
UNIVERSIDADE FEDERAL DO CEARÁ
CENTRO DE CIÊNCIAS

DEPARTAMENTO DE COMPUTAÇÃO
PROGRAMA DE MESTRADO E DOUTORADO EM CIÊNCIA DA

COMPUTAÇÃO

TIAGO CARNEIRO PESSOA

GPU-BASED BACKTRACKING STRATEGIES FOR SOLVING
PERMUTATION COMBINATORIAL PROBLEMS

FORTALEZA

2017



TIAGO CARNEIRO PESSOA

GPU-BASED BACKTRACKING STRATEGIES FOR SOLVING PERMUTATION
COMBINATORIAL PROBLEMS

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação, da
Universidade Federal do Ceará, como requi-
sito para a obtenção do Título de Doutor
em Ciência da Computação. Área de concen-
tração: Computação de Alto Desempenho.

Orientador: Prof. Dr. Francisco Heron de Car-
valho Junior

FORTALEZA

2017



Dados Internacionais de Catalogação na Publicação 
Universidade Federal do Ceará

Biblioteca Universitária
Gerada automaticamente pelo módulo Catalog, mediante os dados fornecidos pelo(a) autor(a)

P568g Pessoa, Tiago Carneiro.
    GPU-based backtracking strategies for solving permutation combinatorial problems / Tiago Carneiro
Pessoa. – 2017.
    108 f. : il. color.

     Tese (doutorado) – Universidade Federal do Ceará, Centro de Ciências, Programa de Pós-Graduação em
Ciência da Computação , Fortaleza, 2017.
     Orientação: Prof. Dr. Francisco Heron de Carvalho Junior.

    1. CUDA Dynamic Parallelism. 2. Device-side enqueue. 3. Backtracking paralelo. 4. Busca em
profundidade. I. Título.
                                                                                                                                                  CDD 005



TIAGO CARNEIRO PESSOA

GPU-BASED BACKTRACKING STRATEGIES FOR SOLVING PERMUTATION
COMBINATORIAL PROBLEMS

Tese apresentada ao Programa de Pós-
Graduação em Ciência da Computação, da
Universidade Federal do Ceará, como requi-
sito para a obtenção do Título de Doutor
em Ciência da Computação. Área de concen-
tração: Computação de Alto Desempenho.

Aprovada em 05 de Dezembro de 2017 .

BANCA EXAMINADORA

Prof. Dr. Francisco Heron de Carvalho
Junior(Orientador)

Universidade Federal do Ceará (UFC)

Prof. Dr. Nouredine Melab
Université Lille 1 (UFR d’IEEA).

CNRS/CRIStAL - INRIA Lille Nord Europe.

Prof. Dr. Igor Machado Coelho
Universidade do Estado do Rio de Janeiro

(UERJ)

Prof. Dr. Rafael Castro de Andrade
Universidade Federal do Ceará (UFC)

Prof. Dr. Albert Einstein Fernandes Muritiba
Universidade Federal do Ceará (UFC)



ACKNOWLEDGEMENTS

Tiago Carneiro Pessoa was partially supported by the Institutional Program of
Overseas Sandwich Doctorate (PDSE-CAPES) grant 3376/2015-00.



RESUMO

Novas extensões ao modelo de programação GPGPU, tais como o Paralelismo Dinâmico
(CUDA Dynamic Parallelism - (CDP)), podem facilitar a programação para GPUs de
padrões recursivos de computação, como o de divisão-e-conquista, utilizado por algoritmos
backtracking. O presente trabalho propõe um novo algoritmo backtracking que utiliza
CDP, baseado em um modelo paralelo para buscas não estruturadas. Diferentemente dos
trabalhos da literatura, o algoritmo proposto não realiza alocação dinâmica em GPU. A
memória requerida pela gerações de kernel subsequentes é previamente alocada de acordo
com uma análise de uma árvore backtracking parcial. A Segunda parte desta tese generaliza
as ideias do algoritmo inicial para abordagens que realizam alocação dinâmica em GPU e
lançam mais que duas gerações de kernels. Essa generalização é necessária para que tais
estratégias não apresentem erros em tempo de execução. A parte final desta tese investiga,
no escopo dos algoritmos de busca não estruturada, se o uso de CDP é vantajoso ou não,
comparando uma versão CDP e a versão equivalente que realiza várias chamadas do kernel
através do host. Todos os algoritmos propostos foram extensamente validados utilizando o
problema das N-Rainhas e o Problema do Caixeiro Viajante Assimétrico como casos de
teste. A presente tese também identificou dificuldades, limitações e gargalos relacionadas
ao modelo de programação CDP que podem ser úteis para ajudar potenciais usuários.

Palavras-chave: CUDA Dynamic Parallelism. Device-side enqueue. Backtracking paralelo.
Busca em profundidade.



ABSTRACT

New GPGPU technologies, such as CUDA Dynamic Parallelism (CDP), can help dealing
with recursive patterns of computation, such as divide-and-conquer, used by backtracking
algorithms. The initial part of this thesis proposes a GPU-accelerated backtracking
algorithm using CDP that extends a well-known parallel backtracking model. Unlike
related works from the literature, the proposed algorithm does not dynamically allocate
memory on GPU. The memory required by the subsequent kernel generations is preallocated
based on the analysis of a partial backtracking tree. The second part of this work generalizes
the ideas of the first algorithm for approaches that dynamically allocate memory on GPU
and launch more than two kernel generations. The final part of this thesis investigates
whether the use of CDP is advantageous over a non-CDP and equivalent counterpart.
All approaches have been extensively validated using the N-Queens Puzzle problem and
instances of the Asymmetric Traveling Salesman Problem as test-cases. This thesis has also
identified some difficulties, limitations, and bottlenecks concerning the CDP programming
model which may be useful for helping potential users.

Keywords: CUDA Dynamic Parallelism. Device-side enqueue. Parallel Backtracking.
Depth-first search.
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1 INTRODUCTION

Graphics Processing Units (GPUs) can be used to substantially accelerate many
regular applications. In such applications, identical operations are performed on contiguous
portions of data in a statically predictable manner (BURTSCHER; NASRE; PINGALI,
2012). In contrast, applications that are characterized by unpredictable and irregular
control flow, degree of parallelism, memory access, and communication patterns are known
as irregular or unstructured (KARYPIS; KUMAR, 1994; YELICK, 1993). Backtracking is
a divide-and-conquer search strategy that consists in dynamically building and exploring
a tree in depth-first order. As the shape and size of this tree are irregular and unknown in
advance, backtracking (GOLOMB; BAUMERT, 1965; BITNER; REINGOLD, 1975) falls
into the class of irregular applications. Using GPUs for processing such applications is an
emerging trend in GPU computing (DEFOUR; MARIN, 2013; LI; WU; BECCHI, 2015).

Backtracking is a fundamental problem-solving paradigm in many areas, such as
artificial intelligence and combinatorial optimization. The degree of parallelism in this class
of algorithms is potentially very high, because the search space can be partitioned into a
large number of disjoint portions that can be explored in parallel (KARP; ZHANG, 1993).
A search strategy defines which node of the tree will be processed next. Due to its low
memory requirements, depth-first search (DFS) is often preferred (ZHANG, 1996). Also, its
ability to quickly find new solutions increases the efficiency of the pruning process (ZHANG;
KORF, 1993). While the pruning of branches reduces the size of the explored tree, it also
makes its shape irregular and unpredictable, causing unbalanced workloads, diverging
control flow and scattered memory access patterns. These irregularities can be highly
detrimental to the overall performance of GPU-based backtracking algorithms (DEFOUR;
MARIN, 2013). Thus, the implementation of such algorithms for GPUs is challenging.

GPU-based backtracking strategies have been efficiently used in regular scenarios,
such as using DFS to perform a complete enumeration of the solutions space (JENKINS et
al., 2011; CARNEIRO et al., 2011a; LI et al., 2015). However, they face huge performance
penalties in irregular ones, being outperformed even by their serial counterparts (FEIN-
BUBE et al., 2010).

1.1 Contextualization

Irregular applications are present in many fields of research: combinatorial optimiza-
tion, data mining, social network analysis, simulation, etc. (WANG; YALAMANCHILI,
2014). The difficulty to parallelize an application is closely related to its degree of irregu-
larity (MUKHERJEE et al., 1995). There are three classes of irregularity, explained in the
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next paragraphs (YELICK, 1993).

Irregular control structure is related to conditional structures that generate diverging
control fluxes. Applications that belong to this class are difficult to be processed
by Singe Instruction, Multiple Data (SIMD) architectures (FLYNN, 1972). Modern
GPUs belong to the Single Instruction, Multiple Threads (SIMT) architecture, a
more flexible version of SIMD where a group of threads execute concurrently the
same instruction.

Irregular data structure appears in applications based on data structures such as
unbalanced trees, sparse matrices, and graphs based on pointers. It is difficult to
predict statically the processing load required by an irregular data structure. Thus,
processing such structures usually require dynamic load balancing

Irregular pattern of communication appears in applications for which it is not
possible to know in advance the order that communication events between processes.
Irregular communication patterns are usually a consequence of processing either
irregular data structures or control structures.

Applications that belong to the above three classes at the same time are the hardest
to parallelize. Unstructured tree search applications for solving combinatorial problems,
such as backtracking and branch-and-bound (LAWLER; WOOD, 1966), are examples
of such applications. These problem solver paradigms are present in many different
areas, such as combinatorial optimization, artificial intelligence, logic, and operations
research (GRAMA; KUMAR, 1993; GENDRON; CRAINIC, 1994; ZHANG, 1996).

The focus of this thesis is on GPU-based backtracking algorithms. The program
model usually applied for backtracking parallelization on GPUs, allied to characteristics of
the problem, results in fine-grained and irregular workloads. In such fine-grained situations,
there is no parallel node evaluation and the primary focus of the implementation is on the
parallel search process.

Although GPUs suffer performance degradation while processing irregular appli-
cations, they are still an attractive alternative of an accelerator. They are ubiquitous,
energy efficient, and deliver a high price/GFLOP rate. Furthermore, on each new GPU
generation, the number of GPU cores doubles, and GPU programming interfaces and tools
have become more flexible and expressive (DONGARRA et al., 2007; FATAHALIAN;
HOUSTON, 2008; BRODTKORB et al., 2010; NVIDIA, 2016b; NVIDIA, 2016c).

Recent extensions to the general-purpose graphics processing unit (GPGPU) pro-
gramming model, such as dynamic parallelism (DP), enables any GPU thread to launch
dynamically new kernels without CPU interference (NVIDIA, 2012b). Dynamic paral-
lelism may be useful for increasing the granularity in some critical regions of code, or
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even for adapting the workload dynamically. This feature can raise the expressiveness of
the GPGPU programming model, making it possible to better address irregular appli-
cations and recursive patterns of computation, such as divide-and-conquer and nested
parallelism (ADINETZ, 2014; LI; WU; BECCHI, 2015; YANG; ZHOU, 2014). Although
dynamic parallelism was first introduced as CUDA Dynamic Parallelism (CDP) (NVIDIA,
2012a), an extension of the CUDA programming model, it is also present in OpenCL 2.0
under the name of device-side enqueue (BOURD, 2017).

1.2 Objectives

According to the context presented in the previous section, it is possible to outline
the objectives of this thesis.

1.2.1 Primary objective

The fundamental idea of the present work is to revisit a well-known programming
model for GPU-based backtracking and propose new irregular tree search algorithms,
based on recent enhancements to the GPU/CUDA programming model.

1.2.2 Secondary objectives

Besides the primary goal, this thesis has the following secondary objectives:

• To investigate the state-of-the-art on GPU-based irregular tree search algorithms
according to their qualities and limitations.

• To study the use of dynamic parallelism through a large and irregular application.

• To verify whether and how much the use of CDP can improve the performance of a
backtracking algorithm for solving permutation combinatorial problems in irregular
scenarios.

• To investigate the effects of different parameters that influence the performance of a
GPU-based backtracking algorithm.

• To identify difficulties, limitations, and bottlenecks of the CDP programming model.

1.3 Contributions

This thesis investigates several aspects involved in the development of GPU-
based backtracking algorithms: search parameters, memory requirement, data structures,
characteristics of the problem and the search algorithm. The focus of this thesis is on
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solving permutation combinatorial problems. In this kind of combinatorial problems, a
valid and complete solution is an N-sized permutation.

First, the present work revisits a well-known programming model for GPU-based
backtracking, proposing a modification of the node representation: instead of using a vector
of integers to keep track of the state of the search, the new data structure uses a bitset.
The new data structure is applied as the foundation for all other parallel backtracking
algorithms presented in this document.

The second and central part of this work proposes an extension of the referred
well-known programming model using CDP, called CDP-BP. Differently from other related
works, CDP-BP performs no dynamic allocation on GPU. Memory requirements and
allocations on global memory are managed by the host to avoid runtime errors. The
communication between parent and child grids is performed through global memory via a
thread-to-data mapping.

Related CDP-based approaches give no details concerning the setup of the following
CUDA runtime variables: the size of GPU heap and the number of kernel generations.
Without setting up these runtime variables, algorithms that perform dynamic allocation
and/or launch more than two kernel generations may present runtime errors. The third
part of this work generalizes the ideas of CDP-BP for algorithms that dynamically allocate
memory on GPU and launch more than two kernel generations.

CDP-based algorithms can be implemented without using CDP, returning the
control to the host and then launching a new kernel generation. The final part of this
thesis reports the findings of an investigation into whether the use of CDP is advantageous
over a non-CDP and equivalent counterpart.

In short, this thesis presents the following main contributions:

• A CDP-based approach that dynamically deals with the memory requirements of
the problem and avoids dynamic allocations on GPU. This strategy can achieve
speedups greater than 20 compared to the control non-CDP counterpart under some
conditions. The proposed strategy is also less dependent on parameter tuning.

• It shows that using CDP for processing a complex and demanding application, such
as parallel backtracking for solving combinatorial problems, is not straightforward.
The programmer must learn extensions of the CUDA programming model, and using
CDP also requires additional efforts to handle increasing memory requirements.

• It proposes several approaches for coping with diverse hardware limitations that CDP
has. This work has also identified several difficulties, limitations, and bottlenecks
concerning the CDP programing model, which may be useful for helping potential
users and motivate lines for further investigations.
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• Finally, it shows that it is worth using GPUs for processing backtracking, even in
irregular scenarios.

1.4 Organization

The remainder of this document is organized as follows. Chapter 2 introduces
the background topics related to the present work, including the CUDA programming
model, CUDA Dynamic Parallelism, permutation combinatorial problems, GPU-based
backtracking strategies for solving combinatorial problems, and the related works. Chapter
3 presents a new GPU-accelerated backtracking algorithm using CDP that performs no
dynamic allocation on global memory. Chapter 4 generalizes the ideas of Chapter 3 for
search procedures that dynamically allocates memory on GPU’s heap and launches various
kernel generations. Chapter 5 presents an investigation into whether the use of CDP is
advantageous over a non-CDP and equivalent counterpart. Finally, Chapter 6 brings the
conclusion, which exposes the concluding remarks, future lines of research, and outlines
the publications related to this thesis.

1.4.1 Presentation of the algorithms

This document presents several algorithms, which are mainly high-level descriptions
of CUDA C programs. This way, some of them contain notations and well-known functions
of the CUDA C programming language.

The GPU-based backtracking strategies herein proposed are for solving permutation
combinatorial problems. For the sake of greater simplicity, only algorithms for solving
instances of the ATSP to optimality are presented. These strategies can be adapted for
solving other permutation combinatorial problems with straightforward modifications. For
example, the algorithm for enumerating all feasible configurations of the N-Queens only
differs in the node evaluation function.
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2 BACKGROUND

This chapter contains background topics of this thesis. First, Section 2.1 briefly
introduces the CUDA programming model, CUDA Dynamic Parallelism (CDP), and
related works on dynamic parallelism. Section 2.3 presents the combinatorial problems
used to validate the GPU-based algorithms proposed by this work. Section 2.4 is dedicated
to GPU-based backtracking strategies for solving combinatorial problems and related
works on this subject. In turn, Section 2.5 brings details concerning the control GPU-based
implementation. Finally, Section 2.6 lists the concluding remarks of this chapter.

2.1 CUDA Programming Model

CUDA is a parallel computing platform and programming model designed to
program and exploit NVIDIA’s GPUs for general-purpose computations (NVIDIA, 2016a).
In the CUDA programming model, the code that runs on CPU (host) launches a code to
be executed by the GPU (device). The code to be processed by the device is called kernel.
The working units of CUDA are threads, each one responsible for processing an instance
of the kernel. The group of all threads that process the kernel forms a grid, where the
threads are organized according to a linear, bi-dimensional or tri-dimensional topology.

The architecture of modern GPUs can be seen as a set of multiprocessors that share
a memory interface. They are called SMX (Next Generation Streaming Multiprocessor).
An SMX has a set of specialized cores, small banks of memory and a set of registers.
These multiprocessors execute instructions in a single instruction, multiple threads (SIMT)
manner, i.e., a group of threads executes the same instruction per clock cycle.

After the kernel launch, the GPU groups threads in blocks for execution. In turn,
blocks are also divided into groups of threads that are mapped to the SMXs, called warps.
In an SMX, the warp scheduler is responsible for issuing instructions from its warps, which
execute threads in a SIMT fashion. If divergences of instructions occur inside a warp, the
diverging threads execute their instructions separately, until the end of the branch, after
which they join for continuing parallel execution. Threads divergence may cause severe
performances degradation in a CUDA application (BURTSCHER; NASRE; PINGALI,
2012).

The CUDA programming model has a memory hierarchy with several levels, and
the programmer must be aware of them to use the GPU resources properly. The most
important levels are: global, shared, register, and local memories. The communication
between the host and the device memory occurs through the global memory by using two
types of operations:
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1. host to device - H2D: copies from host’s memory to device’s global memory.

2. device to host - D2H: copies from device’s global memory to host’s memory.

Figure 1 – A summarized view of the CUDA programming model memory hierarchy.
Arrows indicate how threads, blocks, and the host communicate through the
memory hierarchy. The grid in question consists of two bi-dimensional blocks.

Thread(0,0) Thread(1,0)

Block(0,0)

Shared Memory

Registers Registers

Thread(0,0) Thread(1,0)

Block(1,0)

Shared Memory

Registers Registers

Grid

Host
Global Memory

Constant Memory

Source – Based on (NVIDIA, 2016a).

All threads being executed by the GPU have the same vision and can read/write
into the global memory through pointers. The local memory is a region of the global
memory that is exclusive to an individual thread. It keeps all thread’s local information that
the registers cannot store. Figure 1 shows a summarized view of the CUDA programming
model memory hierarchy. Threads inside a block communicate via shared memory. This
resource is limited, around 64 KB. Register and shared memory are the fastest because
they reside inside the GPU chip. The number of threads being executed at the same time
may be limited by the availability of these two memories.

For more details concerning the CUDA programming model and other NVIDIA’s
GPU architectures, refer to (NVIDIA, 2016a; NVIDIA, 2016b; NVIDIA, 2016c).

2.2 CUDA Dynamic Parallelism

NVIDIA’s Kepler architecture (NVIDIA, 2012b) has introduced CUDA Dynamic
Parallelism (CDP), making it possible to launch new grids of threads without CPU inter-
ference. CDP may be useful for increasing the granularity in some critical regions of code,
or even for adapting the workload dynamically. This feature can raise the expressiveness
of the GPU programming model, making it possible to better address recursive patterns
of computation, such as divide-and-conquer and nested parallelism (ADINETZ, 2014; LI;
WU; BECCHI, 2015; YANG; ZHOU, 2014).
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In the CDP terminology, the thread that launches a new kernel is called parent.
The grid, kernel, and block to which this thread belongs are also called parents. The
launched grid is called a child. The launching of a child grid is non-blocking, but the parent
grid only finishes its execution after the termination of its child grid, as shown in Figure
2. If any synchronization between parent and child is required, CUDA synchronization
functions such as cudaDeviceSynchronize must be applied (NVIDIA, 2012a; NVIDIA,
2016a). Inside a block, different kernel launches are serialized. To avoid serializations of
kernel launches, the programmer must create and initialize a set of streams and link each
kernel launch to a different stream.

Figure 2 – The execution of the parent grid only finishes after the termination of its child
grids.

Source – (NVIDIA, 2012a)

Concerning the memory organization, blocks of a child kernel work like the blocks
of a kernel launched by the host: they also have shared memory, and threads that belong
to a child block also have register and local memories. A Child grid is not aware of its
parent context data. Thus, the communication between parent and child is performed
through global memory. The parent thread shall not pass pointers to its shared or local
memory.

