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You love you learn
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You choke you learn

You laugh you learn

You choose you learn

You pray you learn

You ask you learn
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RESUMO

A Fusão de Crenças é um campo da Inteligência Artificial que estuda a fusão de fontes de

informação independentes e igualmente confiáveis e é uma ferramenta importante para a tomada

de decisões em sistemas multiagentes. Por outro lado, a Justiça distributiva, que é apresentada

nas áreas de Economia, Ética, Filosofia Política e Psicologia Moral, preocupa-se em especificar o

que se entende por distribuição justa de bens entre os membros de um grupo. Propomos integrar

ambas as áreas, introduzindo e estudando a racionalidade de diferentes operadores de fusão de

crenças, que levam em conta algumas teorias de justiça distributiva. As teorias do igualitarismo

e do suficientismo são nosso foco central nesta tese. A partir do igualitarismo, estudamos os

operadores de T-conorm e OWA da literatura da Lógica Difusa e, do suficientismo, estudamos

os operadores headcount, shortfall e FGT . O aspecto da racionalidade desses operadores é

medido por propriedades lógicas. Além das propriedades lógicas originais da fusão de crenças,

consideramos outras propriedades da teoria da escolha social para descrever o comportamento

de operadores igualitários e suficientistas. Provamos ainda quais são as condições necessárias

para que esses operadores satisfaçam algumas propriedades lógicas igualitárias ou suficientistas.

Palavras-chave: Fusão de Crenças. Justiça Distributiva. Conjuntos Difusos. Igualitarismo.

Suficientismo.



ABSTRACT

Belief merging is a field from Artificial Intelligence which studies the fusion of independent

and equally reliable sources of information and it is an important tool for decision making in

multi-agent systems. On the other hand, Distributive Justice, which is presented in the areas

of Economics, Ethics, Political Philosophy and Moral Psychology, is concerned in specifying

what is meant by a just distribution of goods among members of a group. We propose to

integrate both areas by introducing and studying the rationality of different operators from

belief merging, that take into account some theories of distributive justice. The theories of

egalitarianism and sufficientarianism are our central focus in this thesis. From egalitarianism, we

study T-conorm and OWA operators from the Fuzzy Logic literature, and from sufficientarianism,

we study headcount, shortfall and FGT operators. The aspect of rationality of these operators

are measured by logical properties. Besides the original logical properties from belief merging,

we consider other properties from social choice theory to describe the behavior of egalitarian and

sufficientarian operators. Furthermore, we prove what are the conditions needed to be achieved

for these operators satisfy some egalitarian or sufficientarian logical properties.

Keywords: Belief Merging. Distributive Justice. Fuzzy Sets. Egalitarianism. Sufficientaria-

nism.
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1 INTRODUCTION

This thesis proposes to combine the area of belief merging with the theories of

distributive justice. Belief merging is an important issue in Artificial Intelligence and Databases

and is concerned with the process of combining information obtained from different sources

to produce a single consistent piece of information. On the other hand, theories of distributive

justice, presented in the areas of Economics, Ethics, Political Philosophy and Moral Psychology,

seek to specify what is meant by a just distribution of goods among members of society (in our

case, the information among the belief bases).

Let us describe a practical example in which a group of friends are in a restaurant

and they wish to choose to share a dish from the restaurant’s menu. A natural choice for the

group would be to open a voting process and the top rated dish would be the group’s choice. But

suppose one of the friends has food restrictions, and he may not eat certain types of food. Then

what would be a fair/reasonable decision? Would an ordinary voting process still be a natural

choice to guide the group’s decision? Assume now some members of the group are very hungry,

having spent all day without eating properly. In this case, a fair collective decision could take

into account more elaborate dishes to obtain sufficient nutrients for everyone. Moreover, the

final choice would be the one that tries the most to satisfy each one of the group. However, this

does not always happen in reality and if we imagined a voting method to decide the outcome of

the group, those aspects would certainly be disregarded. These cases just portrayed motivate the

kinds of collective decision making we will exploit along this work.

How to make a fair and just choice in collective decisions is a challenging task and

has been studied intensively in Artificial Intelligence (PHILLIPS-WREN; JAIN, 2006). Belief

merging arises as one of the approaches to tackle this problem (KONIECZNY; PINO-PÉREZ,

1998). It is primarily used for decision making in multi-agent systems. The area of belief

merging is related to the area of belief revision (ALCHOURRON et al., 1985; KATSUNO;

MENDELZON, 1991b; GÄRDENFORS, 1992), but the latter is concerned with the decision

issues of a single agent, in which it his/her belief base and wishes to modify it depending on

certain events occurring in the world real. Belief merging is exclusively used when engaging a

group of agents. Each agent has his/her own source of information and the goal is to generate a

result coherent with the whole group.

