of an agglomerate throughout the sculpting session, which can

aid the creative process. Later, if necessary, a more involved technique can be employed

to export the final shape or sequence. This strategy is similar to using z-buffer rendering

for keyframe posing when defining animations, saving the costly ray-tracing for the final

rendering.

5.1 Limitations

Despite solid results, interactive virtual sculpting of composite shapes remains

an open field. We proceed to point out some of the limitations of our approach. Firstly,

our CompEls are rendered as meshes. Having too great a number of elements with too

64

many faces can reduce the number of frames per second. Our rendering optimizations

can alleviate the problem to an extent, but the limitation is still present. Secondly, our

per instance GPU deformation, used to reduce object intersection, can cause popping

effects when the user rotates the camera. This is due to the deformation performed being

necessarily view-dependent. Reducing the deformation intensity can reduce the popping

in exchange for some intersection being present. Furthermore, our approach only removes

intersections from a rendering perspective. Based on actual element placement, CompEl

intersection still occurs. Finally, our sampling method is entirely stochastic and cannot

provide hard guarantees against over or under sampled regions. The problem can be

minimized in two ways: first, by using similar vertex and CompEl densities, which allows

our framework to piggyback the good sampling and element distribution of the underlying

sculpting framework; second, by using approximatively round CompEls with diameter

similar to that of d, which promotes good face coverage regardless of element orientation.

5.2 Future work

Future work focuses on solving current limitations and on finding new uses

for our CompEl framework. Regarding the former, layered rendering algorithms can be

employed to increase object count. Closer CompEls should be rendered in full detail, while

farther elements can be efficiently displayed with simpler techniques. Here, simplified

meshes or impostors could be employed. Moving even farther, surface textures on the

support shape could be used to give the impression of agglomerates whilst saving render

times. Some form of view-dependent, GPU-only element sorting could also take place.

Explicit information of incremental camera rotations could greatly reduce the number of

possible swaps. Finding an efficient sorting algorithm could reduce overdraw and CPU /

GPU band limitations. Storing and modifying data directly in the GPU would be even

better of a improvement in this direction. The system could also benefit from some form

of limited physical simulation parallel to the sculpting process and during idle moments.

This could take the form of a spring system that favors good CompEl distribution.

Our CompEl framework can be used to efficiently track any kind of information

that can be placed on the surface of a mesh and that is subject to tangential displacement

along it’s surface, such as handles or touch locations. Additional uses could include

tracking touches on multi-user environments. This could allow a user to fix errors or to

remove entire operation sequences with minimal effect to his collaborators’ work.

65

REFERENCES

Abdrashitov, Rinat; Guy, Emilie; Yao, JiaXian; Singh, Karan. Mosaic: Sketch-based
Interface for Creating Digital Decorative Mosaics. Proceedings of the 4th Joint
Symposium on Computational Aesthetics, Non-Photorealistic Animation and Rendering,
and Sketch-Based Interfaces and Modeling. New York, NY, USA: ACM, 2014, SBIM ’14,
p. 5–10. URL http://doi.acm.org/10.1145/2630407.2630409.

Aghdaii, Nima; Younesy, Hamid; Zhang, Hao. 5-6-7 Meshes. Proceedings of Graphics
Interface 2012. Toronto, Ont., Canada, Canada: Canadian Information Processing
Society, 2012, GI ’12, p. 27–34. URL
http://dl.acm.org/citation.cfm?id=2305276.2305282.

Angelidis, Alexis; Cani, Marie-Paule; Wyvill, Geoff; King, Scott. Swirling-Sweepers:
Constant Volume Modeling. Graph. Models, v. 68, n. 4, p. 324–332, 2006. Special Issue:
Pacific Graphics 2004.

Blender Foundation. Blender. 2017. URL http://www.blender.org.

Bojsen-Hansen, Morten; Li, Hao; Wojtan, Chris. Tracking Surfaces with Evolving
Topology. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012), v. 31,
n. 4, p. 53:1–53:10, 2012.

Boyton, Kristen. The Magic of Gaudi – Barcelona, Spain. 2017. URL
http://ourwanderland.com/magic-gaudi-barcelona-spain/.