The runtime system reserves memory for management, e.g., for saving parent grids
states, and for keeping the pools of pending child grids. This memory is removed from the
amount available to the program. A pending child grid is a grid that is suspended, being
executed or waiting for execution (NVIDIA, 2016a). A GPU can hold more pending grids
than the size of the fixed pool defined by the cudaLimitDevRuntimePendingLaunchCount
variable. This is done by using the virtualized queue, and its management consumes
memory, as mentioned above. Launching a huge amount of kernels is detrimental to the
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performance of the program, because, when the fixed pool is full, the CUDA runtime uses
the virtualized one. The GPU may not be able to handle a massive number of kernel
launches, which may influence the correctness of the program. The main issue is that the
programmer may not be aware of such problems, as tracking runtime errors on the device
portion of the code are not trivial (ADINETZ, 2014).

2.2.1 OpenCL device-side enqueue

OpenCL is an open standard that provides a common API for heterogeneous
programming (STONE; GOHARA; SHI, 2010). Diverse vendors such as IBM, ARM, AMD,
Qualcomm, and Xilinx provide an OpenCL implementation for their devices. Dynamic
parallelism is also present in OpenCL 2.0 under the name of device-side enqueue, and it is
supported by AMD and Intel accelerators (MUKHERJEE et al., 2015; IOFFE; SHARMA;
STONER, 2015).

Device-side enqueue has a syntax close to CDP’s one and uses the same parent-child
terminology. Both dynamic parallelism approaches proceed the same way in what concerns
the launching of a child kernel, the termination of the parent grid, the vision of the global
memory by a child grid, and built-in means of synchronization (BOURD, 2017; IOFFE;
SHARMA; STONER, 2015).

2.2.2 Related works on dynamic parallelism

Some works have applied CDP to develop programming abstractions for recursive
computations and nested parallelism (YANG; ZHOU, 2014; WANG et al., 2015; LI; WU;
BECCHI, 2015). These works have concluded that the benefit of parallelizing nested
loops by using CDP cannot outweight its overhead, and the benefits of using CDP are
still unclear. Another issue reported is that the communication between parent and child
must be done through global memory, which requires additional programming efforts and
imposes overhead. A lightweight mechanism to spawn parallel work dynamically without
using CDP is proposed by Wang et al. (2015).

CDP has also been used for processing irregular applications, such as graph
algorithms, clustering and simulations (DIMARCO; TAUFER, 2013; ALANDOLI et al.,
2016). In particular, Dimarco and Taufer (2013) investigate the effects of CDP on the
K-means and hierarchical clustering algorithms. Results shows that the use of CDP
slowdowns the K-means algorithm. On the other hand, the hierarchical clustering has a
tree-like data dependency, and the use of CDP results in speedups between 1.78 and 3.03.
Alandoli et al. (2016) employ CDP to implement a clustering-based community detection
algorithm. Results show that the non-CDP version is twice as faster as its CDP-based
counterpart.
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A strategy that launches new grids when a kernel finds a predetermined and regular
load during its execution is proposed by Wang and Yalamanchili (2014). Results show
speedups up to 2.73. However, the use of CDP causes a slowdown on the overall performance
of the benchmark algorithms. CDP-based algorithms for breadth-first search (BFS) and
single-source shortest path (SSSP) are presented in Zhang et al. (2015). According to the
authors, CDP can simplify the development of GPU-based graph algorithms, because the
use of CDP leads to a simpler code, closer to its high-level description.

CDP has also been applied in the scope of energy-efficient computing (MEHTA;
ENGINEER, 2015; ODEN; KLENK; FRONING, 2014). Mehta et al. (2015) aims at using
CDP to generate a more energy-efficient code for ARM devices. According to the results,
it is possible to produce a code with less CPU-GPU synchronization by using CDP. This
smaller host intervention results in an energy saving of 20%. In turn, Oden, Klenk, and
Froning (2014) propose a GPU-controlled communication pattern where communication
functions are kernels dynamically launched by the GPU. The CDP-based pattern results
in a power saving of 10%. However, using CDP results in performance slowdowns.

Aliaga et al. (2016) studies the use of CDP to redesign a GPU-based conjugate
gradient method for solving sparse linear systems. Results show that the CDP version
outperforms its non-CDP counterpart, in both execution time and energy consumption.
According to the results, the CDP version is on average 3.65% faster and 14.23% more energy
efficient than its non-CDP counterpart. According to the authors, the benefits of using
CDP depends on the granularity of the CUDA kernels. Regarding the programmability,
the use of CDP leads to easier kernel implementations.

Jarząbek and Paweł (2017) apply CDP for solving three benchmark applications:
heat distribution, numerical integration, and Goldbach conjecture. According to the
experiments, the use of CDP is beneficial for applications that use hierarchically arranged
data. In such situations, CDP can be applied naturally, which results in performance gains
and programmability. Otherwise, the incorporation of CDP increases the complexity of
the code.

Mukherjee et al. (2015) aims at exploring new features present in OpenCL 2.0,
such as dynamic parallelism. The authors have redesigned a kernel for word recognition
using device-side enqueue. Another contribution of Mukherjee et al. is that they have
carried out experiments on an AMD Radeon GPU, which is an NVIDIA concurrent on
the PC gamer market. According to the results, the use of device-side enqueue leads to a
decrease in the overall throughput of the chosen application.

Intel has also provided a tutorial on using OpenCL device-side enqueue to implement
a GPU-based Quicksort and a kernel to draw fractals, called Sierpinski Carpet. According
to the results, the dynamic parallelism-based Quicksort is from 44% to 62% faster than its
OpenCL 1.2 counterpart on Intel HD Graphics 5500 GPUs. Moreover, the authors also
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state that device-side enqueue is syntactically close to CDP (IOFFE; SHARMA; STONER,
2015).

The documentation of AMD implementation of OpenCL 2.0 (AMD, 2016) presents
a binary search on a vector using device-side enqueue as a case-study. This application was
chosen because it returns the control to the host several times to call a new kernel. Results
evidence that the binary search takes advantage of enqueuing on the device instead of
returning the control to the host: The OpenCL 2.0 implementation can be more than 3
times faster than its OpenCL 1.2 counterpart for huge vectors.

2.3 Permutation Combinatorial Problems

A combinatorial problem is a problem to find a solution x, represented through
discrete variables, in a set of solutions F . A combinatorial optimization problem seeks for
a solution x ∈ F such that c(x) ≤ c(y),∀y ∈ F (minimization problem), where c is a cost
function c : F → R1 (PAPADIMITRIOU; STEIGLITZ, 1998).

This work focuses on permutation combinatorial problems, for which an N-sized
permutation represents a valid and complete solution. Permutation combinatorial problems
are used to model diverse real-world situations, such as workload scheduler for a processor,
factory assembly lines, vehicle routing, and mathematical puzzles. Furthermore, their
decision versions are usually NP-Complete. Permutation combinatorial problems have also
been used as a test-case in several related works: (FEINBUBE et al., 2010; CHAKROUN;
BENDJOUDI; MELAB, 2011; LEROY, 2015; ZHANG; SHU; WU, 2011).

Algorithms for solving combinatorial optimization problems can be divided into
exact (complete) or approximate strategies (BLUM; ROLI, 2003). Exact strategies guar-
antee to return an optimal solution for any instance of the problem in a finite amount of
time. In the scope of the NP-hard problems, complete algorithms usually apply concepts of
enumerative strategies and therefore have exponential worst-case execution times (WOEG-
INGER, 2003). In contrast, the approximate ones sacrifice the optimality and return a
good and valid solution in reasonable time (ALBA et al., 2005).

The backtracking is an exact strategy that performs implicit enumeration of the
solution space (KARP; ZHANG, 1993). There are also some cases where the backtracking
strategy halts when it finds a valid and complete solution, e.g., when solving a localization
problem (GRAMA; KUMAR, 1993). The backtracking search strategy is also used as a
component of branch-and-bound (B&B) algorithms. This kind of search strategy solves a
relaxation of the problem at each iteration, making new subproblems more restrict than
its parent node (LAWLER; WOOD, 1966; MITTEN, 1970). A B&B strategy that uses
backtracking as a search component is usually referred as DFS-B&B, as the most recently
generated node is always explored first (ZHANG, 1996; ZHANG, 2000).
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The following introduces the two problems used to validate the GPU-based back-
tracking algorithms proposed in this work. The Asymmetric Traveling Salesman Problem
(ATSP) and N-Queens are well known permutation combinatorial problems. Indeed, they
are widely used in research works related to the contributions of this thesis.

2.3.1 The Asymmetric Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is an NP-hard problem that consists in
finding the shortest Hamiltonian cycle(s) through a given number of cities. For each pair
of cities (i, j) a cost cij is given by a cost matrix CN×N . The TSP is called symmetric if
the cost matrix is symmetric (∀i, j : cij = cji), and asymmetric otherwise. It is one of the
most studied Combinatorial Optimization Problems (COP), having plenty of real world
applications (LAPORTE, 2006). Due to TSP’s relevance, it is often used as a benchmark
for novel problem-solving strategies (COOK, 2012).

The ATSP instances used in this work come from a generator that creates instances
based on real-world situations (CIRASELLA et al., 2001). Three classes of instances have
been selected: coin, modeling a person collecting money from pay phones in a grid-like city;
crane, modeling stacker crane operations; and tsmat, consisting of asymmetric instances
where the triangle inequality holds. This thesis does not use instances from the well known
TSPLIB (REINELT, 1991) library. These instances are too big to be solved to optimality
by using backtracking without solving a relaxation of the problem on each iteration of
the algorithm. For this purpose, B&B search algorithms (and its variations) are usually
employed (FISCHETTI; LODI; TOTH, 2003; TURKENSTEEN et al., 2008; GERMS;
GOLDENGORIN; TURKENSTEEN, 2012).

2.3.2 The N-Queens Puzzle Problem

The N-Queens puzzle (ABRAMSON; YUNG, 1989) is the problem of placing N

non-attacking queens on a N ×N chessboard. The version of the N -Queens used in this
work consists in finding all feasible board configurations. N-Queens is easily modeled as
a permutation problem: position i of a permutation of size N designates the column in
which a queen is placed in row j. To evaluate the feasibility of a partial solution, a function
checks for diagonal conflicts in this partial solution. Although symmetries in this problem
can be exploited, this work makes no use of them.

N-Queens is often used as a benchmark for new GPU-based backtracking strate-
gies (ROCKI; SUDA, 2009; FEINBUBE et al., 2010; ZHANG; SHU; WU, 2011; THOUTI;
SATHE, 2012; PLAUTH et al., 2016).
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2.3.3 Comparison between ATSP and N-Queens

A first significant difference between the two problems is that each ATSP instance
has its peculiarities (JOHNSON et al., 2004; FISCHER et al., 2005). Two instances of the
same size N may result in a different behavior for the same algorithm. So, the algorithm
may perform well for one class of instance and poorly for another. Moreover, the ATSP is
an optimization problem, and there is the need to keep track of an incumbent solution. In
contrast to the ATSP, N-Queens does not require a cost matrix, and solving the problem
with size N means enumerating all feasible configurations for an N ×N board. For this
reason, there are several backtracking algorithms designed only to solve the N-Queens
that explore specific properties of the board (SOMERS, 2002; BELL; STEVENS, 2009).

Solving the ATSP on GPUs by backtracking, performing implicit enumeration, is
challenging (CARNEIRO et al., 2011a; CARNEIRO et al., 2011b; CARNEIRO et al., 2012;
PESSOA et al., 2016). Node evaluation can be done in constant time and requires few
arithmetic operations. In this fine-grained situation, there is no parallel node evaluation,
and the primary focus of the implementation is in the parallel search process. For the
N-Queens, the algorithm performs a diagonal check for conflicts before placing a queen in
position i of the N-sized permutation. Therefore, the complexity of the node evaluation
function for the N-Queens is O(N).

A valid solution for the ATSP always contains the starting city in the first position.
For the N-Queens problem, there is no such requirement. This way, an exact algorithm
for the ATSP must check up to (N − 1)! solutions, whereas the number of solutions for
the N-Queens problem is N !. This characteristic also influences the upper bound on the
solution space size, which is N times bigger for the N-Queens, taking into account an
N-sized problem.

Because of the combinatorial nature of ATSP and N-Queens, the concepts presented
by this work can be applied to solve other combinatorial optimization and constraint
satisfaction problems, such as flow shop scheduling, quadratic assignment, minimum linear
arrangement problem, knight’s tour problem, etc.

2.4 GPU-based backtracking strategies for solving combinatorial problems

This section presents a brief introduction to the backtracking tree search strategy
and the most widely applied strategies for its parallelization. It also introduces the most
used programming model for backtracking parallelization on GPUs, followed by related
works on the literature.
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2.4.1 Backtracking

Backtracking algorithmsBacktracking algorithms explore the solution space dy-
namically building a tree in depth-first fashion (GOLOMB; BAUMERT, 1965; BITNER;
REINGOLD, 1975). The root node of this tree represents the initial problem to be solved,
internal nodes are incomplete solutions, and leaves are solutions (valid or not).

The algorithm iteratively generates and evaluates new nodes, where each child
node is more restricted than its father node. Newly generated nodes are stored inside
a data structure, conventionally a stack for depth-first search. At each iteration, the
leftmost deepest node is removed from the data structure and evaluated. If this node can
lead to a valid solution, it is decomposed, and its children nodes are added to the data
structure. Otherwise, it is discarded from the search, and the algorithm backtracks to an
unexplored (frontier) node. This action prunes (eliminates) some regions of the solution
space, preventing the algorithm from unnecessary computations. The search strategy
continues to generate and evaluate nodes until the data structure is empty or until a valid
and complete solution is found (KARP; ZHANG, 1993; ZHANG, 2000).

2.4.2 General strategies for parallelization

There are several approaches to the parallelization of backtracking search strategies.
One node-oriented parallel model consists of evaluating and expanding nodes in paral-
lel (GENDRON; CRAINIC, 1994; CRAINIC; CUN; ROUCAIROL, 2006). This strategy
usually has a master process which manages a central data structure that keeps the
pending nodes. This data structure that stores nodes not yet branched is also called Active
Set (ZHANG, 1996). The master process sends/receives nodes to/from slave processes,
which are responsible for branching these nodes, i.e., for generating nodes more restricted
than the node’s father, and for evaluating these nodes, as shown in Figure 3. That is
the reason why the node-oriented model is also called master/slave model. The degree of
parallelism in the master/slave model is limited and strongly depends on the characteristics
of the node evaluation function and the branching factor of a node. Parallel tree search
algorithms and skeletons for shared memory and distributed memory systems usually
apply the node-oriented programming model (DORTA et al., 2003; CUN; ROUCAIROL,
1995; GALEA; CUN, 2007; DANELUTTO et al., 2016).

Another approach, used in this work, consists in having multiple backtracking
processes exploring different parts of the solution space independently. In the tree-oriented
model, each process has its Active Set. The load balancing and coherency of the incumbent
solution are performed through communication between processes, as shown in Figure 4.
The degree of parallelism in this tree-based approach can be very high. However, it
depends on the shape of the explored tree: splitting of the tree among processes leads
to an imbalanced workload repartition, and the node representation makes challenging



31

Figure 3 – Node-oriented (master/slave) programming model for parallel backtracking.

Centralized Active Set 

Master Process

Process 0 Process 1 Process 2

Source – Based on (CRAINIC; CUN; ROUCAIROL, 2006).

to share work among processes (GRAMA; KUMAR, 1993; KARYPIS; KUMAR, 1994;
JENKINS et al., 2011).

Figure 4 – Tree-oriented programming model for parallel backtracking.

Active Set 0

Process 0

Active Set 1

Process 1

Active Set 2

Process 2

Active Set 3

Process 3

 Load balancing and coherency of
the incumbent solution

Source – Based on (CRAINIC; CUN; ROUCAIROL, 2006).

2.4.3 GPU-based strategies

GPU (ROCKI; SUDA, 2009; FEINBUBE et al., 2010; CARNEIRO et al., 2011a;
CARNEIRO et al., 2011b; CARNEIRO et al., 2012; ZHANG; SHU; WU, 2011; LOPEZ-
ORTIZ; SALINGER; SUDERMAN, 2013; LI et al., 2015; PLAUTH et al., 2016; KRA-
JECKI et al., 2016). The initial backtracking on CPU performs DFS until a cutoff depth
dcpu. All objective nodes (valid, feasible and incomplete solutions at dcpu) are stored in the
Active Set Acpu, which keeps all nodes evaluated but not yet branched.
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The cutoff depth dcpu is a problem-dependent parameter, determined ad-hoc or
through manual tuning. For the N-Queens puzzle problem, introduced in Section 2.3,
dcpu corresponds to all valid configurations of the puzzle after placing dcpu queens on the
board. For the ATSP, nodes at depth dcpu correspond to partial permutations with dcpu

cities. Figure 5 shows an illustration of the initial CPU backtracking whereas Algorithm 1
presents a pseudocode for the GPU-based backtracking in question.

Figure 5 – Initial CPU search for a generic permutation combinatorial problem of dimen-
sion N = 4 and dcpu = 3.
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Algorithm 1: CPU-GPU parallel backtracking algorithm.
1 I ← get_problem()
2 p← get_gpu_properties()
3 dcpu ← get_cpu_cutoff_depth()
4 Acpu ← generate_initial_active_set(dcpu, I)
5 S ← ∅
6 while Acpu is not empty do
7 S ← select_subset(Acpu, p)
8 chunk ← |S|
9 Acpu ← Acpu \ S

10 allocate_data_on_gpu(chunk)
11 transfer_data_to_gpu(S, chunk)
12 nt← get_block_size()
13 nb← dchunk/nte
14 parallel_backtracking <<< nb, nt >>> (I, S, chunk, dcpu)
15 synchronize_gpu_cpu_data()
16 end

Initially, the algorithm gets the problem to be solved (line 1) and the properties of
the GPU (line 2). Next, the variable dcpu receives the initial cutoff depth (line 3 ). After
the initial CPU backtracking (line 4 ), a subset S ⊆ Agpu of size chunk ≤ |Acpu| is chosen
(line 7 ). This choice may be made, for instance, based on the properties p of the GPU.
Next, the host (CPU) updates Acpu, transfers S to GPU’s global memory (lines 8− 11).
Then, the host configures and launches the kernel (lines 12 − 14). In the kernel, each
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node in S represents a concurrent backtracking root Ri, i ∈ {0, ..., chunk − 1}. Therefore,
each thread Thi explores a subset Si of the solution space S concurrently, as illustrated
by Figure 6. The kernel ends when all threads have finished their exploration of Si. The
kernel may be called several times until Acpu is empty.

Figure 6 – Each node in S represents a concurrent backtracking root Ri. In the kernel,
each thread Thi explores a subset Si of the solutions space that has Ri as the
root.
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The described GPU backtracking strategy performs well in regular scenarios (ZHANG;
SHU; WU, 2011; CARNEIRO et al., 2012; LI et al., 2015; JENKINS et al., 2011), but it
faces a decrease of performance in more irregular ones, being outperformed even by the
serial CPU implementation in some situations (FEINBUBE et al., 2010). The problems
commonly solved by the referred backtracking strategy usually produce fine-grained and
irregular workloads. In such scenarios, the GPU suffers from load imbalance, uncoalesced
memory accesses, and diverging instruction flow. For this reason, to achieve a proper
utilization of the multiprocessors, this parallel backtracking strategy must launch a huge
amount of GPU threads (JENKINS et al., 2011). Therefore, besides the characteristics
of the problem at hand, the performance of a GPU-based algorithm also depends on the
tuning of several parameters, such as dcpu, block size, and whether to use or not different
levels of the memory hierarchy (ZHANG; SHU; WU, 2011; PLAUTH et al., 2016).

2.4.4 Related GPU-Based Backtracking Strategies

Sommers (2002) presents a backtracking strategy to enumerate all valid solutions
of the N-Queens problem. Such an algorithm is highly optimized for execution on one core
of the CPU. It uses bit-sets to keep track of the position of the queens and to be aware
of diagonal conflicts and employs instruction-level parallelism to speedup set operations.
The use of bitsets allied to the instruction level parallelism results in node evaluation in
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constant time. Moreover, this algorithm uses symmetry properties of the board to reduce
the size of the solution space. Sommer’s algorithm is also considered as a CPU-baseline
for several works related to this thesis.

Feinbube et al. (2010) present a GPU-based version of the well-known bit-parallel
code of Sommers (2002). This GPU-based version calculates all valid and unique configura-
tions for a given number of rows. In this sense, the number of rows means the cutoff depth
dcpu. Feinbube et al., rather than performing a CPU vs. GPU comparison, have presented
several code optimization strategies. The programming model based on cutoff depth is
also applied by Zhang, Shu, and Wu (2011) for enumerating all valid solutions of the
N-Queens problem. This work presents diverse memory access optimizations and also states
the difficulty of programming irregular applications for GPUs. Thouti and Sathe (2012)
investigate the implementation of a program for enumerating all valid solutions of the
N-Queens problem by using OpenCL (STONE; GOHARA; SHI, 2010), rather than the
CUDA C language.