But why should we use belief merging? First, it is a logical approach to be understood

and calculated; second, it offers a great flexibility in the choice of operators, since it is based on a
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minimal and intuitive set of logical postulates. Furthermore, these operators have been conceived

to define the behavior of the decision process for the group.

And how do we decide if a choice of an operator is the best option for a group? One

solution is to use the area of distributive justice to assist us in elucidating this process. Let us

go back to the example of the friends in a restaurant. In the situation where only one of them

has a food restriction, a reasonable decision would be to give a higher priority to that person

with restriction. In the second situation where some of them explain that they do not like a lot

of food, it would be good to try to help him, but this is not mandatory. The way in which this

decision will be done is related to various theories of the distributive justice. For example, if we

are going to give priority to the most restricted person or to only a subgroup of people; or all

have the same priority level; or if some specific people have more priorities and others do not.

All these circumstances are contained into a theory of distributive justice.

The most correct or just decision will depend on characteristics that are going to be

taken into consideration to the group, that is, what current of theory of justice they are following

to make a collective decision. Therefore, we are grounded on belief merging to represent the

beliefs of the agents and make the decision of the group, and on distributive justice to assist us in

this decision making.

1.1 Belief Merging

Belief merging is inserted in the area of Belief change theory, which has produced a

lot of operators to model the different ways the beliefs of one (or some) agent(s) evolve over

time. Some examples of these operators in the belief change theory, besides belief merging,

are the belief revision (ALCHOURRON et al., 1985; KATSUNO; MENDELZON, 1991b;

GÄRDENFORS, 1992), belief update (KATSUNO; MENDELZON, 1991a; HERZIG; RIFI,

1998), belief extrapolation (SAINT-CYR; LANG, 2011), etc.

Belief merging aims at combining several pieces of information when there are no

strict preference between them. The problem formulation faces several conflicting pieces of

information coming from several sources of equal reliability, and it has to build a coherent

description of the world from them.

As in belief revision, rationality postulates have been proposed to characterize

belief merging operators. Indeed, these postulates are closely related to those in belief revision.

Nevertheless there is an important difference, namely the social aspect of merging: one needs
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some postulates to say how to solve the conflicts between the sources of information. So it

is possible to distinguish different families of merging operators, depending on their behavior

with respect to the sources, like a majority behavior for instance. Similarly to belief revision, it

is possible to state representation theorems that provide a constructive way to define merging

operators satisfying all the desired logical properties.

There are numerous ways to define merging operators: model-based operators (LIN;

MENDELZON, 1999; KONIECZNY; PINO-PÉREZ, 1998; KONIECZNY; PINO-PÉREZ,

1999), that select the interpretations that are the closest to the set of sources; formula-based

operators (KONIECZNY et al., 2004; BARAL et al., 1990; BARAL et al., 1991; EVERAERE et

al., 2007), that use a selection function on sets of formulas; DA2 operators (KONIECZNY et al.,

2004), that generalize model-based operators and allow to take into account inconsistent sources;

disjunctive operators (EVERAERE et al., 2010a), that select the result of the merging inside the

disjunction of the bases; conflict-based operators (EVERAERE et al., 2008a), that use a vector

of conflict in order to represent the conflict instead of the numerical distance of model-based

operators; default-based operators (DELGRANDE; SCHAUB, 2004), that use renaming of the

propositional variables of the language.

In this thesis, we assume each agent’s source of information is described in terms

of propositional logic formulas, and all the information have the same importance/priority.

Notwithstanding, merging has also been studied in other representation frameworks, where new

problems and possibilities arise. For instance, in (DELGRANDE et al., 2006) Delgrande, Dubois

and Lang propose a discussion on prioritized merging operators. Furthermore, there are merging

operators for weighted formulae (BENFERHAT et al., 2000; BENFERHAT et al., 2002; KACI,

2011), first order logic (LIN; MENDELZON, 1996), logic programs (DELGRANDE et al.,

2009; HUÉ et al., 2009; CREIGNOU et al., 2014), constraint networks (KACI, 2011; KACI;

TORRE, 2006) and argumentation frameworks (KACI, 2011; AMGOUD; KACI, 2007).

There are also related works towards applications of these belief merging techniques

in many areas as text processing (HUNTER, 2002a; HUNTER, 2002b; HUNTER; SUMMER-

TON, 2006) and XML documents (HUNTER; LIU, 2006; MU et al., 2007), requirement

engineering (GHOSE; LIN, 2006) and cancer diagnosis (KAREEM et al., 2017).