Cohen, Jonathan; Manocha, Dinesh; Olano, Marc. Simplifying Polygonal Models Using
Successive Mappings. Proceedings of the 8th Conference on Visualization ’97. Los
Alamitos, CA, USA: IEEE Computer Society Press, 1997, VIS ’97, p. 395–ff. URL
http://dl.acm.org/citation.cfm?id=266989.267108.

de Goes, Fernando; James, Doug L. Regularized Kelvinlets: Sculpting Brushes based on
Fundamental Solutions of Elasticity. SIGGRAPH, 2017.

de Groot, Erwin; Wyvill, Brian; Barthe, Loic; Nasri, Ahmad; Lalonde, Paul. Implicit
Decals: Interactive Editing of Repetitive Patterns on Surfaces. Computer Graphics
Forum, v. 33, p. 141–151, 2014.

Dekkers, Ellen; Kobbelt, Leif. Geometry Seam Carving. Comput. Aided Des., v. 46, p.
120–128, 2014. URL http://dx.doi.org/10.1016/j.cad.2013.08.024.

Dewaele, G; Cani, MP. Interactive global and local deformations for virtual clay.
Graphical Models , v. 66, n. 6, p. 352–369, 2004.

Dischler, J.-M.; Maritaud, K.; Lévy, B.; Ghazanfarpour, D. Texture Particles. Computer

http://doi.acm.org/10.1145/2630407.2630409
http://dl.acm.org/citation.cfm?id=2305276.2305282
http://www.blender.org
http://ourwanderland.com/magic-gaudi-barcelona-spain/
http://dl.acm.org/citation.cfm?id=266989.267108
http://dx.doi.org/10.1016/j.cad.2013.08.024

66

Graphics Forum, v. 21, n. 3, p. 401–410, 2002. URL
http://dx.doi.org/10.1111/1467-8659.t01-1-00600.

Emilien, Arnaud; Vimont, Ulysse; Cani, Marie-Paule; Poulin, Pierre; Benes, Bedrich.
WorldBrush: Interactive Example-based Synthesis of Procedural Virtual Worlds.
Proceedings of SIGGRAPH, 2015.

Endara, Miguel. Benjaman Kyle. 2017. URL
http://miguelendara.com/art/benjamankyle/.

Eyiyurekli, Manolya; Breen, David. Interactive free-form level-set surface-editing
operators. Computers & Graphics-UK, v. 34, n. 5, p. 621–638, 2010.

Ferley, E; Cani, MP; Gascuel, JD. Resolution adaptive volume sculpting. Graphical
Models , v. 63, n. 6, p. 459–478, 2001.

Gain, J; Marais, P. Warp sculpting. IEEE Transactions On Visualization And
Computer Graphics, v. 11, n. 2, p. 217–227, 2005.

Gain, James E.; Dodgson, Neil A. Preventing self-intersection under free-form
deformation. IEEE Transactions On Visualization And Computer Graphics, v. 7, p.
289–298, 2001.

Galyean, T. A.; Hughes, J. F. Sculpting - An Interactive Volumetric Modeling
Technique. SIGGRAPH, v. 25, p. 267–274, 1991.

Grünbaum, Branko; Shephard, G C. Tilings and Patterns. New York, NY, USA: W. H.
Freeman & Co., 1986.

Gustavson, Stefan. Simplex Noise Demystified. 2005. URL
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf.

Hale, J. G. Texture Re-Mapping for Decimated Polygonal Meshes. Tech. rep., Edinburgh
University, 1998.

Hernandez, Raul Fernandez. Dynamic Subdivision Sculpting. 2011. URL
http://farsthary.files.wordpress.com/2011/10/

dynamic-subdivision-sculpting-final.pdf.

Hsu, William M.; Hughes, John F.; Kaufman, Henry. Direct manipulation of free-form
deformations. SIGGRAPH, p. 177–184, 1992.

Koniaris, Charalampos; Cosker, Darren; Yang, Xiaosong; Mitchell, Kenny. Texture
Mapping Techniques for Volumetric Mesostructure. Journal of Computer Graphics
Techniques (JCGT), v. 3, n. 1, p. 18–59, 2014. URL

http://dx.doi.org/10.1111/1467-8659.t01-1-00600
http://miguelendara.com/art/benjamankyle/
http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
http://farsthary.files.wordpress.com/2011/10/dynamic-subdivision-sculpting-final.pdf
http://farsthary.files.wordpress.com/2011/10/dynamic-subdivision-sculpting-final.pdf

67

http://jcgt.org/published/0003/01/02/.