GPU-based algorithms that apply the tree-based strategy with cutoff depth dcpu

are commonly used to solve game tree problems, such as the minimax tree search (ROCKI;
SUDA, 2009; LI et al., 2015). Both related works state that the GPU-based game tree
search is dozens of times faster than their serial counterparts in regular scenarios. However,
the GPU-based versions suffer from warp divergence in irregular scenarios. In such a
situation, both works pointed out that the speedups obtained are around 10× smaller.
Strnad and Guid (2011) present a variation of the algorithm of Rocki and Suda (2009) for
solving zero-sum board games. Speedups ranging from 1.2 to 23 are observed for boards
bigger than 32× 32.

Carneiro et al. (2011a) propose a GPU-based backtracking strategy for solving
permutation combinatorial problems that follows the programming model introduced in
Section 2.4.3. Carneiro et al. (2011b) extend the algorithm of Carneiro et al. (2011a) for
solving to optimality instances of the ATSP. Both works report that these GPU-based
approaches are much faster than their multi-core counterparts in regular scenarios. In
irregular scenarios, the performance depends strongly on the shape of the tree and the
tuning of many parameters. Carneiro et al. (2012) present a GPU-based version of the
Jurema Search Strategy (PESSOA; GOMES, 2010) and compare it to the backtracking
strategy of Carneiro et al. (2011a) using instances of the ATSP as benchmark. According
to the results, both approaches suffer from the same problems: load imbalance and warp
divergence. Even in the irregular scenarios used as benchmark, both GPU implementations
are faster than their multi-core counterparts.

In the tree-based model usually applied by the GPU-based strategies listed above,
the node representation makes it difficult to share work among processes. In this scope,
Jenkins et al. (2011) propose a CPU-GPU stack-splitting strategy that does not apply
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the tree-based programming model in question. In this algorithm, each warp has its stack,
and the CPU does the load-balancing after each iteration of the algorithm. However,
due to the irregular and fine-grained nature of the problem solved, this strategy cannot
obtain high speedups compared to its serial counterpart, reaching speedups up to 2.25.
Karypis and Kumar (1994) introduce a trigger mechanism that halts the kernel and
redistributes the load among the processors if some unbalance rule is met. Although this
strategy was mainly designed for SIMD architectures, it can be redesigned for modern
GPUs (PESSOA et al., 2016).

The GPU-based works above cited are CPU-GPU approaches in the sense that there
is a search on the CPU until a cutoff condition happens. Differently, Krajecki et al. (2016)
and Lópes-Ortiz, Salinger, and Suderman (2013) exploit the CPU to perform the final
search along with the GPU. Krajecki et al. (2016) propose a multi-GPU and distributed
backtracking for solving the Langford Problem (SIMPSON, 1983). Initially, the search
strategy starts just like in Algorithm 1, generating the initial load. Then, tasks are
distributed among multi-GPU nodes in a client-server manner. Lópes-Ortiz, Salinger, and
Suderman (2013) present a generic CPU-GPU approach for divide-and-conquer algorithms.
Moreover, the referred work also proposes cutoff conditions and load distribution rules.

There are also algorithms designed to tackle the workload imbalance of GPU-based
DFS-B&B algorithms for solving permutation combinatorial problems (GMYS et al., 2016).
In this approach, the load balancing is performed without intervention of the host, inside a
work stealing phase, which is invoked after each branching phase. The referred algorithm
uses a data structure dedicated to permutation combinatorial optimization problems called
Integer-Vector-Matrix (IVM) (MEZMAZ et al., 2014).

2.4.4.1 Related CDP-based backtracking strategies

Plaut et al. (2016) proposes three CDP-based strategies based on Sommers (2002)
algorithm for enumerating all valid solutions of the N-Queens problem. These approaches
are called DP1, DP2, and DP3.

DP1 is equivalent to a parallel breadth-first search. Each frontier node found at
depth d is a root of a new kernel launch. The next generation searches for frontier nodes at
depth d + 1. The search continues this way until it evaluates the solution space completely.

The strategy called DP2 follows the model introduced in Section 2.4.3, and it
is based on two depths: dcpu and dgpu. Each backtracking search starting at depth dcpu

searches for frontier nodes at depth dgpu. The first thread that finds a frontier node at dgpu

allocates enough memory for the maximum number of frontier nodes its block can find
at dgpu. Then, a recursive new generation of kernels is launched by using CDP, searching
from dgpu to N .
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Finally, DP3 applies the concepts of DP2. However, DP3 doubles dgpu at each new
recursive kernel launch, until the search reaches the base depth of the recursion. The
strategy of doubling dgpu, adapting the launch of a new kernel generation to the shape
of the tree, is closely related to the CPU-GPU approach of load balance proposed by
Jenkins et al. (2011).

Results show that DP3 is superior to DP2, as it produces a more regular load
to the GPU. Results also report that all proposed CDP-based implementations cannot
outperform the control non-CDP counterpart. The overhead caused by dynamic memory
allocations and dynamic kernel launches outweighs the benefits of the improved load
balance yielded by CDP. Moreover, the performance of all proposed CDP-based algorithms
for solving the N-Queens strongly depends on the tuning of several parameters, such as
cutoff depth and block size.

2.5 Data structure and Search strategy employed

This section introduces the data structure and the backtracking search procedure
applied by all GPU-based algorithms presented in this thesis. As pointed out in Section 1.4.1,
the present section details the control backtracking implementation for solving the ATSP.

2.5.1 Control GPU-based implementation: BP-DFS

The control GPU-based implementation is an improvement of the GPU-based strat-
egy proposed by Carneiro et al. (2011a) for solving permutation combinatorial problems,
further referred as GPU-DFS. In addition to several code improvements, the main differ-
ence between the control implementation and GPU-DFS lies on the data structure that
represents the current state of the search, called Node. GPU-DFS’ Node contains a vector
of integers (4 bytes) of size dcpu, identified by cycle. This vector stores a feasible, valid
and incomplete solution for the ATSP. Moreover, the data structure Node also contains
a vector of integers (4 bytes) of size N , identified by visited, and an integer variable,
identified by cost, which stores the cost of the partial solution at hand. The search keeps
track of visited cities by setting visited[n] to 1 each time the salesman visits the n-th city.

Backtracking algorithm may use bitsets to accelerate set operations. Algorithms
that use this kind of instruction level parallelism are often called bit-parallel (BP) algo-
rithms (SEGUNDO; ROSSI; RODRIGUEZ-LOSADA, 2008). Differently from GPU-DFS,
the control implementation employs the bitset data structure to keep track of the visited
cities. Moreover, this new data structure also aims at reducing the amount of memory
required by a thread and the number of accesses to the local memory of the GPU. The
bitset-based implementation of GPU-DFS will be further referred as BP-DFS.

The Node data structure of BP-DFS contains a vector of char of size dcpu, identified
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by cycle, and two integer variables. The vector cycle stores a feasible, valid, and incomplete
solution. In turn, the first integer variable keeps the cost of this partial solution at hand.
Finally, the second integer variable, identified by bitset, keeps track of visited cities by
setting its bit n to 1 each time the salesmen visits the n-th city.

The data structure Node is similar to any permutation combinatorial problem.
Taking into consideration the N-Queens problem, it does not contain the variable cost.
Also, the vector cycle is the vector board, which keeps a valid configuration of the chess
board.

2.5.1.1 Search procedure

BP-DFS is a direct implementation of Algorithm 1. The initial CPU search performs
a backtracking from depth 1 until the cutoff depth dcpu, storing all frontier nodes in Acpu.
Once the initial search is finished, the host transfers Acpu (or a subset of it) to the GPU.
After each kernel execution, there is a synchronization of data between the CPU and the
GPU that retrieves information such as the number of solutions found, tree size, and best
solution found.

The search strategy applied by BP-DFS is a non-recursive backtracking that does
not use dynamic data structures, such as stacks. The semantics of a stack is obtained by
using a variable depth and by trying to increment the value of the vector cycle at position
depth. If this increment results in a valid incomplete solution, the cost of this solution
is compared to the value of the incumbent one. In the case the cost of the incomplete
solution at hand is smaller than the cost of the incumbent one, depth is incremented, and
the search proceeds to the next depth. After trying all configurations for a given depth,
the search backtracks to the previous one.

For all GPU-based implementations further proposed by this work, the search
strategy is an instance of the kernel. Referring to Figure 7, thread Thi, i ∈ {0, 1, ..., |Acpu|−
1} starts its data with root Ri, of type Node. By using the informations of Ri, thread Thi

implicitly enumerates the solutions space Si.

2.6 Concluding Remarks

This chapter has presented the background topics related to this thesis. Based on
the previous sections, it is possible to draw the following conclusions.

Dynamic parallelism is an extension of the GPGPU programming model to better
cope with nesting parallelism and divide-and-conquer patterns of computation. Although
DP was first introduced as CDP, it is also present in OpenCL 2.0 and supported by devices
of two rivals of NVIDIA in the market: Intel and AMD. DP is beneficial for processing
applications whose data are arranged in a hierarchical way and programs that return the
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Figure 7 – Illustration of Acpu for BP-DFS. This active set is generated by the initial
backtracking on CPU while solving an instance of the ATSP of size N = 4 with
cutoff depth dcpu = 3. Each node in Acpu represents a concurrent backtracking
root Ri of type Node.
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control to the host several times. In such situations, the use of DP may lead to performance
gains and result in a code closer to a high-level description of the algorithm. However,
when these requirements are not met, the use of DP may result in significant overheads
and makes the code more complex. In the scope of energy-efficient computing, it is a
consensus that using DP leads to a more energy-efficient application.

The problems chosen as test-cases are the ATSP and the N-Queens. Although
both are permutation combinatorial problems, they have many differences. Among the
exact strategies for solving combinatorial problems, the backtracking implicitly evaluates
the solution space systematically, building a tree in a depth-first order. Moreover, the
backtracking is also a component of DFS-B&B algorithms.

GPU-based backtracking algorithms often apply the tree-oriented approach for
parallelization, and usually follow the CPU-GPU model introduced in Section 2.4.3. It
is challenging to run backtracking efficiently on GPUs. Characteristics of the problem
commonly solved, allied to properties of DFS, result in fine-grained and irregular workloads.
Moreover, an efficient code usually requires several problem-dependent parameters tuning.

Finally, the background section also has presented the base data structure and
the control GPU-based implementation: BP-DFS. The base data structure uses bitsets
to represent the current state of the search and aims at reducing the number of accesses
to the local memory of the thread. In turn, BP-DFS was conceived mainly for solving
permutation combinatorial problems. This implementation applies the base data structure,
and follows the CPU-GPU model introduced in Section 2.4.3.
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3 GPU-ACCELERATED BACKTRACKING ALGORITHM USING
CUDA DYNAMIC PARALLELISM

This chapter presents a new GPU-accelerated backtracking strategy based on CDP
and mainly designed for solving permutation combinatorial problems. The objective of this
chapter is to verify whether and how much the use of CDP can improve the performance
of a GPU-based backtracking algorithm in irregular scenarios.

In the proposed algorithm, the search starts on CPU, processing the tree until a
first cutoff depth. Based on this partial backtracking tree, the memory required by the
subsequent kernel generations is calculated and preallocated. Therefore, differently from
the CDP-based strategies introduced in Section 2.4.4.1, GPU threads do not perform
dynamic memory allocations.

The proposed algorithm has been extensively validated by solving instances of the
ATSP by implicit enumeration and by enumerating all valid solutions of the N-Queens
problem. Results show that the CDP-based implementation reaches speedup up to 25
compared to its non-CDP counterpart (BP-DFS), for some configurations. Moreover,
the experimental results show that the proposed CDP-based implementation has much
better worst-case execution times, and its performance is less dependent on the tuning of
parameters. However, as the use of CDP induces significant overheads, the comparison also
shows that a well-tuned non-CDP version can be more than twice as fast as its CDP-based
counterpart.

The main contributions reported in this chapter are the following:

• A CDP-Based backtracking algorithm that dynamically deals with the memory
requirements of the problem and avoids dynamic allocations on GPU.

• The hybridization of this algorithm with another existing from the literature signifi-
cantly boosts the performance of this related algorithm.

• This chapter presents conclusions on different aspects of the CDP programming
model, such as the number of GPU streams, dynamic allocation, global memory
mapping, and block size.

• The identification of difficulties, limitations, and bottlenecks concerning the CDP
programming model may be useful for helping potential users and motivate lines for
further investigations.

The remainder of this chapter is organized as follows. Section 3.1 introduces the
initial premises considered in the conception of the strategy. Sections 3.2 to 3.7 detail the
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new CDP-based backtracking algorithm. Next, a computational evaluation is presented in
Section 3.8. Finally, Section 3.9 outlines the concluding remarks.

3.1 Initial Premises

Related CDP-based strategies dynamically allocate memory on GPU if at least one
objective node is found by a block of threads at dgpu (PLAUTH et al., 2016). This strategy
works well for the N-Queens, for problem sizes up to N = 16 and using symmetries, which
considerably decreases the size of the explored tree (SOMERS, 2002).

Figure 8 shows, for ATSP instances and N-Queens of size 15, the percentage of
nodes not pruned at depths 5 to 9 compared to the maximum theoretical number of nodes,
called survivors. For all ATSP instances, the percentage at depths 5–7 is superior to 80%
of the maximum theoretical number of nodes. For N-Queens, this percentage is much
lower, around 15% at depth 7.

Figure 8 – Percentage of nodes not pruned at depths 5 to 9 compared to the maximum
theoretical number of nodes. Results are for ATSP instances and N-Queens of
size N = 15. The initial upper bound was set to the optimal solution.
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In a CUDA-based algorithm, if dynamic allocations on GPU require more than
8 MB, the variable cudaLimitMallocHeapSize must be set accordingly. However, to know
these requirements in advance is difficult, and insufficient heap size leads to runtime errors.
For example, Figure 8 illustrates that the solution space is much bigger for class tsmat

than for class crane, although both instances are of size N = 15. Moreover, such memory
requirements may be huge for permutation combinatorial problems (ZHANG, 1996).

Consider instance tsmat15 and the algorithm DP3, previously introduced in Sec-
tion 2.4.4.1. As DP3 doubles dgpu on each recursive dynamic kernel launch, for N = 15,
dcpu is 2, and dgpu has the values 4 and 8. In this situation, for storing the frontier nodes at
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dgpu, the search must dynamically allocate approximately the following amount of memory
(in MB):

[
(15− 1)!
(15− 4)! × sizeof(Node)

]
+

[
(15− 1)!
(15− 8)! × sizeof(Node)× 0.9

]
,

which is a value bigger than 600MB. Performing dynamic allocations on GPU’s heap
of such a big amount of memory may be harmful to the performance of GPU-based
algorithms (STEINBERGER et al., 2012; WIDMER et al., 2013).

Based on these premises, this chapter presents a CDP-based algorithm that extends
the parallel backtracking model introduced in Section 2.4 and does not perform dynamic
allocations on GPU. As BP-DFS, the proposed approach begins on CPU and stores frontier
nodes at dgpu in the active set. The first kernel generation searches from dcpu to the second
cutoff depth dgpu, and stores the frontier nodes in an active set on global memory. The
second generation of kernels is responsible for searching from dcpu to the solution depth N .
Memory requirement and allocations on global memory are managed by the host to avoid
runtime errors. This management takes into consideration the partial backtracking tree,
the requirements of the subsequent kernel generations launched by CDP, and properties
of the device. The communication between parent and child grids is performed through
global memory via a thread-to-data mapping. So, threads of different generations can
identify data for initialization and pass data to child grids.

The next sections provide a detailed description of the main steps of the proposed
algorithm: initial CPU search, memory requirement analysis, launching the Intermediate
GPU Search, Intermediate GPU Search, and Final GPU Search.

3.2 Initial CPU search

The initial CPU search procedure is described in Algorithm 2. Before the search
begins, the algorithm reads the instance size N , the cost matrix Ch

N×N , and the cutoff
depth dcpu (lines 1 – 3). Then, to make the pruning process more efficient, the variable
upper_bound gets the cost of a valid complete solution for the instance at hand (line 4).
Host (CPU) and device (GPU) data structures will be further distinguished by the
superscripts h and d, respectively.

The initial CPU search performs DFS from the root (depth 1) until the cutoff
depth dcpu, storing all frontier nodes at depth dcpu (feasible and valid incomplete solutions)
in the active set Ah

cpu. After the initial search, the variable survivors receives the |Ah
cpu|

(line 7 ).

The initial CPU backtracking can be performed in parallel. However, the initial
search explores just a small fraction of the solution space. The programmer needs to ensure
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Algorithm 2: Initial CPU Search.
1 N ← get_instance_size()
2 Ch ← get_cost_matrix()
3 dcpu ← get_cpu_cutoff_depth()
4 upper_bound← get_initial_solution(N, Ch)
5 Ah

cpu ← ∅
6 initial_CPU_search(Ah

cpu, dcpu, N, Ch, upper_bound)
7 survivors← |Ah

cpu|

that the overhead of initializing a parallel search procedure is negligible compared to the
time spent exploring this small fraction of the search space. The Node representation and
search procedure are the ones introduced in Section 2.5.

3.3 Analysis of Memory Requirement

To avoid dynamic allocations and to cope with possible GPU memory limitations,
the Analysis of Memory Requirement proceeds as described in Algorithm 3.

Initially, the algorithm reads the GPU properties and the second cutoff depth dgpu

(lines 1 – 2). Then, the algorithm calculates the maximum number of nodes expected at
depths dcpu and dgpu (lines 3 – 4). These values will be further identified by maxcpu and
maxgpu. Next, the maximum number of children nodes a survivor node at depth dcpu may
have at depth dgpu is calculated (line 5) by:

expected_children_dgpu = maxgpu

maxcpu

.

This value is used to deduce the maximum number of nodes Agpu may contain (line 6 ):

max_Agpu_size = survivors× expected_children_dgpu

Knowing max_Agpu_size, the next step is to calculate the amount of global
memory requested by CDP (rcdp bytes). This amount includes memory for allocation of
Ad

cpu (survivor nodes), Ad
gpu (max_Agpu_size nodes), and the control data.

If rcdp exceeds the amount of available global memory on the GPU, the algorithm
proceeds as follows (lines 7 – 13). An integer chunk, less or equal than survivors, is
defined. Thus, Ad

gpu will contain at most chunk × expected_children_dgpu nodes. The
value of chunk is decreased (line 10) until it is possible to allocate data on the GPU. After
finding a suitable value for chunk, data is allocated on the global memory of the GPU
(lines 14 – 17). This allocation is done only once, because GPU processes at most chunk

nodes. So, this memory can be reused by data transfer operations and future generations
of CDP kernels.
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It is important to notice that CDP stores memory to keep track of the parent kernel
status if cudaDeviceSynchronize() is called after a child kernel launch. According to
Adinetz (2014), up to 150 MB are stored for each parent kernel generation (host included),
depending on the hardware. Algorithm 3 considers this value equal to 150 MB because
the exact value a GPU stores cannot be easily obtained (refer to Annex A). Therefore,
2× 150MB are removed from the available global memory.

If subsequent generations of kernels dynamically allocate memory on GPU’s heap,
cudaLimitMallocHeapSize must also be added to rcdp. CDP also uses memory for the
management of pending grids. Thus, only a fraction of the global memory is taken into
account in the call to memo_requirement (lines 8, 9 and 12). Parameter configurations
will be further detailed in Section 3.8.2.

Algorithm 3: Analysis of Memory Requirement and data allocation.
Input: Cost matrix Ch

N×N , survivors, Ah
cpu, dcpu,dgpu, and the size N of the

problem.
1 p← get_gpu_properties()
2 dgpu ← get_gpu_cutoff_depth()
3 maxcpu ← (N−1)!

(N−dcpu)!

4 maxgpu ← (N−1)!
(N−dgpu)!

5 expected_children_dgpu ← maxgpu

maxcpu

6 max_Agpu_size← survivors× expected_children_dgpu

7 chunk ← survivors
8 rcdp ← memo_requirement(p, chunk, max_Agpu_size, N, Ch)
9 while rcdp > p.memorySize do

10 chunk ← chunkUpdate(chunk)
11 max_Agpu_size← chunk × expected_children_dgpu

12 rcdp ← memo_requirement(p, chunk, max_Agpu_size, N, Ch)
13 end
14 cudaMalloc(Ad

cpu, chunk × sizeof(Node))
15 cudaMalloc(Ad

gpu, max_Agpu_size× sizeof(Node))
16 cudaMalloc(Cd, N ×N × sizeof(int))
17 cudaMalloc(control_datad, ...)

3.4 Launching the intermediate GPU search

Having determined a suitable chunk size, the host launches the first kernel, fur-
ther mentioned as Intermediate GPU Search, possibly several times until Ah

cpu is empty.
Algorithm 4 shows how the Intermediate GPU Search call proceeds.

Initially, two integer variables counter and remaining are initialized to 0 and
survivors, respectively (lines 1 – 2). The first, counter, is used to make Ah

cpu point to
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unexplored nodes (line 8 ) and to verify the termination of the whole search process (line 5 ).
The second, remaining, is used to avoid unnecessary or out of bounds data transfers.
Before the beginning of the GPU search, a host-to-device (H2D) copy sends the active set
(Ah

cpu) to the GPU.