Merging operators are closely attached to social choice theory (ARROW et al., 2002)

and in particular to voting methods (ARROW et al., 1963; ARROW et al., 2002). In such

contexts, it is worthwhile to study what are the consequences of well known social choice
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concepts when applied to merging scenarios. Two examples of these concepts of social choice

theory associated to belief merging are strategy-proofness (EVERAERE et al., 2007) and truth-

tracking (EVERAERE et al., 2010b). Strategy-proofness is about the resistance of strategic

manipulation from the sources/agents. The truth-tracking issue study if the merging/voting

methods are capable to identify the true state of the world if the sources/agents are sufficiently

reliable.

Merging operators are also associated with distributive justice (RESCHER, 1982;

COOK; HEGTVEDT, 1983). Questions of distributive justice, arise, naturally enough, in

contexts where some sort of outcome could be provided by two or more agents (see next section).

The reason why this is of interest to researchers is that in many cases disagreements are possible

about what justice requires in a particular situation. The connection between these two areas,

belief merging and distributive justice is the main focus of this thesis.

1.2 Distributive Justice

The term distributive justice (RESCHER, 1982; COOK; HEGTVEDT, 1983) refers

to fairness in the way things are distributed, caring more about how it is decided who gets what,

rather than what is distributed. In modern society, this is an important principle, as it is generally

expected that all goods will be distributed throughout society in some manner. In a society with

a limited amount of resources, the question of fair allocation is often a source of debate and

contention. This is called distributive justice.

Some modern philosophers express the notion of distributive justice is not very old,

probably originating in the 18th century, based on the idea society did not have a structure

sophisticated enough to address allocation of resources with the intent of meeting everyone’s

needs.

Distributive principles vary in numerous dimensions. They vary in what is considered

relevant to distributive justice (income, wealth, opportunities, jobs, welfare, utility, etc.); in the

nature of the recipients of the distribution (individual persons, groups of persons, reference

classes, etc.); and on what basis the distribution should be made (equality, maximization,

according to individual characteristics, according to free transactions, etc.). In this entry, the

focus is primarily on principles designed to cover the distribution of benefits and burdens of

economic activity among individuals in a society.
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1.2.1 The Nature of Justice

In order to characterize theories of distributive justice, we need firstly to know what

is justice, which is a difficult term to define. Typically, we think there are four concepts associated

with the definition of justice (FORSYTH, 2006). These are

1. Fairness: We must treat similar cases in the same way. For instance, it would be unfair if

we were to respond to one murderer by putting him in jail, and then respond to another

murderer by giving him an ice cream. Similar situations must be treated in similar ways.

2. Equality: Our treatment of people ought to reflect the fact we are all morally equal. There

are no morally relevant differences between human beings which make it permissible to

treat them differently. For instance, there is not one race or gender that is “better” than the

others. To act otherwise is to engage in immoral discrimination.

3. Desert: People ought to get what they deserve (i.e., good deeds should be rewarded, and

bad deeds should be punished). For instance, when a criminal gets away with their deed

and goes unpunished, we typically think that an “injustice” has occurred.

4. Rights: There are certain moral claims that everyone ought to be able to exercise against

others. For instance, we commonly think that everyone has a right to life, a right to the

freedom of speech, and freedom of religion. When we say that we ought to “be able to

exercise these claims against others” we mean that, if someone tries to violate one of your

rights (for instance by trying to kill you), you have a legitimate claim against them, since

they have an obligation not to violate your right (i.e., they are doing something morally

wrong by violating your right).

Given these four features of justice, we might now be able to answer a closely related

question: “What is the just distribution?” Or, in other words, “How much resource/how many

goods should each person have?” Here are some common answers to that question:

• Each person should receive an equal share.

• Each person should receive a share, according to how much they need.

• Each person should receive a share, according to how much they contribute.

• Each person should receive a share, according to how much they merit it.

In this thesis, we will focus mainly on questions about fairness and equality. For

this, we will consider theories of justice that encompass them.
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1.2.2 Theories of Distributive Justice

Below we will list some theories of distributive justice we will consider directly or

indirectly along this thesis. Although the numerous distributive principles vary along different

dimensions, for simplicity, they are presented here in broad categories. Even though these are

common classifications in the literature, it is important to keep in mind they necessarily involve

over-simplification, particularly with respect to the criticisms of each of the groups of principles.

1. Utilitarianism: In the present work, utilitarianism (MILL, 1869; MILL, 1871; MYER-

SON, 1981) is the view that the moral value of a distribution of income/wealth/opportu-

nity/utility is the non-weighed sum of each individual’s income/wealth/opportunity/utility.