Lachaud, Jacques-Olivier; Montanvert, Annick. Deformable meshes with automated
topology changes for coarse-to-fine three-dimensional surface extraction. Medical Image
Analysis, v. 3, n. 2, p. 187 – 207, 1999.

Lagae, Ares; Dutré, Philip. An Alternative for Wang Tiles: Colored Edges Versus
Colored Corners. ACM Trans. Graph., v. 25, n. 4, p. 1442–1459, 2006. URL
http://doi.acm.org/10.1145/1183287.1183296.

Lagae, Ares; Kaplan, Craig S.; Fu, Chi-Wing; Ostromoukhov, Victor; Deussen, Oliver.
Tile-based Methods for Interactive Applications. ACM SIGGRAPH 2008 Classes. New
York, NY, USA: ACM, 2008, SIGGRAPH ’08, p. 93:1–93:267. URL
http://doi.acm.org/10.1145/1401132.1401254.

Land, Michelle D. Bridging Environmental Conservation and Animal Rights. 2016.
URL https://earthdesk.blogs.pace.edu/2013/04/22/

bridging-environmental-conservation-and-animal-rights/.

Li, Hongwei; Wei, Li-Yi; Sander, Pedro V.; Fu, Chi-Wing. Anisotropic Blue Noise
Sampling. ACM SIGGRAPH Asia 2010 Papers. New York, NY, USA: ACM, 2010,
SIGGRAPH ASIA ’10, p. 167:1–167:12. URL
http://doi.acm.org/10.1145/1866158.1866189.

Lorensen, William E.; Cline, Harvey E. Marching cubes: A high resolution 3D surface
construction algorithm. SIGGRAPH, v. 21, p. 163–169, 1987. URL
http://doi.acm.org/10.1145/37402.37422.

Ma, Chongyang; Wei, Li-Yi; Lefebvre, Sylvain; Tong, Xin. Dynamic Element Textures.
ACM Trans. Graph., v. 32, n. 4, p. 90:1–90:10, 2013. URL
http://doi.acm.org/10.1145/2461912.2461921.

Medeiros, Esdras; Ingrid, Lis; Pesco, Sinésio; Silva, Claudio. Fast Adaptive Blue Noise
on Polygonal Surfaces. Graph. Models, v. 76, n. 1, p. 17–29, 2014. URL
http://dx.doi.org/10.1016/j.gmod.2013.10.004.

Meng, Johannes; Papas, Marios; Habel, Ralf; Dachsbacher, Carsten; Marschner, Steve;
Gross, Markus; Jarosz, Wojciech. Multi-scale Modeling and Rendering of Granular
Materials. ACM Trans. Graph., v. 34, n. 4, p. 49:1–49:13, 2015. URL
http://doi.acm.org/10.1145/2766949.

Mercier, Olivier; Beauchemin, Cynthia; Thuerey, Nils; Kim, Theodore; Nowrouzezahrai,
Derek. Surface Turbulence for Particle-Based Liquid Simulations. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH Asia 2015), v. 34, n. 6, 2015.

Ostromoukhov, Victor; Donohue, Charles; Jodoin, Pierre-Marc. Fast Hierarchical

http://jcgt.org/published/0003/01/02/
http://doi.acm.org/10.1145/1183287.1183296
http://doi.acm.org/10.1145/1401132.1401254
https://earthdesk.blogs.pace.edu/2013/04/22/bridging-environmental-conservation-and-animal-rights/
https://earthdesk.blogs.pace.edu/2013/04/22/bridging-environmental-conservation-and-animal-rights/
http://doi.acm.org/10.1145/1866158.1866189
http://doi.acm.org/10.1145/37402.37422
http://doi.acm.org/10.1145/2461912.2461921
http://dx.doi.org/10.1016/j.gmod.2013.10.004
http://doi.acm.org/10.1145/2766949

68

Importance Sampling with Blue Noise Properties. ACM SIGGRAPH 2004 Papers. New
York, NY, USA: ACM, 2004, SIGGRAPH ’04, p. 488–495. URL
http://doi.acm.org/10.1145/1186562.1015750.