After each run, the pointers of Ah
cpu are updated to unexplored data (line 11 ).

Therefore, on the next iteration, up to chunk unexplored nodes from Ah
cpu are transferred

to the GPU. It is not necessary to perform H2D copies of control data, because the
GPU is responsible for this data. However, enough host memory must be allocated for
control_datah before calling the intermediate GPU search for the fist time. When the
GPU search is completed, the variables counter and remaining are updated and the
control data from the GPU is retrieved (lines 10 – 15).

Algorithm 4: Launching the Intermediate GPU Search.
Input: Cost matrices Ch

N×N , Cd
N×N , survivors, chunk, Ah

cpu, Ad
cpu, Ad

gpu, dcpu, dgpu,
control_datad, expected_children_dgpu, the global upper bound, and the
size N of the problem.

1 counter ← 0
2 remaining ← survivors
3 set_CDP_variables()
4 cudaMemCpy(Cd, Ch, N ×N × sizeof(int), H2D)
5 while counter < survivors do
6 nt← get_block_size()
7 nb← dchunk/nte
8 cudaMemCpy(Ad

cpu, (Ah
cpu + counter), chunk × sizeof(Node), H2D)

9 intermediate_GPU_search <<< nb, nt >>>
(Cd, chunk, expected_children_dgpu, Ad

cpu, Ad
gpu, dcpu, dgpu, upper_bound, control_datad)

10 retrieveControlData(control_datah, control_datad, chunk, expected_children_dgpu)

11 counter ← counter + chunk
12 remaining ← remaining − chunk
13 if remaining < chunk then
14 chunk ← remaining
15 end
16 end

If subsequent kernel generations allocate memory on GPU’s heap, the parameter
cudaLimitMallocHeapSize must be modified to a suitable value 1. If any synchronization
between parent and child grids is required, the variable cudaLimitDevRuntimeSyncDepth
must be set to the deepest synchronization level. Otherwise, the GPU may not keep
1 Insufficient heap size may result in the “an illegal memory access was encountered” error.
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memory to store the state of the parent grid. The configuration of these parameters are
performed by a call to the function set_CDP_variables (line 3 ).

3.5 Intermediate GPU Search

The Global memory is the communication interface between the host and the device,
as well as between two generations of kernels. The Intermediate GPU Search provides
a thread-to-data mapping for its subsequent generations of child grids and launches the
first generation of CDP kernels. The Intermediate GPU Search and its data mappings are
detailed in Algorithm 5.

3.5.1 Initialization and Search Procedure

All frontier nodes in Ad
cpu are roots Ri, i ∈ {0, ..., chunk − 1}, of a disjoint search

space Si, as shown in Figure 7. The thread Thi initializes its local data with root node Ri

(lines 1 – 3) and then starts its search.

The search is performed from the root’s depth dcpu until the GPU’s cutoff depth
dgpu, using a global upper bound to prune. All objective nodes are stored in the memory
previously allocated for Ad

gpu. The data structures of a node in Ad
gpu are the same of a

node in Ad
cpu. However, the valid and incomplete solution now has size dgpu.

3.5.2 Block-Based Active Set

In a block-based organization, each block blb, b ∈ {0, ..., nb− 1}, has its active set
Ab

gpu, where Ab
gpu ⊆ Ad

gpu. All threads belonging to block blb populate Ab
gpu concurrently.

The active set Ab
gpu is then initialized by the block’s master thread (line 5 ), pointing to

some distinct region of Ad
gpu, as shown below:

Ab
gpu ← Ad

gpu[b×(nt×expected_children_dgpu) : (b+1)×(nt×expected_children_dgpu)]

where variable expected_children_dgpu is the number of children nodes at depth dgpu ex-
pected by each node at dcpu. The variable nt represents the size of the block b (blockDim.x)
defined in Algorithm 4. Finally, b corresponds to the index of the block (blockIdx.x). Fig-
ure 9 illustrates a division of Ad

gpu into nb block-based active sets.

Each block b has a counter block_load. It is atomically incremented each time an
objective node is found. By using this counter, new frontier nodes are placed in contiguous
positions of Ab

gpu. The variable block_load is stored in shared memory and also initialized
by blb’s master thread (line 6 ).
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Figure 9 – Division of Ad
gpu for nt = 2 and expected_children_dgpu = 3. For this configu-

ration, each block-based active set stores at most 6 children nodes from depth
dgpu. This way, A0

gpu corresponds to positions Ad
gpu[0 : 6]; A1

gpu corresponds to
positions Ad

gpu[6 : 12], and so on.

|{
A0

gpu

| . . . {
A1

gpu

Ad
gpu

Source – The author.

Algorithm 5: Intermediate GPU Search.
Input: Cost matrix Cd

N×N , chunk, expected_children_dgpu, Ad
cpu, Ad

gpu, dcpu, dgpu,
number_of_kernels, the global upper bound, and the size N of the
problem.

1 idx← blockIdx.x× blockDim.x + threadIdx.x

2 if idx < chunk then
3 local_root← Ad

cpu[idx]
4 if is_master_thread(idx) then
5 initialize_block_ASet(Ab

gpu)
6 block_load← 0
7 end
8 Perform backtracking based on local root information, using dgpu for cutoff

condition and upper_bound for pruning
9 if new objective node is found then

10 local_counter ← atomicIncrement(block_load)
11 update(Ab

gpu, local_counter, objectiveNode)
12 end
13 end
14 block_barrier()

/* Continues on Algorithm 6 */

3.5.3 Launching the final GPU search

After performing the intermediate backtracking and having reached all the frontier
nodes of depth dgpu, the intermediate search launches the final GPU search. Some factors
should be taken into consideration before presenting the algorithm. If one grid per block
is launched, it is not necessary to divide block_load among number_of_kernels ≤ |blb|
child kernels, which simplifies data mapping. Also, it is not necessary to deal with stream
creation and destruction, since the child grid is launched on the default stream.
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In contrast, launching one stream per thread based on thread’s active set requires the
creation of |blb| streams before launching the child grid. These streams avoid serialization
of |blb| kernel launches. Another issue is the number of pending grids. In the case the
algorithm launches one kernel per thread in blb, the GPU could run out of memory or
compromise the correctness of the algorithm.

Based on these premises, the algorithm to launch the Final GPU Search pro-
ceeds as follows. Algorithm 2 receives the number of kernels that each block b launches
(number_of_kernels). After the block barrier (Algorithm 5, line 14), if the identifier
of the thread inside the block is smaller than the number of kernels that the block is
supposed to launch (threadIdx.x < number_of_kernels), then thread Thl of block
b, l ∈ {0, 1, ..., number_of_kernels− 1}, creates and initializes stream Stl (Algorithm 6,
lines 1 – 4). In line 5 (Algorithm 6), stream Stl receives the number of nodes to
explore (stream_load) according to block_load, number_of_kernels, and its index
(stream_idx). Figure 10 illustrates a subdivision of Ab

gpu into number_of_kernels sub-
sets.

Figure 10 – Subdivision of Ab
gpu into number_of_kernels = 2 subsets. Before launching

the second generation of kernels via CDP, A0
gpu is divided into two other

active sets: A0
s and A1

s. In this example block_load = 6, which results in
stream_load = 3 for both St0 and St1. A0

s corresponds to positions A0
gpu[0 : 3],

and A1
s corresponds to positions A0

gpu[3 : 6].

|{
A0

gpu

| . . . {
A1

gpu

Ad
gpu |

A0
s A1

s

Source – The author.

Each stream Stl has its active set Al
s, such that Al

s ⊆ Ab
gpu. The data is mapped

according to the following mapping:

Al
s ← Ab

gpu[l × stream_load : (l + 1)× stream_load]

After the initialization of Al
s (line 6 ), thread Thl launches the kernel K l (line 9 ),

as shown in Figure 11. After the kernel execution, there is an error checking to be further
analyzed by the host (line 11− 12).

3.6 Final GPU Search

It is straightforward to combine different search strategies by using CDP. Thus, it is
not mandatory for the next generations of kernel calls to be based on the recursive calls of
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Algorithm 6: Launching Final GPU Search.
/* Continues from Algorithm 5 */

1 if threadIdx.x < number_of_kernels and block_load > 0 then
2 cudaStream_t stream
3 stream_idx← threadIdx.x
4 initialize(stream)
5 stream_load←

get_stream_load(block_load, number_of_kernels, stream_idx)
6 initialize_stream_ASet(Al

s)
7 nt← get_cdp_block_size()
8 nb← dstream_load/nte
9 final_GPU_search <<< nt, nb, stream >>>

(Cd, dgpu, Al
s, stream_load, upper_bound, N)

10 deviceSynch()
11 error_vector[b]← get_last_error()
12 destroyStream(stream)
13 end

Figure 11 – Threads Th0 and Th1 of block 0 initialize streams 0 and 1, respectively. All
kernel launches are linked to a stream. Therefore, kernels K0

0 and K1
0 are

launched by block 0 concurrently.

Source – The author.

the Intermediate GPU Search. This section presents two different ways of performing the
search from dcpu to the solution depth N . The first algorithm is called CDP-BP, which is a
hybridization of the Intermediate GPU Search with BP-DFS, avoiding dynamic allocations.
The second one, called CDP-DP3, is a hybridization of the Intermediate GPU Search with
the DP3 parallel backtracking strategy, introduced in Section 2.4.
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3.6.1 CDP-BP

This final kernel uses BP-DFS, introduced in Section 2.5.1, to search from dgpu

to solution depth (N). The algorithm for this kernel is described in Algorithm 7. Each
frontier node belonging to the active set Ai

s, passed as argument, is a root of DFS.

Solutions are shared by keeping a block’s solution bl_sol being updated by the
block’s threads (Algorithm 7, lines 5 – 8). Also, the global solution is updated less often
by all master threads (CARNEIRO et al., 2011a; CARNEIRO et al., 2012). This operation
is done also by the intermediate kernel, which checks for new solutions. However, these
details are not present in Algorithm 7. Finally, by the end of the algorithm, each thread
updates the information required by the host, such as the number of solutions, the best
solution found and local tree size.

Algorithm 7: Final GPU search.
Input: Cost matrix Cd

N×N , cutoff depth dgpu, Ai
s,stream_load , the global upper

bound, and the size N of the problem.
1 if is_master_thread(idx) then
2 initiate_block_solution(bl_sol, upper_bound)
3 end
4 block_barrier()
5 if idx < stream_load then
6 Perform backtracking using node Ai

s[idx] as the root of the search, and using
bl_sol for pruning

7 Update bl_sol if any better solution is found
8 end
9 update local information to be retrieved by the host

3.6.2 CDP-DP3

This search strategy is a combination of the Intermediate GPU Search, and its
data mappings, with the DP3 strategy introduced in Section 2.4. It searches from dgpu

to the depth of a solution (N), doubling dgpu at each new recursive call. DP3 is similar
to the Intermediate GPU Search, but Ab

gpu is dynamically allocated by one thread of the
block as soon as one frontier node is found at depth dgpu. DP3 is also different because
it launches one new grid per thread of the block. Thus, such a search strategy creates,
configures, and destroys one GPU stream per thread of the block.

3.7 Final GPU-CPU synchronization

After the GPU search, several device-to-host (D2H ) operations are performed to
get the information generated by the kernels. Information such as resulting tree size, best
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solution found, the number of solutions found is returned. There is also an error checking
on the error information returned by each CDP kernel launch (Algorithm 6, line 11). There
is also an error checking on the host. If any error is found, the program reports the error
and aborts the execution. Otherwise, it returns the best solution found, the number of
solutions found, tree size, and the kernel/total execution times.

3.8 Performance Evaluation

This section presents a performance evaluation of the CDP-based backtracking
strategies proposed in this chapter: CDP-BP and CDP-DP3. The reminder of this section
is organized as follows. Section 3.8.1 presents the experimental protocol. Section 3.8.2
lists the parameter settings. CDP-BP and CDP-DP3 are compared in Section 3.8.3 to
the CDP-based strategies introduced in Section 2.4.4.1. Section 3.8.4 presents a best-
worst comparison between CDP-BP and BPDFS. Finally, Section 3.8.5 brings portability
experiments.

3.8.1 Experimental Protocol

The present performance evaluation compares different approaches for solving to
optimality instances of the ATSP and for enumerating all valid configurations of the
N-Queens problem. The strategies proposed in this chapter are the following:

• CDP-BP, which corresponds to the implementation summarized in Section 3.6.1;

• CDP-DP3, which implements the algorithm described in Section 3.6.2.

CDP-DP3 is an extension of CDP-BP that performs the same intermediate GPU
search as CDP-BP and calls DP3 as the final GPU search, doubling dgpu at each new
recursive call of DP3.

For comparison, the following backtracking strategies have been implemented:

• DP2 and DP3, which apply the ideas presented by Plauth et al. (2016) and
introduced in Section 2.4.4;

• BP-DFS, corresponding to the GPU-based backtracking algorithm described in
section 2.4;

• Multi-core, a multi-threaded version of BP-DFS that uses a pool scheme for load
balancing;

• Serial, the backtracking used as a serial control implementation by a related
work (PESSOA; GOMES, 2010). It is optimized for single-core execution and it is
1.4× faster than the serial implementation of BP-DFS’ kernel.
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All implementations listed above have ATSP and N-Queens versions. All parallel
searches use the data structure described in Section 2.5.1. Table 2 presents the key differ-
ences of all GPU-based implementations. The present performance evaluation also considers
the highly optimized serial backtracking algorithm which is available at (SOMERS, 2002).
This implementation is also used as a CPU baseline by several related works (FEINBUBE
et al., 2010; PLAUTH et al., 2016; THOUTI; SATHE, 2012). It should be noted that
this algorithm uses bitsets to check for diagonal conflicts in the board configuration,
leading to node evaluation in constant time. This algorithm also applies symmetries, which
considerably decreases the solution space size.

To compare the performance of two backtracking algorithms, both should explore
exactly the same search space (KARYPIS; KUMAR, 1994). This is always the case for
the N-Queens problem, as the order of exploration does not affect the shape of the
backtracking tree. However, for ATSP, the pruning mechanism depends on the decrease
of the best solution cost found so far. Hence, when an ATSP instance is solved twice
using a parallel tree search algorithm, the number of explored nodes varies between two
resolutions. Therefore, for all ATSP instances, the initial upper bound is set to the optimal
value. This initialization ensures that only the critical subtree is explored, i.e., the search
proves the optimality of the initial upper bound by visiting exactly those nodes who have
a partial cost lower than the optimal solution (PESSOA et al., 2016).

Each experiment collects the following metrics: the kernel and application execution
times, and the size of the tree. The NVIDIA Visual Profiler has also been used to get
additional metrics. For the N-Queens, instances from size N = 10 to 18 are considered in
the experiments. One may notice that none of the exploitable symmetries of the N-Queens
problem have been explored. For the ATSP, instances of sizes N = 10 to 19 are considered
in the experiments. The size of the explored tree increases rapidly with the instance size,
ranging from a few thousand to billions of nodes, as shown in Table 1.

Table 1 – Number of nodes decomposed during the resolution of N-Queens of size 10− 19,
and ATSP instances coin10− 20, crane10− 20, tsmat10− 19 (in 106 nodes),
initialized at the optimal solution.

Instance-# 10 11 12 13 14 15 16 17 18 19
crane 0.04 0.11 0.67 3.81 43.6 218.8 1,088 6,954 37,916 245,204
coin 0.11 0.43 1.87 10.7 107.8 500.4 1,379 3,710 15,089 116,840

tsmat 0.03 1.01 0.71 26.4 89.8 6,578 3,979 240,292 2,903,808 6,866,667
queens 0.03 0.16 0.85 4.67 27.35 171.12 1,141 8,017 59,365 461,939

Source – The Author.

Instances tsmat18− 19 have been excluded because the time limit of 6 hours of
parallel processing was exceeded. Due to the huge amount of data collected, some results
are summarized or are shown only for one size or class of instances.
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Table 2 – Key differences of all GPU-Based implementations: use of CDP, number of
GPU streams / CDP kernels launched, use of dynamic memory allocations, and
algorithm reference. Values are for ATSP and N-Queens. Numbers in brackets
correspond to the explanations below the table.

Implementation CDP GPU streams/CDP kernels Dynamic Allocation Algorithms
DP2 yes |Ah

cpu| yes DP2
DP3 yes |Ah

cpu|+ k
(a)
1 yes DP3

CDP −BP yes nbh ∗ number_of_kernels(1,2) no 2 - 7
CDP −DP3 yes nbh + k1 yes 2 - 7 + DP3
BP −DFS no - no 1 + 7

a) k1 = (
∑base−1

d=dgpu
survivorsd)(3,4)

Source – The Author.

where:

1. The subscript d means that such variable concerns a given depth d. The subscript h

means that the variable is used by the host to configure/launch the first kernel.

2. The variable nb stores the number of blocks used for kernel configuration. Thus,
nbh = d|Ah

cpu|/nthe.

3. survivorsd is the total number of survivor nodes of depth d.

4. DP3 doubles the value of dgpu at each recursive CDP kernel launch until dgpu = base,
the recursion base. In this case, the algorithm searches from base to N . According to
the notation, d+1 means the next recursive depth. For N = 15: dcpu=2, dgpu = 4, 8, 15,
and base depth base = 8.

3.8.2 Parameters settings

All CUDA programs have been parallelized using CUDA C 7.5 and compiled with
NVCC 7.5 and GCC 4.8.2. All multi-core versions have been parallelized using OpenMP.
The kernel execution time has been measured through the cudaEventRecord function
of CUDA, whereas the overall application time has been measured through the clock
function of C. The testbed environment, operating under CentOS 7.1 64 bits, is composed
of two Intel Xeon E5-2650v3 @ 2.30 GHz with 20 cores, 40 threads, and 32 GB RAM. It
is equipped with a GeForce NVIDIA Tesla K40m (GK110B chipset), 12 GB RAM, 2880
CUDA cores @ 745 MHz. According to the experiments reported in Annex A, the K40m
reserves 109MB for nesting level synchronization.

The performance of a GPU-based backtracking algorithm depends on a set of
parameter configurations. Preliminary experiments have been conducted to find a suitable
block size, dcpu and dgpu for all GPU-based parallel implementations. Figure 12a shows the
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experimental block size calibration for BP-DFS. All GPU-based implementations use the
value of 128 for the first kernel configuration. Figure 12b shows the experimental block
size calibration for the second kernel generation launched by CDP-BP. Table 3 presents
the best parameter configurations for all parallel implementations. It is important to say
that the chosen parameters are the best for most of instances, but not for all of them. In
Table 3, the subscripts Q and A indicate that the parameter setting concerns the N-Queens
or, respectively, the ATSP problem.

Figure 12 – (a) Experimental block size calibration for BP-DFS. (b) Experimental block
size calibration for the second kernel generation launched by CDP-BP. In the
figure, block size vs. processing rate (in 106 nodes/second).
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Figure 13 shows the processing rate of BP-DFS using a pool scheme for load balance
and BP-DFS without load balance. The results show that the use of load balance improves
performance of BP-DFS only for the N-Queens problem.

DP2 and DP3 perform dynamic allocations on GPU. However, Plauth et al. (PLAUTH
et al., 2016) do not provide information concerning the maximum GPU heap size or maxi-
mum depth of synchronization. Without setting up the variable cudaLimitMallocHeapSize,
these CDP-based implementations can solve only instances of sizes up to N = 11. There-
fore, to make a performance comparison, the value of cudaLimitMallocHeapSize was
set to size of the available global memory. Concerning the choice of dcpu and dgpu for
CDP-BP and DP2, best performance is reached when dgpu = dcpu + 2. All CDP-based
implementations use the default size for the fixed pending grid queue.

Preliminary experiments show that it is not possible to use rcdp > p.memorySize,
as in Algorithm 3 (line 9). The reason is that CDP uses a lot of additional memory to
handle the dynamically generated kernels. Using rcdp ≥ (0.75 × p.memorySize), CUDA
returns an “out of memory” error. For avoiding the error, the available memory used in
the experiments corresponds to (0.7 × p.memorySize).

Experiments to verify whether it is worth running a multi-threaded initial CPU
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Figure 13 – Comparison between the processing rate (in 106 nodes/second) of BP-DFS
using pool scheme for load balance (pool) and BP-DFS. The version of BP-
DFS with load balance is using 32768 GPU threads. All other parameters for
BP-DFS and pool are the ones presented in Table 3. Results are shown for
instances of size N = 15.
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search were carried out. These tests run the Initial CPU Search with 2 to 40 threads. For
tsmat15 and dcpu = 7, the initial tree corresponds to only 0.03% of the solution space. On
the one hand, the initial CPU search takes 55ms. On the other hand, the multi-threaded
initial CPU search is from 6.3 to 29 times slower than its serial counterpart, depending
on the number of threads the initial CPU search uses. This behavior is observed for all
instances sizes and classes. The multi-threaded initial CPU search initializes threads, has
mutual exclusive accesses, and function calls. Moreover, there is a reduction on the tree size
when the search finishes. Even for the biggest instances (tsmat19) and the deepest cutoff
depth (dcpu = 7), the initial tree is less than 1% of the whole solution space. Therefore, it
is not worth using multi-threading to explore such a small load.

The variable number_of_kernels (Algorithm 6) defines the number of streams
created/kernel launches for each GPU block of the Intermediate GPU Search. According
to preliminaries experiments, using more than two streams per block brings no benefits
to CDP-BP. This behavior is observed in all test-cases. Figure 14 shows, for instances of
size 15, the influence of the number of streams created/kernel calls on the processing rate.
Annex C presents a visual profile of CDP-BP for different values of number_of_kernels.

3.8.3 Comparison Between CDP-based Implementations

In this section, all CDP-based implementations are compared using the parameter
configuration of Table 3. In Figure 15, one can see the average speedup reached by all
CDP-based implementations compared to the serial control implementation.
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Table 3 – List of best parameters found experimentally for all parallel implementations.

Parameters Settings
Implementation Block Size Bl. Size-CDP dcpu dgpu

BP −DFS1 128 - 7 -
CDP −BPA 128 64 6 8
CDP −BPQ 128 64 5 7
CDP −DP31 128 64 - -

DP2A 128 64 4 7
DP2Q 128 32 4 7
DP3A 128 64 - -
DP3Q 128 32 - -

Multicore1 - - 4 -
1) The parameter are the same for ATSP and N-Queens.

Source – The Author.

Figure 14 – Influence of the number of streams created/kernel calls on the processing rate
(in 106 nodes/second) for CDP-BP. The figure shows the number of GPU
streams/block vs. processing rate (in 106 nodes/second).
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CDP-BP is the only implementation faster than the serial control implementation
for all experiments. Speedups observed for CDP-BP range from 2.5 (crane10) to 13
(queens12−14). CDP-BP is considerably faster than all other CDP-based implementations
while solving small instances (sizes N = 10− 12). In this situation the overhead caused by
dynamic allocations, streams initialization, and recursive kernel launches amount for the
major part of the execution time. For small instances, CDP-BP is up to 6 times faster
than DP3 (coin10), 13 times faster than DP2 (queens12), and up to 4.5 times (tsmat10)
faster than CDP-DP3. As the solution space grows and the overhead becomes relatively
less important, this difference decreases: for N = 15, CDP-BP is up to 3.7, 3, and 2.7
faster than DP2, DP3, and CDP-DP3, respectively.
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Figure 15 – Average speedup reached by all CDP-based implementations compared to the
serial one. Results are considering all classes of instances. Problem sizes are
ranging from N = 10 to 15.
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With regard to DP2, speedups compared to the serial implementation are observed
only for instances bigger than N ≥ 12, and the highest speedup observed is of 6× (tsmat15).
DP3 is superior to the serial implementation for N ≥ 12. Speedups range from 1.6 (coin12)
to 7.3 (tsmat15).

CDP-DP3 is a hybridization of CDP-BP and DP3: it launches the Intermediate
GPU Search from depth dcpu = 2 to dgpu = 4, then deploys one DP3 for each block. The
first dynamic allocation occurs for the second dgpu, and therefore CDP-DP3 performs less
dynamic allocations and launches fewer kernels than DP3. CDP-DP3 has the second best
overall result, with speedups ranging from 1.2 (tsmat10) to 9 (coin15) for all sizes bigger
than N = 10. As the tree size grows, the benefits of a more regular load produced by DP3
strategy is observed. As a consequence, for sizes ranging from N = 13 to 15, CDP-DP3
has its performance close to CDP-BP’s one.

The two best overall performances for CDP-BP and CDP-DP3 evidences that
a smaller number of kernel launches and less dynamic allocations can lead to a higher
nodes/second processing rate. Annex C presents a visual profile for each CDP-based imple-
mentation. It is possible to see the characteristics of each method concerning granularity of
the kernels, number of kernel launches, and presence of recursion. No CDP-based strategy
is faster than the highly optimized bit-parallel N-Queens solver that applies symmetries.
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3.8.4 Comparing CDP-BP to BP-DFS: best and worst case analysis

In order to identify scenarios where the CDP implementation is advantageous
compared to a non-CDP one, dcpu is set to different values: 3, 4, 5, 6 and 7. For the CDP
implementation, the second kernel is launched two levels deeper, as shown in Table 3.
Therefore, the values used of dgpu are 5, 6, 7, 8 and 9, respectively.

For instances of size 17, Table 4 shows the execution times (in seconds) obtained
when selecting the best, respectively the worst value for dcpu. It also shows the median
(i.e. the third best) execution time obtained for dcpu from 3 to 7 and the relative standard
deviation (RSD, defined as standard deviation

average
× 100%). In brackets, beneath these execution

times the corresponding parameter dcpu (or dcpu-dgpu) are shown. For comparison, Table 4
also shows the serial execution time in angled brackets beneath the instance name.

Table 4 – Worst, best case and median execution times (in s), relative standard deviation
(defined as 100%×(standard deviation)/(average)) for instances of size 17. Below
each execution time the corresponding configuration is shown (in brackets). The
serial execution time is shown in angled brackets < >.

Inst. Tworst(s) Tbest(s) Tmedian(s) RSD(%)
< Tseq > BP-DFS CDP-BP Rate BP-DFS CDP-BP Rate BP-DFS CDP-BP BP-DFS CDP-BP
queens17 3394 132 25 58 94 0.6 65 101 163 14
<1295> (3) (7-9) (6) (4-6) (5) (5-7)
coin17 2632 106 25 16 34 0.4 110 38 153 52
<311> (3) (3-5) (7) (7-9) (5) (6-8)
crane17 3115 208 15 31 71 0.4 206 76 185 59
<395> (3) (3-5) (7) (4-6) (5) (6-8)
tsmat17 39850 1642 24 560 1441 0.4 889 1496 186 5

<10423> (3) (3-5) (7) (4-6) (5) (6-8)
Source – The Author.

Considering the N-Queens problem with N = 17, CDP-BP is 10× faster than the
serial contro implementation even for the worst configuration (dcpu = 7). In contrast, BP-
DFS using its worst configuration is outperformed by the serial implementation. CDP-BP
reaches speedup of 13.8 using its best configuration (dcpu = 4). In turn, BP-DFS on its
best settings is 22 times faster than the serial control implementation.

Similar results are observed for ATSP. For the ATSP instances of size N = 17, CDP-
BP presents speedups over its sequential counterpart even for the worst-case parameter
dcpu (ranging from 1.9 (crane) to 6.3 (tsmat)). In contrast, for the worst-case configuration,
BP-DFS is outperformed by its sequential counterpart. However, if the best configuration
is chosen for both algorithms, BP-DFS outperforms CDP-BP by a factor of ≈ 2.5 times.

For instance, if the worst parameter choice is made for BP-DFS and CDP-BP, the
former spends 2, 632 seconds solving instance coin17, while the latter is about 25 times
faster, spending 106 seconds to perform the same task. On the other hand, if both versions
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use the respectively best parameters, BP-DFS solves coin17 in only 16 seconds, which is 2
times faster than its CDP-based counterpart.

For all ATSP instances of different size, a similar behavior is observed. Thus, if well
configured, BP-DFS provides the best overall performance. However, if poorly configured,
it may lead to the worst performance. Such significant performance differences demonstrate
the sensitivity of BP-DFS concerning the calibration of the parameter dcpu. Figure 16a
shows the influence of dcpu choice on the processing rate for BP-DFS.

According to the NVIDIA Visual Profiler, BP-DFS uses the GPU resources poorly
with dcpu set to 3 and 4. For dcpu = 3, the occupancy and multiprocessor activity reached
by BP-DFS are around 4% and 6%, respectively. In turn, CDP-BP by launching a new
generation of kernels reaches occupancy and multiprocessor activity 5 and 10 times higher,
respectively. With dcpu = 4, CDP-BP reaches values of occupancy and multiprocessor
activity compared to the values its non-CDP counterpart reaches only for dcpu = 7. The
number of dynamically deployed kernels grows along with dcpu and the overhead involved
in launching and managing these kernels tends to penalize the CPD-based implementation.
Therefore, for dcpu set to 6 and 7 (and 5, in some cases), BP-DFS outperforms CDP-BP
by a speedup factor of 2 or more.

Figure 16b shows the influence of dcpu on the processing rate for CDP-BP. Even
when using CDP, the obtained performance still depends strongly on the tuning of the
CPU search depth, especially for the coin and crane instances. However, a comparison
of Figures 16a and 16b shows that CDP-BP is less dependent on parameter tuning than
BP-DFS. Indeed, between the best - and worst-case CDP performances for coin17 and
crane17, a speedup of more than 3.0 can be observed. In contrast, when solving tsmat17
or queens17, the speedup achieved by optimally tuning the CDP-based algorithm are only
1.15 and 1.39, respectively, showing that the CDP algorithm’s behavior depends not only
on the active set size at depths dcpu and dgpu, but also on the shape of the explored tree.

This comparison shows, on the one hand, that a well-tuned BP-DFS can be more
than twice faster than its ideally configured CDP-based counterpart. On the other hand,
it shows that the use of CDP allows to have a much better worst-case execution time and
to make the algorithm’s performance less dependent on the tuning of the parameter dcpu.
This is confirmed by the obtained RSD, which is lower for all cases when CDP is used.

As Figure 16c suggests, the multi-core implementation that uses a pool load balance
is less dependent on parameter tuning and the shape of the tree. For the N-Queens problem,
the variation of processing rates for dcpu ranging from 4 to 7 is not significant. For the
ATSP, when dcpu > 3, the processing rate for all instance classes are close.

Figure 17 presents the speedup reached by BP-DFS, CDP-BP, and multi-core
implementations. The performance of CDP-BP is usually inferior to both the BP-DFS and



59

Figure 16 – (a) Influence of dcpu on the processing rate for BP-DFS. (b) Influence of dcpu

on the processing rate for CDP-BP. (c) Influence of dcpu on the processing
rate for the multi-core implementation. Processing rates are shown in 106

nodes/second for instances of size N = 17.
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Source – The Author.

the multi-core implementations. Besides the overhead of launching/managing child kernels,
CDP-BP presents several sources of overhead. Firstly, the intermediate GPU search uses
atomic operations, performs error checking and block synchronizations. On the host side,
CDP-BP H2D and D2H copies and allocations are bigger than BP-DFS’ ones.

3.8.5 Portability experiments

This section presents two portability experiments. The first one performs the
best-worst case analysis of Section 3.8.4 on different test-beds. The second one limits the
amount of global memory available to 512MB, 1GB, ..., 8GB.

3.8.5.1 Experiments on different test-beds

The objective of this new experiment is not to verify the speedups of CDP-BP
and BP-DFS on different systems because metrics such as speedup strongly rely on the
underlying CPU (GRAMA et al., 2003). The objective of this new experiment is to confirm
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Figure 17 – Speedup reached by BP-DFS, CDP-BP and multi-core implementations com-
pared to the serial one. Results are considering all classes of instances for
size N = 17. All implementations are using their best configuration for each
instance, as shown in Table 4.
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whether the behavior observed in Section 3.8.4 is hardware-dependent or not. For this
purpose, two other different test-beds are considered: The first one is equipped with a
Kepler GPU, and the second one is equipped with a Maxwell GPU. Both systems are
detailed below.

• Kepler test-bed: it operates under Linux Ubuntu 14.04.3 LTS 64 bits, composed
of an Intel Core i5-3330@ 3.20 GHz with 4 cores, 4 threads, and 32 GB RAM. It
is equipped with a GeForce NVIDIA Tesla K20c (GK110 chipset - Kepler), 5 GB

RAM, 2496 CUDA cores @ 706 MHz.

• Maxwell test-bed: it operates under Linux Ubuntu 14.04.3 LTS 64 bits, composed
of an Intel Xeon E5-2630 v3 @ 2.40GHz with eight cores and 32 GB RAM. It is
equipped with a GeForce NVIDIA GTX 980 (GM204 chipset - Maxwell), 4 GB
RAM, 2048 CUDA cores @ 1126 MHz.

The GPUs used are from different architectures, and they have a distinct purpose.
The Kepler K20c GPU is a hardware designed only for GPGPU that has a higher number
of CUDA cores and a bigger global memory. In turn, the GTX 980 is a gamer hardware
that has fewer CUDA cores than the K20c. On the other hand, GTX 980’s CUDA cores
are almost twice as fast as the ones of K20c.

Table 5 and 6 show the results for Kepler and Maxwell GPUs, respectively. In
both tables, one can see the execution times (in seconds) obtained when selecting the
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best, respectively the worst value for dcpu. It also shows the median (i.e. the third best)
execution time obtained for dcpu from 3 to 7.

Table 5 – Worst, best case and median execution times (in s), for instances of size 17.
Results are for the Maxwell GPU.

Inst. Tworst(s) Tbest(s) Tmedian(s)
BP-DFS CDP-BP Rate BP-DFS CDP-BP Rate BP-DFS CDP-BP

queens17 1815 61 29 34 51 0.6 38 53
(3) (7-9) (6) (4-6) (5) (5-7)

coin17 2384 102 23 16 31 0.5 100 43
(3) (3-5) (7) (5-7) (5) (6-8)

crane17 2752 190 14 34 57 0.6 190 82
(3) (3-5) (7) (5-7) (5) (6-8)

tsmat17 36995 2051 18 615 1607 0.38 825 1677
(3) (6-8) (6) (5-7) (5) (7-9)

Table 6 – Worst, best case and median execution times (in s), for instances of size 17.
Results are the Kepler GPU.

Inst. Tworst(s) Tbest(s) Tmedian(s)
BP-DFS CDP-BP Rate BP-DFS CDP-BP Rate BP-DFS CDP-BP

queens17 3941 160 24 69 114 0.6 72 124
(3) (7-9) (6) (4-6) (5) (5-7)

coin17 3032 122 25 16 40 0.4 122 45
(3) (3-5) (7) (5-7) (5) (5-7)

crane17 3588 253 14 33 85 0.38 220 90
(3) (3-5) (7) (7-9) (5) (5-7)

tsmat17 45729 1699 27 515 1427 0.36 844 1508
(3) (3-5) (6) (4-6) (5) (6-8)

According to the results, the same behavior observed in Section 3.8.4 is observed
on both testbeds: On the one hand, a well-tuned BP-DFS can be more than twice faster
than its ideally configured CDP-based counterpart. On the other hand, it shows that the
use of CDP allows a much better worst case execution time and makes the algorithm’s
performance less dependent on the tuning of dcpu.

3.8.5.2 Memory experiments

CDP-BP stores enough memory to store the maximum number of children nodes
that all survivor nodes at dcpu can have at depth dgpu. The number of nodes of a given
depth d grows exponentially (ZHANG, 1996), and the memory requirements of d may
be enormous. The amount of global memory limits the number of nodes the Initial GPU
Search can process and, as a consequence, the number of kernels that CDP launches. There
are different CDP-capable GPUs with varying sizes of memory, and this new experiment
aims at verifying the influence of the global memory size on CDP-BP’s performance.
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This experiment solve instances of size N = 18 with dcpu = 7 and dgpu = 9, limiting
the available global memory to 512MB, 1GB, 2GB, ..., 8GB. Table 7 shows the memory
requirements of CDP-BP and BP-DFS for dcpu = 7. The requirements of CDP-BP for
all ATSP instances are bigger than 25GB, for the N-Queens problem is around 8GB. In
contrast, the memory requirements of BP-DFS are modest: even a GPU with 512MB of
global memory can run BP-DFS with dcpu = 7.

Table 7 – The number of survivor nodes (in 106) at dcpu = 7, and memory requirements of
CDP-BP and BP-DFS (in MB).

Instance Survivors ReqBP −DF S ReqCDP −BP

coin18 8.143 228 25,311
crane18 8.450 236 26,263
tsmat18 8.910 249 27,695
queens18 2.215 57 7,645

Source – The Author.

Table 8 shows the best case execution, worst case, average execution times, and
median execution times for CDP-BP. Table 8 also presents the number of times the host
launches the Intermediate GPU Search.

Table 8 – Worst case, best case, median, and average (AVG) execution times (in s), and
STDEV for instances of size 18. Below each execution time, the corresponding
configuration is shown (in brackets). The table also shows the number of kernel
launches by the host for 512MB, 1GB, ..., 8GB.

Instance Tworst(s) Tbest(s) Tmedian(s) AVG STDEV Kernel launches
0.5 1 2 4 8

coin18 162.97 161.337 162.212 162.2 0.635 109 36 15 8 4
(512MB) (4GB) (8GB)

crane18 466.45 461.21 464.55 464.2 1.9 136 36 15 8 4
(4GB) (1GB) (512MB)

tsmat18 22,164 21,876 22,065 22,033 94.96 136 45 19 8 4
(4GB) (512MB) (2GB)

queens18 1,037.39 1,028.32 1,031.10 1,032 3.182 36 12 5 2 1
(512MB) (8GB) (4GB)

Source – The Author.

As one can see in Algorithm 3, the variable chunk initially is set to survivors and
then, it is decreased until it fits into the available memory (lines 9 – 13). It has been
decreased in 20%. Having a suitable chunk, CDP-BP launches several times the Initial
GPU Search (Algorithm 4, lines 5 – 15). For the scenario of 512MB, CDP-BP has around
212MB to store nodes (see Section 3.3), and the host launches the first kernel more than
100 times for all ATSP instances, and 36 times for queens18. Even launching 136 times
the Intermediate GPU Search, the configuration of 512MB is the best for tsmat.
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The difference between the best and worst execution times is small compared to
the overall execution time in all test-cases. This fact is confirmed by the average and
standard deviation times. Therefore, the global memory size has a small influence on
CDP-BP performance. However, it is important to point out that CDP-BP requires a
huge effort to handle its high memory requirements, which contrasts to BP-DFS. The
control GPU-based implementation presents low memory requirements even for the most
demanding test-case.

3.9 Concluding remarks

This section brings the concluding remarks. First, conclusions concerning pro-
grammability, performance, and applicability of the CDP-based strategies proposed are
outlined. Then, Section 3.9.3 introduces future research directions. Finally, Section 3.9.4
lists the main insights that summarize this chapter.

3.9.1 Programmability

Concerning the programmability, the results reported in this chapter contrast with
the results of (ZHANG et al., 2015), where the use of CDP simplified the development
of GPU-based graph algorithms. According to our experience, using CDP is challenging
and brings complexity to the code. The programmer must learn extensions of the CUDA
programming model, as introduced in Section 2.2. Furthermore, due to the characteristics
of the problem solved, using CDP also requires additional efforts to handle increasing
memory requirements.

Tracking device-side errors is difficult: in a situation where the maximum GPU
heap size does not fit the requirements of the application, CUDA runtime returns an
“illegal memory access” error. This error can be confused with an out of bounds memory
access. Another situation is when the virtualized pool keeps a huge number of pending
grids. If the program uses almost the whole global memory, and the queue run out of
memory, the program may return incorrect results and no errors are returned by the
runtime error tracking on device and host side. Therefore, to cope with this situation,
control data needs to be passed via global memory, which brings extra complexity to the
code and increases time spent in memory operations.

3.9.2 Performance and Applicability

CDP-BP presented the best overall performance among all studied CDP-based
implementations, but it has been outperformed by its well-tuned non-CDP and multi-core
counterparts. Concerning the applicability of CDP, it is useful in a situation where it is not
possible to tune all parameters. For example, in programs made available to non-expert
users. Moreover, a parameter configuration is not general enough for all classes of instances,



64

and tuning a backtracking for solving a huge number of instances of different sizes and
classes is prohibitive. In such situations, CDP is preferable, as it is less dependent on
parameter tuning.

According to the results, the ideas of DP3 (PLAUTH et al., 2016) contribute to
regularizing the workload processes on the GPU. Even with dynamic allocations and a
recursive CDP kernel launches, CDP-DP3 achieves performance close to CDP-BP for
N = 13 and 14, and slightly outperforms CDP-BP for N = 15. However, all DP3-based
strategies cannot solve instances bigger than N = 15, even if the size of the heap is set to
the global memory available. The use of this kind of strategy needs more programming
expertise and deep knowledge about the problem at hand, because the tuning of the
maximum heap size is not straightforward. The allocation for the whole block happens
if at least one thread finds a survivor node at depth dgpu, and this space may not be
entirely used. As the depth of the search increases, the memory requirements increase
exponentially.

Although it is intrinsically difficult to cope with fine-grained and irregular applica-
tions on GPUs, results herein reported show that it is worth programming backtracking for
GPUs. BP-DFS shows performance sometimes superior to a multi-core code that applies
load balance and runs on two CPUs, 20 cores and 40 threads. Results also show that
load balance strategies for GPU-based backtracking need to be more complex than a pool
strategy, as the use of it did not bring benefits for BP-DFS.