Pastor, O.M.; Freudenberg, B.; Strothotte, T. Real-time animated stippling. Computer
Graphics and Applications, IEEE, v. 23, n. 4, p. 62–68, 2003.

Peytavie, Adrien; Galin, Eric; Grosjean, Jérôme; Mérillou, Stéphane. Procedural
Generation of Rock Piles Using Aperiodic Tiling. Computer Graphics Forum, 2009.
URL https://hal-unilim.archives-ouvertes.fr/hal-01250531.

Pilgway. 3D Coat. 2017. URL http://www.3d-coat.com.

Pixologic. Sculptris. 2017a. URL http://www.sculptris.com.

Pixologic. ZBrush. 2017b. URL http://www.pixologic.com.

Robertson, Barbara. The Matrix Resolution. Computer Graphics World, 2003. URL
http://www.cgw.com/Publications/CGW/2003/

Volume-26-Issue-12-December-2003-/The-Matrix-Resolution.aspx.

Rohmer, Damien; Hahmann, Stefanie; Cani, Marie-Paule. Real-Time Continuous Self
Replicating Details for Shape Deformation. Computers and Graphics, 2015. URL
https://hal.inria.fr/hal-01152928.

Schwarz, Michael; Stamminger, Marc. On Predicting Visual Popping in Dynamic
Scenes. Proceedings of the 6th Symposium on Applied Perception in Graphics and
Visualization. New York, NY, USA: ACM, 2009, APGV ’09, p. 93–100. URL
http://doi.acm.org/10.1145/1620993.1621012.

Sederberg, Thomas W.; Parry, Scott R. Free-form deformation of solid geometric
models. SIGGRAPH, v. 20, p. 151–160, 1986. URL
http://doi.acm.org/10.1145/15886.15903.

Simpson, I.; Wood, L. The Encyclopedia of Drawing Techniques. A quarto book.
Headline, 1987.

Sorkine, O.; Cohen-Or, D.; Lipman, Y.; Alexa, M.; Rössl, C.; Seidel, H.-P. Laplacian
Surface Editing. Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing. New York, NY, USA: ACM, 2004, SGP ’04, p. 175–184. URL
http://doi.acm.org/10.1145/1057432.1057456.

Stanculescu, Lucian; Chaine, Raphaëlle; Cani, Marie-Paule. Freestyle: Sculpting meshes
with self-adaptive topology. Computers & Graphics-UK, v. 35, n. 3, SI, p. 614–622, 2011.

http://doi.acm.org/10.1145/1186562.1015750
https://hal-unilim.archives-ouvertes.fr/hal-01250531
http://www.3d-coat.com
http://www.sculptris.com
http://www.pixologic.com
http://www.cgw.com/Publications/CGW/2003/Volume-26-Issue-12-December-2003-/The-Matrix-Resolution.aspx
http://www.cgw.com/Publications/CGW/2003/Volume-26-Issue-12-December-2003-/The-Matrix-Resolution.aspx
https://hal.inria.fr/hal-01152928
http://doi.acm.org/10.1145/1620993.1621012
http://doi.acm.org/10.1145/15886.15903
http://doi.acm.org/10.1145/1057432.1057456

69

Stanculescu, Lucian; Chaine, Raphaëlle; Cani, Marie-Paule; Singh, Karan. Sculpting
multi-dimensional nested structures. Computers & Graphics, v. 37, n. 6, p. 753 – 763,
2013. Shape Modeling International (SMI) Conference 2013.

Sumner, Robert W.; Schmid, Johannes; Pauly, Mark. Embedded Deformation for Shape
Manipulation. ACM SIGGRAPH 2007 Papers. New York, NY, USA: ACM, 2007,
SIGGRAPH ’07. URL http://doi.acm.org/10.1145/1275808.1276478.

Tang, Min; Manocha, Dinesh; Tong, Ruofeng. Fast continuous collision detection using
deforming non-penetration filters. I3D ’10: Proceedings of the 2010 ACM SIGGRAPH
symposium on Interactive 3D Graphics and Games. New York, NY, USA: ACM, 2010,
p. 7–13.

Teller, Seth. Line - Line Closest Points. 2006. URL
http://graphics.lcs.mit.edu/~seth/geomlib/linelinecp.c.