3.9.3 Future research directions

A future research direction is on developing a function that decides dynamically
whether CDP or even the GPU should be used or not. Such a decision function can be
based on the analysis of the partial backtracking tree (CORNUÉJOLS; KARAMANOV;
LI, 2006) and properties of the underlying hardware.

3.9.4 Main insights

The following summarizes the main insights from the experimental evaluation of
GPU-backtracking algorithms using CDP presented in this chapter.

• The use of CDP is preferable in situations where BP-DFS is not able to use the
GPU resources properly.

• The hybridization of BP-DFS with the Intermediate GPU Search results in a better
worst-case performance for the control implementation. It also makes BP-DFS less
dependent on good parameter settings.

• If well-tuned, BP-DFS shows better results than CDP-BP.
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• Regarding programmability, the use of CDP may require additional expertise.

• The programmer needs to use extra control data, as errors on device side are difficult
to detect.

• CDP has several sources of overhead, such as stream creation and destruction, kernel
launches, etc. According to the results, avoiding a huge number of dynamic kernel
launches may increase the processing rate of a CDP-based application.
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4 DYNAMIC SETUP OF CUDA RUNTIME VARIABLES FOR CDP-
BASED BACKTRACKING ALGORITHMS

According to the experimental results of the last chapter, implementations that
perform dynamic allocation on GPU’s heap and/or launch more than two kernel generations
require the setup of CUDA runtime variables. Otherwise, they may present runtime errors.
The objective of this chapter is to provide means for such implementations to solve
problems with different sizes and memory requirements: from few KB to several GB. To
accomplish this objective, this chapter presents a generalization of the ideas of the previous
one that lie mainly in the memory requirement analysis.

DP3-based strategies allocate memory for the block active set if at least one thread
of the block finds a frontier node. However, blocks have a fixed and predetermined size,
and a block may have inactive threads. Such a property can make the memory requirement
analysis imprecise. The second part of this chapter presents a variation of DP3 that
allocates memory in a thread-based manner, called TB-DP3.

According to the experimental results, the objectives of the chapter were accom-
plished. By using the set of proposed algorithms, all DP3-name implementations can solve
all test-cases. Moreover, the thread-based allocation results in insignificant performance
losses.

The main contributions reported in this chapter are the following:

• A strategy that dynamically calculates the memory requirements of the algorithm,
independently of how many generations of kernels it launches. This approach is also
used to setup the CUDA runtime variables accordingly.

• A thread-based allocation that results in insignificant performance losses compared
to approaches of the literature.

The remainder of this chapter is organized as follows. Section 4.1 lists the challenging
issues considered to generalize the ideas of the last chapter. Sections 4.2 to 4.3 detail all
algorithms proposed in this chapter. Section 4.4 introduces TB-DP3. Section 4.5 presents
a performance evaluation. Finally, Section 4.6 outlines the concluding remarks of this
chapter.

4.1 Challenging issues

According to the last chapter, DP3 and CDP-DP3 are much more complex than
CDP-BP and BP-DFS. First of all, these implementations launch recursively more than two
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kernel generations. Running DP3 and CDP-DP3 without a proper setup of the maximum
nesting depth may result in runtime errors because the default value is two. Moreover,
up to 150MB are reserved for each kernel generation. This way, the memory reserved for
nesting level synchronization may be huge and cannot be ignored.

It was also observed in the last chapter that without setting up the GPU heap
size, all implementations that allocate memory on GPU’s heap cannot solve problems
bigger than N = 11. The size of the default CUDA heap is 8MB (see Annex B), and if
an application requires a larger heap, the variable cudaLimitMallocHeapSize must be
set accordingly. Furthermore, DP3-based implementations dynamically allocate memory
according to the block size.

In the CUDA programming model, the block has a fixed and predetermined size
block_size. Suppose that Tht is the only active thread of block blb, and assume that the
number of expected children nodes a node at dcpu expects at dgpu is expected_chidren_dgpu.
If Tht finds the first survivor at dgpu, it allocates memory enough to store block_size×
expected_childen_dgpu nodes. When the number of active threads in a block is smaller
than the block size, more memory than the necessary is allocated on GPU’s heap. Thus,
the block-based allocation strategy makes the calculation of the required heap less precise.

Based on the above premises, this chapter proposes modifications on the Memory
Requirement Analysis. Instead of calculating the size of Ad

gpu, the host calculates the heap
size by recursively applying the strategy of Algorithm 3 until the base depth is reached.
Moreover, there is an algorithm to discover, based on the way the next dgpu is calculated,
the number of kernel generations the search launches based on the size N of the problem.
Finally, the Memory Requirement Analysis is used to get a subset S ⊆ Ah

cpu of size chunk

before launching the search.

The following sections provide a detailed description of the updated memory
requirement analysis and the kernel launch. TB-DP3, the implementation of DP3 with
thread-based allocation, is introduced next.

4.2 Memory requirement analysis

Unstructured tree search algorithms that dynamicallty allocate memory on GPU’s
heap, such as DP3, need to store in global memory Ad

cpu, the cost matrix, and control
data for the subsequent kernel generations. Moreover, it is necessary to reserve memory
for nesting level synchronization and the heap. The new memory requirement analysis
proposed in this section is based on Algorithm 3, and it consists of three steps: getting the
number of kernel generations, heap size calculation, and calculating the required global
memory.
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4.2.1 Getting the number of kernel generations

It is necessary to know the number of kernel generations to set up the CUDA
runtime variable cudaLimitDevRuntimeSyncDepth and to calculate the amount of memory
reserved by the GPU to keep track of the parent block context data.

Algorithm 8 shows the function that returns the maximum synchronization depth
based on the base depth and the size N of the problem. Initially, the algorithm receives the
current_depth of the search and the size N of the problem. Next, it gets the base of the
recursion (line 1). Then, the number of synchronization depths is calculated in lines 4 – 6.
The programmer must provide two functions: get_base_depth() and get_next_depth().
The first one is responsible for calculating the base depth of the recursion (line 1). In turn,
the second one is responsible for returning the next depth of the recursion (line 5).

Algorithm 8: Maximum Synchronization Depth (number of kernel generations).
Input: The size N of the problem, and the initial cutoff depth current_depth.
Output: The number of synchronization depths (kernel generations), also including

the one launched by the host.
1 base← get_base_depth(N)
2 current_depth← initial_depth
3 synch_depths← 1
4 while current_depth ≤ base_depth do
5 current_depth← get_next_depth(current_depth, N)
6 synch_depths← synch_depths + 1
7 end

4.2.2 Requested heap size

The strategy employed in this step is the same one used by CDP-BP for calculating
the size of Ad

gpu (Algorithm 3, lines 3 – 5), which takes into consideration the maximum
number of children nodes that a node at dcpu can have at dgpu.

Algorithm 9 presents the function responsible for returning the maximum requested
heap size. The heap size calculation receives as parameters chunk, which is the size of
a subset S ⊆ Ah

cpu, and the size N of the problem. The algorithm calculates for each
recursive kernel call the memory required to store survivorsnext_depth, until it reaches the
base depth (lines 6 – 12).

The heap size calculation is the most important step of the memory requirement
analysis. Having the heap size for chunk nodes, it is possible to determine the amount of
global memory required.



69

Algorithm 9: Calculation of the requested heap size.
Input: The size chunk of S ⊆ Ah

cpu, and the size N of the problem.
Output: The maximum requested heap size in bytes.

1 requested_heap← sizeof(Node)× chunk
2 base_depth← get_base_depth(N)
3 current_depth← get_initial_depth()
4 max_nodes ← 0
5 nodes_current_depth← chunk

6 while (current_depth < base_depth) do
7 next_depth← get_next_depth(current_depth)
8 maxcurrent ← get_max(current, N)
9 maxnext ← get_max(next, N)

10 expected_childen_dnext ← maxnext

maxcurrent

11 requested_heap← requested_heap× expected_childen_dnext

12 current_depth← next_depth

13 end

4.2.3 Required global memory

Algorithm 10 returns the global memory to be required based on a subset S ⊆ Ah
cpu

of size chunk. Initially, the memory reserved for depth synchronization is calculated in
line 1. As pointed out in Section 3.3, a value equals to 150MB is reserved for each kernel
generation. Annex A shows a way to retrieve the exact amount of memory a CDP-capable
GPU keeps for this purpose. The amount of global memory required to store the control
data, Acpu, and the requested heap is get in lines 3 – 4. Finally, in line 5, the required
global memory is calculated by adding the values got in lines 2 – 5.

Algorithm 10: Required memory based on chunk nodes and the size of the problem.
Input: The size chunk of S ⊆ Ah

cpu, the size N of the problem, and the number k of
kernel generations.

Output: Total of global memory required.
1 required_memory ← 0
2 nesting_memory ← k × 150MB
3 activeSet_memory ← chunk × sizeof(Node)
4 control_memory ← chunk × sizeof(ControlData)
5 required_heap← get_maximum_heap(chunk, N)
6 required_memory ←

required_heap + nesting_memory + activeSet_memory + control_memory

All algorithms presented in this section take into consideration a subset S ⊆ Ah
cpu

of size chunk. The next section shows how to choose S, to set up the CUDA runtime
variables, and to launch the first kernel generation.
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4.3 Launching the first kernel generation

Before launching the first kernel generation, it is necessary to get a subset S ⊆ Ah
cpu

of size chunk such that its requirements fit into the global memory. For this purpose,
it is necessary to take into consideration, for each node in Ah

cpu, the amount of memory
required by its whole subtree, from dcpu to base.

Algorithm 11 shows how to get a suitable S ⊆ Ah
cpu of size chunk. Initially, this

algorithm receives as parameters the size of Ah
cpu (suvivors_dcpu), and the size N of the

problem. In first place, the variable chunk receives survivors_dcpu and the algorithm
calculates the amount of memory required based on this chunk (lines 1 – 2). Thus, the
calculation of a suitable chunk employs Algorithm 10.

Algorithm 11: Algorithm that returns a suitable chunk size.
Input: survivors_dcpu, the size N of the problem, and the number k of kernel

generations.
Output: A suitable chunk size.

1 chunk ← survivors_dcpu

2 total_required← required_memory(chunk, N, k)
3 available_memory ← get_GPU_properties(global_memory)
4 while total_required > available_memory do
5 chunk ← decrease_chunk(chunk)
6 total_required← required_memory(chunk, N, k)
7 if chunk < 1 then
8 return error
9 end

10 end

If the memory required by S is bigger than the available global memory, the variable
chunk is decreased until its required memory fits into the available global memory (lines 4
– 6). If there is no S such that its required memory fits into the available global memory,
the program returns an error (lines 7 – 9).

Algorithm 12 presents the launching of the first kernel generation on GPU. Its
implementation is close to Algorithm 4, which launches the Intermediate GPU Search. After
determining a suitable S (line 1), the values of variables cudaLimitMallocHeapSize and
cudaLimitDevRuntimeSyncDepth are set in line 2. Finally, lines 5 – 15 process S ⊆ Ah

cpu

of size chunk until Ah
cpu is empty. After each kernel call, control data is retrieved.

4.4 TB-DP3

This section presents TB-DP3, a variation of DP3 that performs dynamic allocation
in a thread-based manner. Unlike CDP-BP and CDP-DP3, TB-DP3 is not a hybridization
of search strategies. It is based on recursive kernel calls, like DP3 and DP2.
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Algorithm 12: Launching the search on GPU.
Input: Cost matrix Ch

N×N , Cd
N×N , survivors_dcpu,Ah

cpu, Ad
cpu,dcpu, control_datad,

expected_children_dgpu, the global upper bound, and the size N of the
problem.

1 chunk ← get_suitable_chunk(survivors, N)
2 set_CDP_variables(chunk, N)
3 counter ← 0
4 remaining ← survivors

5 while counter < survivors do
6 nt← get_block_size()
7 nb← dchunk/nte
8 cudaMemCpy(Ad

cpu, (Ah
cpu + counter), chunk × sizeof(Node), H2D)

9 GPU_search <<< nb, nt >>>
(Cd, chunk, expected_childen_dgpu, Ad

cpu, dcpu, dgpu, control_datad, upper_bound, N)

10 syncDataD2H(control_datah, control_datad, chunk)
11 counter ← counter + chunk
12 remaining ← remaining − chunk
13 if remaining < chunk then
14 chunk ← remaining
15 end
16 end

4.4.1 The algorithm

The initial CPU search is the one described in Section 3.2. It performs backtracking
from the root depth (1) until the first cutoff depth dcpu = 2. The size of Ah

cpu at dcpu = 2 is
at most N − 1 nodes1. After the initial CPU search, TB-DP3 uses Algorithm 12 to launch
the first kernel generation on GPU and set up properly the CUDA runtime variables. The
next section gives details of TB-DP3 kernel.

4.4.1.1 The kernel

Algorithm 13 presents a pseudo-code for TB-DP3’s kernel. Initially, each thread
Thi, i ∈ {0, 1, ..., chunk − 1}, verifies if the current depth is the base one (line 3). Then,
thread Thi initializes its data with root node Ri ∈ Ad

cpu (line 5). If the current depth
is not the base, thread Thi initializes its local active set by allocating memory for
expected_children_dgpu children nodes. Next, it gets the current depth and initializes the
variable local_load to zero (lines 7 – 9).

After evaluating its solution space from current_depth to dgpu, Thi initializes one
stream and launches recursively a next generation of TB-DP3 (lines 12 – 17). TB-DP3
1 For the N-Queens it is N × (N − 1)
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launches several generations of kernels, which makes it difficult to create a thread-to-data
mapping for the control data. Therefore, the control data is atomically accessed. If the
parent node of a kernel c is f ∈ Ad

cpu, the kernel c accesses control_data[f ] to return all
information collected by the search (line 19).

TB-DP3 is not a hybridization of search strategies. It uses TB-DP3 as the interme-
diate GPU search and also the final one, controlled by a base condition (line 6). If the
search reaches the base depth, TB-DP3 evaluates the solution space from the base depth
until N (lines 23 – 25).

Algorithm 13: A pseudo-code for the kernel of TB-DP3.
Input: Cost matrix Cd

N×N ,Agpu,chunk,expected_children_dgpu, dcpu, dgpu, the
global upper bound, and the size N of the problem.

1 idx← blockIdx.x× blockDim.x + threadIdx.x

2 if idx < chunk then
3 base_get_base_depth(N)
4 current_depth← dcpu

5 local_root← Ad
cpu[idx]

6 if current_depth < base then
7 local_load← 0
8 initialize_local_active_set(Aidx

gpu)
9 dgpu ← get_next_depth(current_depth, N)

10 Perform backtracking based on local root information, using dgpu for cutoff
condition, and upper_bound for pruning.

11 if local_load > 0 then
12 cudaStream_t stream
13 stream_idx← idx
14 initialize(stream)
15 nt← get_cdp_block_size()
16 nb← dlocal_load/nte
17 TB_DP3 <<< nt, nb, stream >>> (Cd, Aidx

gpu, local_load, ...)
18 deviceSynch()
19 error_vector[f ]← get_last_error()
20 destroyStream(stream)
21 end
22 end
23 else
24 Perform the Final GPU Search as presented by Algorithm 7.
25 end
26 end
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4.5 Computational Evaluation

This section intends to validate the algorithms proposed in Sections 4.2 to 4.4. The
remainder of this evaluation is organized as follows. First, the experimental protocol and
parameter settings are outlined in Sections 4.5.1 and 4.5.2. Then, new implementations of
DP3-based algorithms are compared and analyzed in Section 4.5.3.

4.5.1 Experimental Protocol

The primary objective of the present evaluation is to validate Algorithms 8 to 11.
To archive this objective, the following implementations that dynamically allocate memory
on GPU and launch more than two kernel generations were reimplemented using the
algorithms listed above:

• DP3: strategy introduced in Section 2.4.4 that revisits the ideas of Plauth et
al. (2016).

• CDP-DP3: hybridization of CDP-BP and DP3 introduced in Section 3.6.2.

Moreover, for the purpose of this evaluation, two other implementations are pro-
posed:

• TB-DP3: variation of DP3, introduced in Section 4.4, that allocates memory on
GPU in a thread-based manner.

• CDP-TBDP3: variation of CDP-DP3 that uses TB-DP3 as the Final GPU Search.

The second objective of this evaluation is to investigate whether the use of a
thread-based allocation decreases the nodes/second rate of the tested algorithms or not.

All implementations listed above apply Algorithms 8 to 11 to calculate their memory
requirements, setup the CUDA runtime variables, and launch the first kernel generation.
All parallel strategies listed above use the data structure described in Section 2.5.1.
For comparison, the present performance evaluation also uses the serial CPU-baseline
already introduced in Section 3.8.1, as well as the same experimental protocol detailed in
Section 3.8.1. Table 9 presents the key differences of all DP3-based implementations.
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Table 9 – Key differences between all DP3-based implementations: number of dynamic
allocations on GPU’s heap, number of GPU streams / CDP kernels launched,
and algorithms employed. Values are for ATSP and N-Queens. Numbers in
brackets correspond to the explanations below the table.

Implementation # Dynamic Allocations GPU streams/CDP kernels Algorithms
DP3 nbh + k

(b)
2 |Ah

cpu|+ k
(a)
1 8 - 11 + DP3

TB −DP3 |Ah
cpu|+ k1 |Ah

cpu|+ k1 8 - 11 + TB-DP3
CDP −DP3 k2 nbh + k1 5 - 7 + 8 - 11 + DP3

CDP − TBDP3 k1 nbh + k1 5 - 7 + 8 - 11 + TB-DP3

a) k1 = (
∑base−1

d=dgpu
survivorsd)

b) k2 = (
∑base−1

d=dgpu
nbd)(1,2)

Source – The Author.

where:

1. The subscript d means that such variable concerns a given depth d. The subscript h

means that such variable is used by the host to configure/launch the first kernel.

2. The variable nb stores the number of blocks used for kernel configuration. Thus,
nbh = d|Ah

cpu|/nthe. In k2, this notation is extended to say that nbd is the number of
blocks configurations for launching all kernels in depth d.

4.5.2 Parameters Settings

The present evaluation follows the same parameters settings of Section 3.8.2 with
respect to the programming languages, metrics, instances, and test-bed used. The heap
size calculation is not precise for DP3-named implementations because it is block based
and a block may have inactive threads. According to preliminary experiments, the heap for
a DP3-named implementation must be 1.5× bigger than the heap of its TB-DP3-named
counterpart to run all tests without runtime errors. Moreover, the implementations herein
evaluated do not require to set up dcpu and dgpu. Table 10 presents the best parameter
configurations for all DP3-based implementations.

4.5.3 Comparison Between all DP3-based implementations

In this section, all DP3-based implementations are compared using the parameter
configuration of Table 10. First of all, it is important to point out that by using Algorithms 8
to 11, all implementations listed in Section 4.5.1 can run all the test-cases without runtime
errors.

Figure 18 shows the average speedup reached by all DP3-based implementations for
each instance class, problem sizes range from N = 10 to 12. Table 11 presents the average
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Table 10 – List of best parameters found experimentally for all DP3-based implementa-
tions.

Parameters Settings
Implementation Block Size Bl. Size-CDP Heap

TB − namedA 128 64 h MB
TB − namedQ 128 32 h MB

DP3− namedA 128 64 1.5× h MB
DP3− namedQ 128 32 1.5× h MB

1) The parameter are the same for ATSP and N-Queens.
Source – The Author.

speedup reached by all DP3-based implementation, problem sizes range from N = 10 to
12. For this range of sizes, DP3 is on average 12% faster than TB-DP3 to perform the
same task. The same behavior is observed for CDP-DP3 and CDP-TBDP3. For this range
of sizes, CDP-DP3 is on average 34% faster than CDP − TBDP3 to perform the same
task. The dynamic allocations of CDP-DP3 happen only once at the second dgpu, in the
first generation of DP3. The number of calls to malloc() and free() is high, and they
impact negatively on the execution time for instances of sizes from N = 10 to 12.

Figure 18 – Average speedup reached by all DP3-based implementations for each instance
class. Problem sizes range from N = 10 to 12.
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Figure 19 shows the average speedup reached by all DP3-based implementations
for problem sizes ranging from N = 10 to 18(19). Table 12 presents the average speedup
for each DP3-based implementation, for problem sizes ranging from N = 10 to 18(19). For
this range of sizes, TB-DP3 and DP3 have an equivalent performance. Speedups of 4.04×
and 4.07× are observed for DP3 and TB-DP3, respectively. In turn, speedups of 5.62×
and 5.21× are observed for CDP −DP3 and CDP − TBDP3, respectively.
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Table 11 – Average speedup reached by all DP3-based implementations. Results are the
average speedup for all instance classes and sizes ranging from N = 10 to 12.

Implementation Average Speedup
DP3 1.08×

TB −DP3 0.98×
CDP −DP3 2.10×

CDP − TBDP3 1.61×
CDP −BP 5.24×

Source – The Author.