Vanderhaeghe, David; Barla, Pascal; Thollot, Joelle; Sillion, Francois X. Dynamic Point
Distribution for Stroke-based Rendering. Proceedings of the 18th Eurographics
Conference on Rendering Techniques. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2007, EGSR’07, p. 139–146. URL
http://dx.doi.org/10.2312/EGWR/EGSR07/139-146.

Vanhoey, Kenneth; Sauvage, Basile; Larue, Frédéric; Dischler, Jean-Michel. On-the-fly
Multi-scale Infinite Texturing from Example. ACM Trans. Graph., v. 32, n. 6, p.
208:1–208:10, 2013. URL http://doi.acm.org/10.1145/2508363.2508383.

von Funck, Wolfram; Theisel, Holger; Seidel, Hans-Peter. Vector Field Based Shape
Deformations. ACM SIGGRAPH 2006 Papers. New York, NY, USA: ACM, 2006,
SIGGRAPH ’06, p. 1118–1125. URL http://doi.acm.org/10.1145/1179352.1142002.

Wachtel, Florent; Pilleboue, Adrien; Coeurjolly, David; Breeden, Katherine; Singh,
Gurprit; Cathelin, Gaël; de Goes, Fernando; Desbrun, Mathieu; Ostromoukhov, Victor.
Fast Tile-based Adaptive Sampling with User-specified Fourier Spectra. ACM Trans.
Graph., v. 33, n. 4, p. 56:1–56:11, 2014. URL
http://doi.acm.org/10.1145/2601097.2601107.

Wang, Lili; Shi, Yulong; Chen, Yi; Popescu, Voicu. Just-in-Time Texture Synthesis.
Computer Graphics Forum, v. 32, n. 1, p. 126–138, 2013. URL
http://dx.doi.org/10.1111/cgf.12003.

Wei, Li-Yi. Tile-based Texture Mapping on Graphics Hardware. Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware. New York,
NY, USA: ACM, 2004, HWWS ’04, p. 55–63. URL
http://doi.acm.org/10.1145/1058129.1058138.

Ying, Xiang; Li, Zhenhua; He, Ying. A parallel algorithm for improving the maximal

http://doi.acm.org/10.1145/1275808.1276478
http://graphics.lcs.mit.edu/~seth/geomlib/linelinecp.c
http://dx.doi.org/10.2312/EGWR/EGSR07/139-146
http://doi.acm.org/10.1145/2508363.2508383
http://doi.acm.org/10.1145/1179352.1142002
http://doi.acm.org/10.1145/2601097.2601107
http://dx.doi.org/10.1111/cgf.12003
http://doi.acm.org/10.1145/1058129.1058138

70

property of Poisson disk sampling. Computer-Aided Design, v. 46, p. 37 – 44, 2014.
URL http://www.sciencedirect.com/science/article/pii/S0010448513001565.
2013 SIAM Conference on Geometric and Physical Modeling.

Zwicker, M.; Pauly, M.; Knoll, O.; Gross, M. Pointshop 3D: An Interactive System for
Point-Based Surface Editing. SIGGRAPH, p. 322–329, 2002.

http://www.sciencedirect.com/science/article/pii/S0010448513001565

	INTRODUCTION
	Contextualization
	Objectives
	Proposal
	Organization

	RELATED WORK
	Sculpting
	Volume sculpting
	Surface sculpting

	Sculpting composites
	Agglomerate sketching
	Composite extraction
	Stippling
	Tiling
	Texture bombing

	Final considerations

	TEMPORALLY COHERENT SCULPTURE OF COMPOSITE OBJECTS
	Maintaining a uniform set of anchors on the shape during sculpting
	Model updates under freestyle sculpting.

	Description of outer layers of a shape by a system of CompEls
	Generation and update of CompEls under deformation
	Temporal coherence and continuity under freestyle sculpting
	Edge split
	Edge collapse
	Collapse update

	Edge flip
	Change in topological genus
	Finishing touches

	Rendering
	``Back CompEl'' Culling
	Visual intersection prevention
	Variability

	Final considerations

	RESULTS
	Completeness and distribution quality
	Performance
	Temporal continuity
	Intersection prevention
	Variability
	Final considerations

	CONCLUSION
	Limitations
	Future work

	REFERENCES