Figure 19 – Average speedup reached by all DP3-based implementations for each instance
class. Problem sizes range from N = 10 to 18(19).
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Table 12 – Average speedup reached by all DP3-based implementations. Results are the
average speedup for all instance classes and sizes ranging from N = 10−18(19).

Implementation Average Speedup
DP3 4.07×

TB −DP3 4.04×
CDP −DP3 5.62×

CDP − TBDP3 5.21×
CDP −BP 7.10×

Source – The Author.

A DP3-named implementation differs only from its TB-named counterpart in
the way the dynamic allocation is performed. Both strategies create the same number
of streams, and launch the same number of kernels, as shown in Table 9. According to
Figure 19 and Table 12, all implementations that allocate memory in a thread-based manner
are on average slower than their block-based counterparts. However, such a performance
difference lies mainly for smaller instances. Solving larger problems by using a DP3-based
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implementation requires launching thousands of kernels, as can be seen in Annex C. As
blocks may have inactive threads, the heap of a DP3-named implementation needs to be up
to 1.5× bigger than the heap of its TB-DP3-named counterpart. This way, a DP3-named
implementation may allocate more memory for solving bigger problems, which explains
the similar performance between DP3-named and TB-DP3 named implementations when
taking into account all problem sizes.

4.6 Concluding remarks

This section presents the concluding remarks of this chapter. Sections 4.6.1 to 4.6.2
outline the conclusions concerning programmability, performance, and applicability of the
DP3-based implementations. Section 4.6.3 introduces future directions of research. Finally,
Section 4.6.4 lists the main insights that summarize this chapter.

4.6.1 Programmability

The objectives of the chapter were accomplished. All DP3-based implementations
can solve the selected test-cases without runtime errors by using Algorithms 8 to 11.

Although removing the need for dcpu tuning, the challenges faced while programming
the CDP-BP strategy are amplified while programming the DP3-based ones. The memory
requirement analysis requires several steps and takes into account a subtree rooted at dcpu

that goes down to the base depth. Moreover, there is the need of calculating the number of
kernel generations and setup CUDA runtime variables. Furthermore, functions for getting
the next depth and the base of the recursion are also required.

The memory requirement analysis based on expected_children_dgpu is not precise
for DP3-named algorithms. A block may contain several inactive threads, and a block-based
allocation takes into account such inactive threads. The experiments carried out to build
Table 10 were performed based on trial and error, increasing the value of the variable
cudaLimitMallocHeapSize, until the heap gets large enough for solving all test-cases.

The block size is a parameter that influences not only the performance, but the
safety of the code of a DP3-named application. In a situation where a DP3-based strategy
is made available for non-expert users, the programmer is not aware of the instances to
be solved by the user. This way, the code may run correctly for the test-cases of the
programmer, but, may present runtime errors for the user.

The thread-based allocation makes the memory requirement analysis more precise
and removes the need for thread-to-data mapping and block synchronization, which
considerably decrease the complexity of the kernel. Furthermore, it makes the code safer,
as stated above.
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The CDP programming model has a limit of 24 nesting levels. Thus, recursive
CDP-based algorithms that launch several kernel generations, such as the quick-sort of
the CUDA samples, launch new generations of kernels until a predefined base, avoiding to
trespass this limit. For a DP3-based strategy, as it was originally proposed, this limit is
not reachable. It is enough to go until dgpu = 223.

4.6.2 Performance and applicability

The number of calls that a TB-named implementation makes to malloc() is more
significant than the number of calls that a DP3-named makes. However, the thread-based
allocation results in insignificant performance losses compared to the block-based one.

DP3 was initially proposed as a CDP-based load balance strategy for backtracking.
However, it is difficult to make it launch more than three generations of kernels, due to
the massive memory requirement of more deep depths. The pool strategy presented in the
last chapter looks more worthwhile for load balance: There is no need for CDP expertise,
and it is a straightforward modification of BP-DFS, which is the simplest and fastest
GPU-based implementation proposed in this work.

The algorithms proposed in this chapter are not only for recursive approaches. They
have also been used in the CDP-DP3 named algorithms, which have an implementation of
CDP-BP internally.

4.6.3 Future research directions

It was pointed out that doubling dgpu at each new recursive call of DP3 works well
for sizes up to N = 16. In such situations, 3 generations of kernels are launched. For sizes
bigger than N = 16, this strategy is prohibitive due to the massive memory requirements
involved. Moreover, the definition of a base depth is also challenging: for N = 18, 4
generations of kernels would be launched. However, it would require an enormous amount
of memory to store the possible children nodes at dcpu = 16, and the last generation would
perform no search at all. For example, consider instance tsmat18, that belongs to the
instance class with the biggest solution space (refer to Table 1). In such a situation, the
last kernel generation would evaluate less than 3% of the solution space. A future research
direction is on investigating different ways of calculating the next dgpu and a rule for
determining the base depth based on the partial backtracking tree and the size N of the
problem.

4.6.4 Main insights

The following summarizes the main insights from this chapter:
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• Despite removing the need of dcpu tuning, the use of the DP3 strategy makes the
code complex.

• Setting up the CUDA runtime variables is not straightforward. It requires several
algorithms that take into consideration the subtree of a node at dcpu.

• The per-thread dynamic memory allocation makes the memory requirement analysis
more precise and the code safer.

• Despite the higher number of calls to malloc() and free(), the thread-based
strategy results in minor performance losses for smaller instances.
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5 RECURSIVE NON-CDP IMPLEMENTATIONS

Before the advent of dynamic parallelism, it was necessary to return the control to
the host to launch a new kernel. Thus, one of the primary goals of dynamic parallelism
is to avoid halting the kernel execution to return the control to the host (NVIDIA,
2012a; ADINETZ, 2014; AMD, 2016). All CDP-based algorithms studied in this thesis
can be implemented without using CDP, recursively invoking CUDA kernels from the
host. Differently from related works that apply dynamic parallelism to replace several
kernel calls from the host (ODEN; KLENK; FRONING, 2014; AMD, 2016), the CDP-
based implementations studied in this work launch few kernel generations. Under these
circumstances, this chapter reports an investigation into whether the use of CDP is
advantageous over a non-CDP and equivalent counterpart.

This chapter presents two recursive non-CDP implementations: REC-CDP, which
has the semantics of CDP-BP and DP2, and REC-DP3, which has the semantics of DP3.
According to the results, smaller interference of the host combined with a block-based
child search seems worthwhile for irregular tree search algorithms, even in situations where
few kernels are launched.

The main contributions reported in this chapter are the following:

• This chapter shows that despite the performance penalties intrinsically related
to dynamic parallelism, a CDP-based algorithm can be superior to its equivalent
non-CDP counterpart.

• Results evidence that CDP-BP is less dependent on the size of the solution space
than BP-DFS and all other CDP-based implementations.

The remainder of this chapter is structured as follows. Sections 5.1.1 and 5.1.2
detail the recursive non-CDP implementations. Next, both recursive implementations are
compared to their CDP-based counterparts in Section 5.2. Finally, concluding remarks are
outlined in Section 5.3.

5.1 Recursive non-CDP implementations

The following subsections detail the non-CDP implementations: REC-CDP and
REC-DP3. REC-CDP has the semantics of CDP-BP and DP2, and performs the Interme-
diate GPU Search from dcpu to dgpu. After this stage, BP-DFS is called as the final GPU
search. In turn, REC-DP3 has the semantics of DP3. However, differently from DP3, the
host performs the allocation before the kernel launch and deallocations after.
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5.1.1 REC-CDP

REC-CDP applies all algorithms and data structures used by CDP-BP. The biggest
difference between them is that REC-CDP is not a block-based search strategy. This
way, REC-CDP defines a global counter survivors_dgpu instead of a block counter. The
variable survivors_dgpu is atomically incremented in the first kernel every time a GPU
thread finds a frontier node at dgpu. Thus, the use of survivors_dgpu places frontier nodes
in contiguous positions of Ad

gpu.

Algorithm 14 presents a pseudo-code for REC-CDP. This algorithm is similar to
Algorithm 4, which launches the Intermediate GPU Search for CDP-BP. Therefore, for
the sake of greater simplicity, some steps and details concerning the parameters have been
omitted. The algorithm for REC-CDP proceeds as follows.

First, the host initializes survivors_dd
gpu on GPU (line 7). Then, the Intermediate

GPU Search evaluates a subset S ⊆ Ah
cpu of size chunk until Ah

cpu is empty. After the first
kernel (line 9), the value of survivors_dgpu is retrieved by the host (line 10) to configure
the Final GPU Search launch (lines 16 – 17). There is no need to retrieve Ad

gpu because
the host uses this pointer on the launch of the last kernel (line 17). After the Final GPU
Search, the algorithm retrieves the control data from the device, checks for errors, and
calculates metrics.

Figure 20 illustrates the search procedure of REC-CDP. It is possible to observe
that the control returns to the host when the first kernel finishes. This action is necessary
to retrieve suvivors_dgpu, which stores the size of Ad

gpu, and to configure the next kernel
launch. Comparing Figure 11 to Figure 20, it is possible to see that CDP-BP performs
the same operations REC-CDP does, but without returning the control to host after the
Intermediate GPU Search, and in a block-based manner.

5.1.2 REC-DP3

Algorithm 15 shows a pseudo-code for REC-DP3. Although this algorithm has the
semantics of DP3, REC-DP3 uses the code of REC-CDP, launching the Intermediate GPU
Search until it reaches the recursion base. REC-DP3 also perform a memory requirement
analysis. However, these steps have been omitted in Algorithm 15, as well as information
concerning parameters.

First, the host initializes current_depth with the value of dgpu and sets the variable
first to true (lines 1 – 2). After these steps, the recursion begins (line 4). Initially, dgpu

receives the next depth of the recursion, and then the algorithm calculates the size of Ad
gpu

for the current dgpu as shown in Section 3.3 (lines 5 – 7).

Before launching the Intermediate GPU Search, the host initializes survivors_dd
gpu

of the current kernel call and allocates memory enough for Ad
gpu (lines 13 – 14). Note
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Algorithm 14: Launching REC-CDP.
1 counter ← 0
2 survivors_dh

gpu ← 0
3 remaining ← survivors_dcpu

4 while counter < survivors do
5 nt← get_block_size()
6 nb← dchunk/nte
7 cudaMemCpy(survivors_dd

gpu, survivors_dh
gpu, sizeof(int), H2D)

8 ...
9 intermediate_GPU_search <<< nb, nt >>>

(survivors_dd
gpu, Cd, chunk, expected_children_dgpu, Ad

cpu, Ad
gpu, dcpu, dgpu, upper_bound)

10 cudaMemCpy(survivors_dh
gpu, survivors_dd

gpu, sizeof(int), D2H)
11 counter ← counter + chunk
12 remaining ← remaining − chunk
13 if remaining < chunk then
14 chunk ← remaining
15 end

/* Configuration of the final GPU search. */
16 nt← get_final_block_size()
17 nb← dsurvivors_dh

gpu/nte

18 final_GPU_search <<< nb, nt >>>
(survivors_dh

gpu, Cd, Ad
gpu, dgpu, upper_bound)

19 end

that there is only one H2D transference that copies Ah
cpu on GPU. This data transference

happens only for the first kernel launch (lines 7 – 11) because the Ad
gpu of launch x

corresponds to the Ad
cpu of the launch x + 1, as will be detailed further.

After the kernel call, there is a D2H copy that gets survivors_dd
gpu (line 18).

Then, the host deallocates Ad
cpu and swap pointers (lines 19 – 21). This way, Ad

cpu of the
current kernel call points to Ad

gpu of the former one. When the search reaches the base
of the recursion, the host launches the Final GPU Search using the pointers to Ad

gpu and
survivors_dd

gpu (lines 24 – 26).

Consider Figure 20 for illustrating how REC-DP3 proceeds. This algorithm performs
the operations recursively from the configuration of the Intermediate GPU Search to the
D2H transference that retrieves survivors_dd

gpu. When REC-DP3 reaches the recursion
depth, the host configures and launches the Final GPU Search.

5.2 Performance Evaluation

This section evaluates the CDP-based backtracking strategies proposed in Sec-
tions 5.1.2 and 5.1.1. Firstly, Section 5.2.1 presents the experimental protocol. Then,
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Figure 20 – This figure illustrates the steps of REC-CDP. After the initial CPU search,
the host initializes data on GPU and deploys the Intermediate GPU Search,
which fills Ad

gpu with frontier nodes. Next, the host retrieves survivors_dgpu

to launch the final backtracking on GPU. After this kernel, control data is
retrieved to calculate metrics and check for errors. Dashed lines are illustrative
and do not mean the time spent on an operation.
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Section 5.2.2 lists the parameter settings. Finally, all parallel implementations are com-
pared in Section 5.2.3.

5.2.1 Experimental Protocol

The present performance evaluation compares different approaches for solving to
optimality instances of the ATSP and for enumerating all valid configurations of the
N-Queens problem. The strategies proposed in this chapter are the following:

• REC-CDP: implementation detailed in Algorithm 14, which has the semantics of
CDP-DP and DP2.

• REC-DP3: implementation detailed in Algorithm 15, which has semantics of DP3.

Both parallel strategies listed above use the data structure described in Section 2.5.1.
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Algorithm 15: REC-DP3

1 current_depth = dcpu

2 first← true
3 chunk ← survivors_dcpu

4 while (current_depth 6= recursion_base(N)) do
5 dgpu ← get_next_depth(current_depth, N)
6 expected_children_dgpu ← maxgpu

maxcurrent_depth

7 max_Agpu_size← chunk × expected_children_dgpu

8 if first then
9 cudaMalloc(Ad

cpu, sizeof(Node) ∗ chunk)
10 cudaMemCpy(Ad

cpu, Ah
cpu, chunk ∗ sizeof(Node), H2D)

11 first← false

12 end
13 cudaMalloc(Ad

gpu, max_Agpu_size ∗ sizeof(Node))
14 cudaMemCpy(survivors_dd

gpu, survivors_dh
gpu, H2D)

15 nt← get_block_size()
16 nb← dsurvivors_dh

cpu/nte

17 intermediate_GPU_search <<< nb, nt >>>
(survivors_dd

gpu, Cd, chunk, expt_children_dgpu, Ad
cpu, Ad

gpu, current_depth, dgpu)

18 cudaMemCpy(survivors_dh
gpu, survivors_dd

gpu, sizeof(int), D2H)
19 chunk ← survivors_dh

gpu

20 pointer_to_release← Ad
cpu

21 Ad
cpu ← Ad

gpu

22 cudaFree(pointer_to_release)
23 end

/* Configuration of the final GPU search. */
24 nt← get_final_block_size()
25 nb← dsurvivors_dh

gpu/nte

26 final_GPU_search <<< nb, nt >>>
(survivors_dd

gpu, Cd, Ad
cpu, dgpu, upper_bound)

For comparison, the present performance evaluation considers all backtracking strategies
already introduced in Section 3.8.1, as well as the same experimental protocol detailed in
Section 3.8.1. Table 13 presents the key differences of all GPU-based implementations.
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Table 13 – Key differences of all GPU-Based implementations: use of CDP, number of
GPU streams / CDP kernels launched, use of dynamic memory allocations, and
algorithm reference. Values are for ATSP and N-Queens. Numbers in brackets
correspond to the explanations below the table.

Implementation CDP GPU streams/CDP kernels Dynamic Allocation Algorithms
BP −DFS no - no 1 + 7

DP3 yes |Ah
cpu|+ k1 yes 8 - 11 + DP3

DP2 yes |Ah
cpu| yes DP2

CDP −BP yes nbh ∗ number_of_kernels no 2 - 7
CDP −DP3 yes nbh + k1 yes 5 - 7 + 8 - 11 + DP3
REC −DP3 no - yes 5 + 7 + 15 + DP3
REC − CDP no - no 5 + 7 + 14

Source – The Author.

5.2.2 Parameters Settings

The present performance evaluation follows the parameters settings of Section 3.8.2
with respect to the programming languages, metrics, instances, and test-bed used. For
both recursive implementations, there is no setup of CUDA runtime variables. REC-DP3
is based on DP3. Therefore, there is no tune of cutoff depth. Table 14 presents the best
parameter configurations for all GPU-based implementations.

Table 14 – List of best parameters found experimentally for all parallel implementations.

Parameters Settings
Implementation Block Size Bl. Size-CDP dcpu dgpu

BP −DFS1 128 - 7 -
CDP −BPA 128 64 6 8
CDP −BPQ 128 64 5 7
CDP −DP31 128 64 - -

DP2A 128 64 4 7
DP2Q 128 32 4 7
DP3A 128 64 - -
DP3Q 128 32 - -

REC − CDP 1 128 - 4 7
REC −DP3 128 - - -
Multicore1 - - 4 -

1) The parameter are the same for ATSP and N-Queens.
Source – The Author.

5.2.3 Comparison Between All GPU-based implementations

In this section, all parallel implementations are compared using the parameter
configuration of Table 14. Figure 21 shows the average speedup reached by all parallel
implementations compared to the serial baseline. Table 15 reports the average speedup
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achieved by all parallel implementations for different ranges of sizes. The higher/lower

column presents the value of the best average speedup observed for a range of sizes over
the worst one. For example, BP −DFS has this value equals to 2.12: 12.37 (higher) /

5.82 (lower).
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Figure 21 – Average speedup reached by all parallel implementations compared to the
serial baseline. Results are considering all classes of instances. Problem sizes
are ranging from N = 10− 19 (10− 18 for queens and tsmat).

According to Table 15, all implementations increase the speedup as the solution
space grows. The highest values of higher/lower average speedup are observed for DP2,
DP3, and CDP-DP3. These applications are CDP-based, perform dynamic allocation-
s/deallocations on GPU, and launch one new kernel generation per thread. As observed in
Section 3.8.3, the overhead of dynamic allocation, multiple stream creations/destruction,
and several kernel launches amount negatively for small sizes. This way, the lowest values
of average speedup are also observed for DP2, DP3, and CDP-DP3. As the solution space
grows, this overhead becomes less significant, and the benefits of a more regular load
provided by the DP3 strategy take place. Hence, according to Figure 21, CDP-DP3 is the
CDP-based implementation with the best overall results while solving instances of the
ATSP to optimality. It is also on average slightly superior to CDP-BP to perform this
task.

CDP-BP presents the second smallest higher/lower value of Table 15. For sizes
ranging from N = 10 to 12, CDP-BP and BP-DFS have similar performances. It is
important to point out that both implementations are on their best parameters config-
uration. Such a small value of higher/lower confirms that the performance of CDP-BP
is less dependent on the solution space size than BP-DFS and all other CDP-based
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implementations.

Table 15 – Average speedup reached by all parallel implementations for different range
of sizes: N = 10 − 12, N = 10 − 15, and N = 10 − 18(19). The column
higher/lower shows, among the three range of sizes, the value of the highest
average speedup over the lowest one.

Average Speedup
Implementation 10− 12 10− 15 All sizes higher/lower

BP −DFS 5.82× 10.84× 12.37× 2.12
CDP −BP 5.24× 6.81× 7.10× 1.35

DP2 1.3× 2.28× 2.99× 2.30
DP3 1.08× 3.14× 4.07× 3.76

CDP −DP3 1.87× 4.88× 5.54× 2.96
REC − CDP 6.05× 7.18× 7.24× 1.19
REC −DP3 3.48× 5.39× 5.68× 1.63

Multicore 4.63× 9.67× 11.41× 2.46
Source – The Author.

Despite the performance penalties intrinsically related to dynamic parallelism, a
CDP-based implementation can be faster than its non-CDP and equivalent counterpart,
even in the situations analyzed, where the control is returned few times to the host.
CDP-BP is superior to both REC-CDP and REC-DP3 for solving the ATSP, which means
that a smaller interference of the host combined with a block-based child search seems
worthwhile for irregular tree search algorithms. Concerning the implementations that
perform dynamic allocations, DP3 is not superior to REC-DP3 in any experiment. As
pointed out before, DP3 has several sources of overhead.

Launching one new kernel generation for each thread is not a good strategy for the
N-Queens problem. The load processed by a child kernel is too small (refer to Figure 8), and
the problem faced by BP-DFS while handling small loads takes place (refer to Section 3.8.4).
Both recursive implementations launch the next kernel based on the number of survivors
returned by the former one, which is closely related to the load balance strategy proposed
by Jenkins et al. (2011). That is the reason why the recursive implementations are superior
to their CDP-based counterparts for enumerating all feasible solutions of the N-Queens.
Speedups observed for REC-CDP are close to the ones observed for BP-DFS and superior
to the ones reached by the multicore implementation that uses the pool strategy for load
balance. In turn, REC-DP3 is considerably faster than its CDP-based counterpart for the
N-Queens. However, it is slower than REC-CDP to perform the same task. REC-DP3
also has several sources of overhead: it allocates memory for the next kernel generation
and also deallocates when a kernel finishes its execution. Moreover, it is based on DP3,
which follows a predetermined rule for updating dgpu. This way, it not possible to tune
this parameter, which may penalize the performance of REC −DP3 and DP3.

CDP-BP launches a new kernel generation based on the load of the block instead
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of the load of the thread, which makes the implementation of CDP-BP more similar to
REC-CDP than to DP3 (refer to Section 5.1.1). According to NVIDIA Visual Profiler,
by using the block-based kernel launch, CDP-BP can archive twice more occupancy and
three times more eligible warps per active cycle than all other CDP-based implementations
while enumerating all feasible configurations of the N-Queens problem. The results of
CDP-BP for the N-Queens and instances of sizes ranging from N = 10− 12 justifies its
better values than the ones of CDP-DP3 in Table 15.

5.3 Concluding remarks

This section presents the concluding remarks of this chapter. Sections 5.3.1 to 5.3.3
outline the conclusions concerning programmability, performance, and applicability of
the recursive implementations. Section 5.3.3 introduces future lines of research. Finally,
Section 5.3.4 lists the main insights that summarize this chapter.

5.3.1 Programmability

The recursive non-CDP implementations have the semantics of the CDP-based
ones. However, they do not face the limitations of the CDP programming model and
do not suffer from the different performance penalties intrinsically related to dynamic
parallelism. Moreover, the load balance and higher granularity provided by calling multiple
kernel generations are also present in both REC-CDP and REC-DP3. Furthermore, both
recursive implementations do not require thread-to-data mappings, which considerably
simplifies the coding process.

Although REC-DP3 is based on DP3, it does not require algorithms to set up the
maximum heap size or maximum nesting depth. The most significant challenging issue of
a DP3-based search is the memory requirement. Launching multiple kernels generations
means dealing with increasing memory requirements. Compared to the memory requirement
analysis of DP3, the analysis of REC-DP3 is more precise and straightforward, as it uses
the number of survivors returned by the previous kernel call to calculate the requirements
of the next one.

CDP-DP3 is the CDP-based application with the best overall performance for the
ATSP. However, its code is complex and consists in a combination of several algorithms.
As a consequence, the programmer needs to cope with programming challenges of CDP-BP
and DP3 at the same time. This programming effort seems not worthwhile for such a small
performance gain.
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5.3.2 Performance and applicability

CDP-BP is faster than its non-CDP and equivalent counterpart for solving the
ATSP. These results evidence that a smaller interference of the host combined with a
block-based child search seems worthwhile for irregular tree search algorithms. Results
also report that CDP-BP is less dependent than BP-DFS on the size of the solution space.

Using the recursive implementation is beneficial over using CDP in situations where
the number of survivors generated by the previous kernel is much smaller than the expected
number. In such circumstances, the next kernel generation is launched with a small number
of active threads, and the resources of the GPU are not adequately used. The non-CDP
implementations deploy a new kernel generation based on the survivors found by the
previous kernel. This load balancing is similar to the one applied by Jenkins et al. (2011)
and found to be useful in this situation.

5.3.3 Future research directions

REC-DP3 seems a good starting point to implement a hybrid GPU-multicore
algorithm. Such an algorithm would call the multicore search if the number of survivors
returned by the previous kernel call is less than a threshold. However, the way DP3
calculates the next depth does not allow such an implementation. Doubling the next dgpu

makes the memory requirements huge, while the number of nodes rapidly decreases. This
way, this hybrid application would have to provide a different way of choosing the next
dgpu.

5.3.4 Main insights

The following summarizes the main insights from this chapter:

• CDP-based algorithms may be superior to their equivalent non-CDP counterparts.
However, the CDP-based code is more complex and must deal with hardware and
programming model limitations.

• CDP-BP is less dependent on the size of the solution space than BP-DFS and all
other CDP-based implementations.

• A smaller interference of the host combined with a block-based child search seems
worthwhile for irregular tree search algorithms.

• REC-DP3 looks good starting point to program hybrid multicore-GPU algorithms.
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6 CONCLUSION

This work presents several GPU-based backtracking strategies for solving permuta-
tion combinatorial problems. The first one, called BP-DFS, revisits GPU-DFS and it is
based on a well-known parallel backtracking model. Besides several improvements, BP-DFS
uses bitsets to keep track of the elements of the permutation that have already been used.
The modifications are straightforward and mean no complexity to the code. Although
BP-DFS was not presented as a contribution of this work, the new data structure was
used as the foundation for all other algorithms presented by this thesis.

The main contribution of this thesis consists in a study on GPU-accelerated
parallel backtracking strategies that uses CUDA Dynamic Parallelism (CDP). Although
CUDA programming model was the one chosen for parallelizing the algorithms, dynamic
parallelism is not a proprietary technology. It is present in OpenCL 2.0 and supported by
the accelerators of NVIDIA’s concurrence. The kind of study herein reported is highly
needed to evaluate experimentally the efficiency of the mechanisms, such as dynamic
parallelism, provided in CUDA/GPU computing. This thesis identifies situations where
it is advantageous to use CDP through a large and irregular application. The present
research also allows identifying the limitations regarding the CDP programming model
and the considered applications: backtracking algorithms for solving instances of the ATSP
and enumerating all feasible configuration of the N-Queens problem.

According to the experimental results, using CDP provides a better worst-case
performance and CDP-BP reaches speedups over its sequential counterpart even without
prior knowledge of calibration results. However, all CDP-based implementations have been
outperformed by BP-DFS with well-tuned parameters. Despite removing the overhead
of dynamic allocations, CDP-BP implementation still suffers from the cost imposed by
dynamically launched kernels. Iterative kernel calls may replace the use of CDP. Results
report that a smaller interference of the host combined with a block-based child search
seems worthwhile for irregular tree search algorithms. On the other hand, in situations
where the load processed by the child kernels is small, a non-CDP version of the algorithm
is a better option.

This research also identifies challenges in developing CDP-based applications.
Programming efforts to deal with the growing memory requirements, difficulties in detecting
device-side runtime errors, and the requirement of additional programming expertise are
examples of such challenges. CDP suffers from several hardware limitations that may cause
runtime failures, and some of these limitations are difficult to cope with. The present thesis
identifies CDP limitations faced in the development of the proposed search strategies. For
each one found, a way of dealing with it is presented. Therefore, all proposed algorithms
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can solve problems with memory requirements from few kilobytes to several gigabytes.
This work also brings conclusions on other aspects of the CDP programming model, such
as the number of streams, CUDA runtime variables, dynamic allocation, global memory
mapping, and block size. These conclusions may be useful for helping potential users of
CDP or researchers that program irregular applications on GPU.

6.1 Future works

There are skeletons and frameworks designed to make GPU programming eas-
ier (ENMYREN; KESSLER, 2010; STEUWER; KEGEL; GORLATCH, 2011; MAJEED;
DASTGEER; KESSLER, 2013). Using such frameworks to implement the search strategies
studied in this thesis would not be worthwhile. It would be necessary to express these
algorithms using the data parallel functions the frameworks provide. It would not be
possible to modify some specific details, such as the trajectory of the search. Moreover,
GPU skeletons/frameworks use dynamic data structures, like STL vectors. Such dynamic
data structures perform very poorly on GPU, which is why alternative data structures such
as bitsets are used for GPU-based algorithms. There are also parallel divide-and-conquer
skeletons (DORTA et al., 2003; CUN; ROUCAIROL, 1995; GALEA; CUN, 2007; DANE-
LUTTO et al., 2016). These parallel tree search skeletons are mainly designed for shared
and distributed memory systems. To use such skeletons, the user defines the problem
and the solution data structures, as well as a set of functions, e.g., solution evaluation,
termination criteria, problem initialization, and bounding function. The skeleton is the
responsible for the parallel search procedure.

It is possible to extend the set of algorithms resulting from this thesis as a parallel
backtracking skeleton for solving permutation combinatorial problems. Such a skeleton
would consist of sequential, multi-threaded and GPU-based algorithms. There would be
no need to define the problem and the solution data types because the problems are
permutation-based. The user would have only to provide the termination criteria, problem
instance, and bounding functions.

A contribution related to this thesis is a comparison between the IVM data structure
and BP-DFS (PESSOA et al., 2016). A natural extension of this work is combining BP-DFS
and IVM. This new data structure would provide the low computing requirements of
BP-DFS and the load balancing properties of IVM.

Xeon Phi (JEFFERS; REINDERS, 2013) is an Intel accelerator for massively
parallel computing. This device has been attracting the attention of the combinatorial
optimization community because it has a large number of independent cores and it can also
be programmed using OpenMP (BARKALOV; GERGEL; LEBEDEV, 2015; MELAB et
al., 2015; LEROY, 2015). This scenario looks promising on the scope of unstructured tree
search, because diverging flow instructions may not result in high-performance degradations,
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like on GPUs. The experimental results report that the multi-core version of BP-DFS is
scalable on the number of CPU cores. For this reason, another future work is to perform a
comparison between Xeon Phi and GPU in the fine-grained situation investigated in this
thesis.

Another research direction is to investigate the use of CDP for redesigning GPU-
based Branch& Bound search algorithms. B&B is a systematic tree search strategy that
uses a bounding operator which computes bounds on the optimal cost of subproblems
to decide whether to continue their exploration. This class of unstructured tree search
algorithm has the bounding operator very time-consuming, the opposite situation of the
present work, which is dealing with fine-grained workloads.

6.2 Main publications related to this Thesis

There are four main publications related to this thesis:

• Carneiro et al. (2014) is a systematic study of the literature that investigates the state-
of-the-art on solving combinatorial problems by using GPUs and other heterogeneous
architectures. This paper was published in the annals of the XXXV Ibero-Latin
American Congress on Computational Methods in Engineering (CILAMCE). This
work was used by the author to define the research directions of his thesis.

• Pinheiro et al. (2014) present the FUSION language, a programming language for
heterogeneous computing in Java. This work uses as a case-study a multi-streaming
version of GPU-DFS. For this purpose, GPU-DFS was rewritten in FUSION. The
Brazilian Symposium on Programming Languages (SBLP) is a B3-ranked conference,
and the paper was published in the Lecture Notes in Computer Science.

• Pessoa et al. (2016) revisits the IVM data structure for load balancing on DFS-B&B
algorithms and compares it to BP-DFS. Results show that BP-DFS is advantageous
for more regular loads and smaller instances. However, the IVM-based algorithm
performs load balance, which results in a better performance for bigger and more
irregular loads. The International Conference on Algorithms and Architectures for
Parallel Processing (ICA3PP) is a B1-ranked conference, and the paper was published
in the Lecture Notes in Computer Science.

• Carneiro Pessoa et al. (2017) is the final and most important publication related
to this thesis. It contains information present in Chapters 3 and 5. This paper
was submitted to Concurrency and Computation: Practice and Experience (CCPE),
and will be published in the special issue Emerging Trends in High-Performance
Computing and Simulation. CCPE is an A2-ranked journal.
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The last two works above listed are the result of a collaboration between members
of the ParGO-UFC group and researchers of INRIA-Lille (France) and Mons University
(Belgium).

6.2.1 Other publications

The author of this thesis published three other papers during his doctorate. These
research works are the result of a collaboration between the author and members of
the ParGO-UFC group, and between the author and researchers of other institutions:
Fraunhofer Institute (Germany) and IFCE.

• Nepomuceno, Pessoa, and Nepomuceno introduce the Formula Optimizer: a new
software designed to formulate and solve multi-objective combinatorial optimization
problems with no programming expertise. This work was published in the annals
of the XLVIII Simpósio Brasileiro de Pesquisa Operacional. SBPO is a B4-ranked
conference.

• Arruda et al. (2014a) study the influence of L2-cache organizations on the perfor-
mance of GPU-based algorithms. This work was published in the annals of the XV
Simpósio em Sistemas Computacionais de Alto Desempenho. WSCAD is a B3-ranked
conference.

• Arruda et al. (2014b) investigate the impact of different code optimizations on GPU-
based algorithms. This paper was published in the annals of the XXXV Ibero-Latin
American Congress on Computational Methods in Engineering (CILAMCE).
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APPENDIX A – GETTING THE AMOUNT OF MEMORY
RESERVED FOR NESTING LEVEL SYNCHRONIZATION

CDP-capable GPUs reserve global memory for each nesting level that performs
synchronization. This value is not easily obtained via CUDA functions and varies accord-
ingly to properties of the GPU. In this annex brings details concerning an experiment to
get the amount of memory a GPU reserves for each nesting level.

The experiment

Listing A.1 presents a simple CDP program that performs nesting level synchroniza-
tion. This program receives an integer parameter to initialize the variable cudaLimitDev
RuntimeSyncDepth (line 7-8 ). This variable keeps the value of the deepest synchronization
level, host call included.

To find out the exact amount of memory that a CDP-capable GPU stores per
nesting level, first, it is necessary to compile the program, then:

• Run the program passing an integer x > 2 as a parameter, and run NVIDIA’s
nvidia-smi in parallel, which returns the amount of global memory a CUDA
program is using.

• Having the amount of memory the GPU stores for cudaLimitDevRuntimeSyncDepth
set to x, run again the program passing x + 1 as a parameter along with nvidia-smi
in parallel.

The difference between the memory reserved by both runs is the amount of memory
the GPU reserves for each nesting level.

According to the results, the CUDA runtime reserves global memory even if
cudaLimitDevRuntimeSyncDepth is set to 0. The CUDA runtime reserves at least memory
for 2 nesting levels of synchronization, even if the programmer manually sets the value of
this variable to 1. That is the reason why values bigger than 2 are used in this experiment.
The program presented by Listing A.1 has a quick execution. Therefore, the infinite loop
(line 11) is used to keep the CUDA program running while nvidia-smi is run in parallel.

This experiment was also run on four different GPUs that belong to three different
NVIDIA architectures. One can see in Table 16 the specifications of the GPUs used, as
well as the amount of memory reserved by each device.
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1 __global__ void kernel (int a){

2 int b = a;

3 kernel <<<1,1>>>(b);

4 cudaDeviceSynchronize ();

5 }

6 int main(int argc , char *argv []){

7 int number_synch_depth = atoi(argv [1]);

8 cudaDeviceSetLimit ( cudaLimitDevRuntimeSyncDepth ,

number_synch_depth );

9 kernel <<<1,1>>>(1);

10 cudaDeviceSynchronize ();

11 while (1) {}

12

13 return 0;

14 }

Listing A.1 – A CDP program that performs nesting level synchronization and sets up
the variable cudaLimitDevRuntimeSyncDepth. Source: The Author.

Table 16 – Specification of each GPU used, as well as the amount of memory reserved for
each nesting level.

GPU Architecture Compute capability CUDA cores Global memory Reserved memory

Tesla K40m Kepler 3.5 2880 12 GB 109 MB
Tesla K20c Kepler 3.5 2496 5 GB 96 MB

GTX-750 Ti Maxwell 5.0 768 1 GB 41 MB
GTX-1050 Ti Pascal 6.1 768 4 GB 48 MB
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APPENDIX B – GETTING THE AMOUNT OF MEMORY
RESERVED FOR THE DEFAULT HEAP SIZE

If the programmer does not sets up the CUDA runtime heap size, the GPU stores
a default value, which is not easily obtained via CUDA functions. In a situation where the
maximum GPU heap size does not fit the requirements of the application, CUDA runtime
returns an "illegal memory access" error. This error can be confused with an out of bounds
memory access.

This annex shows details concerning an experiment to get the default CUDA
runtime heap size.

The experiment

Listing B.1 presents a CUDA program that sets up the value of the cudaLimitMalloc
HeapSize variable and retrieves this value via the cudaDeviceGetLimit() function. To
find out the exact value of the default CUDA Runtime heap size, it is necessary to run
the program without line 6, which sets up the value of the heap size. Table 17 show the
values of default heap size for the GPUs used in Annex A.

According to the results, the default heap size is the same for all GPUs: 8MB.
Even with the value of cudaLimitMallocHeapSize set to 0MB, all GPUs used in the
tests store at least 4MB of global memory for the heap.

1

2 int main(int argc , char *argv []){

3 unsigned long max_heap = ( unsigned long)(atoi(argv [1])

*1000000 UL);

4 cudaDeviceSetLimit ( cudaLimitMallocHeapSize , max_heap );

5 cudaDeviceGetLimit (& max_heap_size ,

cudaLimitMallocHeapSize );

6 printf ("\nHeap size found to be %d.",max_heap /1000000 UL);

7 return 0;

8 }

Listing B.1 – A CUDA program that returns the default value of the
cudaLimitMallocHeapSize variable. Source: The Author.
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Table 17 – Specification of each GPU used, as well as the default CUDA Runtime default
heap size.

GPU Architecture Compute capability CUDA cores Global memory Default Heap Size

Tesla K40m Kepler 3.5 2880 12 GB 8 MB
Tesla K20c Kepler 3.5 2496 5 GB 8 MB

GTX-750 Ti Maxwell 5.0 768 1 GB 8 MB
GTX-1050 Ti Pascal 6.1 768 4 GB 8 MB
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APPENDIX C – VISUAL PROFILE OF CUDA KERNELS

This annex presents a visual profile for all GPU-based implementations studied
in this work. The objective of this annex is to provide a visual profile of all GPU-based
implementations while processed by the GPU. This way, it is possible to show the details
of each implementation, such as recursiveness, irregularity, the number of kernels launched,
and the interleave of kernel launches/executions. All figures presented in this annex are
screenshots of The NVIDIA Visual Profiler, which is a part of the CUDA C suit.

Visual Profile of All CDP-based implementations

Figure 22 shows a visual profile of all CDP-based implementation studied by this
work: CDP-BP, DP2, DP3, and CDP-DP3. The TB named implementations differ from
the non-TB ones only in the way they perform dynamic allocations. Hence, there are no
visual profile for the TB-named ones.

The NVIDIA Visual Profiler shows different kernels with different colors. In Fig-
ures 22a and 22d the Intermediate GPU Search is in light blue, whereas the Final GPU
Search employed is in purple. Moreover, it is possible to see that the first generation of
kernels only finishes its execution after the execution of the kernels it has launched1. DP3
launches recursively three generations of the same kernel. This way, it is possible to see
more clearly in Figure 22c that kernels of the third generation have an execution time
smaller than kernels from the second one, and so on.

Visual Profile of CDP-BP with different parameters configurations

Figures 23a and 23b show a visual profile of CDP-BP with different configurations:
the first one with cutoff depths dcpu = 6 and dgpu = 8; the second one with cutoff
depths dcpu = 6, dgpu = 8, and launching four kernels per block. It is possible to see in
Figures 23a and 23b the enormous number of kernels launched by using CDP. Compared
to the execution time of the whole search (first light blue line), kernels from the second
generation have a quick execution.

Visual Profile of all non-CDP implementations

Figure 24 provides a visual profile of all non-CDP implementations: BP-DFS, REC-
CDP, and REC-DP3. Figure 24a shows a visual profile of BP-DFS. It is straightforward
to understand BP-DFS’ execution: There is on the first line a H2D memory transference,
1 For a reason beyond our comprehension, differently from Figure 22d, the Intermediate GPU Search of

Figure 22a is not represented by a full light blue line.
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Figure 22 – Visual profile of CDP-BP, DP2, DP3, and CDP-DP3 solving ATSP instance
coin14. Parameters are the ones of Table 14. Different colors mean different
kernels for all sub-figures.

(a) CDP-BP: 134 launches of BP-DFS via CDP.

(b) DP2: 1714 launches of DP2 via CDP.

(c) DP3: 1721 launches of DP3 via CDP.

(d) CDP-DP3: 1709 launches of DP3 via CDP.

Source – The Author.

followed by a kernel execution. Finally, there is a D2H transference, which is much smaller
than the H2D transference. Each one of these operations is on a different line to symbolize
that they are performed by different channels.

Figure 24b shows a visual profile of REC-CDP using dcpu = 3 and dgpu = 8. By
using this configuration, it is possible to see each step of REC-CDP’s execution: H2D

copies, Intermediate GPU Search (purple), D2H copies, H2D copies, Final GPU search
(light blue), and D2H copies. Finally, Figure 24c shows a visual profile of REC-DP3. In
this figure, it is difficult the see the first kernel generation because its execution time is
much quicker than the execution time of the other kernels. On the other hand, the final
search amounts for the great majority of the time.
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Figure 23 – Visual profile of CDP-BP solving ATSP instance coin14 and using dcpu = 6
and dgpu = 8. Different colors mean different kernels for all sub-figures.

(a) CDP-BP: 1185 launches of BP-DFS via CDP.

(b) CDP-BP launching 4 stream per block: 4740 launches of BP-DFS via CDP.

Source – The Author.

Figure 24 – Visual profile of BP-DFS, REC-CDP, and REC-DP3 solving ATSP instance
coin14. Different colors mean different kernels for all sub-figures.Yellow opera-
tions are copies between the host and the device. All subfigures have three
lines: the first one shows H2D copies, the second one shows D2H copies, and
the third one shows kernel executions.

(a) BP-DFS using the parameters of Table 14.

(b) REC-CDP using dcpu = 3 and dgpu = 8.

(c) REC-DP3 using the parameters of Table 14.

Source – The Author.
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