The basic utilitarian approach to justice is to maintain that when we act to maximize

utility, we are also acting justly (and vice versa). Thus, while utility maximization and

justice are distinct concepts, in practice, achieving one also achieve the other; justice and

utility converge. Utilitarianism is also distinguished by impartiality and agent-neutrality.

Everyone’s happiness counts the same. When one maximizes the good, it is the good

impartially considered. My good counts for no more than anyone else’s good. Further,

the reason I have to promote the overall good is the same reason anyone else has to so

promote the good.

2. Egalitarianism: This theory comes in many different versions (SCHEFFLER, 2003).

Basically, an egalitarian favors equality of some sort: People should get the same, or be

treated the same, or be treated as equals, in some respect, or enjoy an equality of social

status. Egalitarian doctrines tend to rest on a background idea that all human persons are

equal in fundamental worth or moral status. Egalitarianism is a versatile doctrine, because

there are several different types of equality, or ways in which people might be treated

the same, or might relate as equals, that might be thought desirable. However, all of the

egalitarians approaches have something in common, that is the objective of decreasing

inequality.

3. Sufficientarianism: Rather than being concerned with inequalities as such or with making

the situation of everyone as good as possible, sufficientarian justice (FRANKFURT, 1987)

aims at making sure that each of us has enough. The sufficientarian holds that justice

requires that everybody gets “enough”, not that everybody has the same. To flesh out

this idea one needs answers to two questions: (1) Enough what? And (2) How much is

enough?
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Some authors tend to identify justice with the idea that all people should equally be assured

the basic capability (real or effective freedom) to function in important valuable ways.

“Basic capability” is capability at a threshold “good enough” level. Sufficientarians object

that egalitarians make a fetish of distributive equality. The real problem of social justice is

never merely that some have more than others, but that some do not have enough. If, for

example, some people face grim, horrible life conditions, that is bad, and it would not in

any way be better if we all equally faced such conditions.

4. Prioritarianism: It is a view where an extra weight is given to worse-off individuals

(ADLER, 2016). Prioritarianism resembles utilitarianism. The difference is under a

prioritarian point of view, one does not weight the well-being of all individuals equally, but

instead prioritizes those individuals that are worse-off. Suppose one can choose between

gaining a benefit for a person who is very badly off or gaining an identical benefit for a

person who is already very well off. Priority says the moral value of getting a same-sized

benefit to a person is greater, the worse off in absolute terms she was, over the course of

her life, without this benefit.

1.3 Motivation

There are two main subclasses of belief merging operators: majority operators which

are related to utilitarianism, and arbitration operators which are related to egalitarianism (KONI-

ECZNY; PINO-PÉREZ, 2002b). However, there is much less work on egalitarian operators than

utilitarian operators and none related to other theories of distributive justice. In order to fill this

gap, in (EVERAERE et al., 2014) it was investigated possible translations into a belief merging

framework of some egalitarian properties, as well as some egalitarian merging operators. It was

studied how these properties interact with the standard rationality conditions considered in belief

merging. It was a first approach to this topic and a lot of work about this issue is still needed.

Inspired by (EVERAERE et al., 2014), this thesis has a main task to be performed:

to study the rationality conditions that have been proposed to belief merging operators when we

consider merging operators from different theories of distributive justice, especially egalitari-

anism and sufficientarianism. It has been stated that a “good” belief merging operator has to

satisfy a series of rationality postulates. A question to be answered along this thesis is that if

any theory of distributive justice produces a “good” belief merging operator. If not, our concern

is in what conditions it is possible to turn a belief merging operator into a “good” one, without
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making the new operators lose the characteristics which insert them in their respective theories

of distributive justice.

The starting point for this thesis is related to the maximum (max) operator. Regarding

belief merging, max is responsible for making the decision based on the worst-case within a group

(it gives absolute priority to the worst-case agent). This is a form of egalitarianism, because when

we give priority to the worst agent within a group and helping it, we are certainly diminishing the

group’s inequality. The figure below illustrates somewhat the concept of egalitarianism brought

by the max, which is based on equity. The general concept of equality states that everyone should

have the same opportunity for a group to be fairer, while the concept of equity states that people

with more needs should have more opportunities than the rest of the group.

From this idea we can think over other forms of priority for the agents by relaxing or

restricting the max operator, or by combining it with other operators. For example, one can give

priority not only to the worst agent, but to a subgroup of agents in a bad situation. Or else one

can give a priority to the worst case within the group, but without forgetting the other agents in

the group. These issues can be solved with several operators taken from different theories of

justice.

We are going to focus on three approaches related to the worst case idea: the T-

conorm operators, which are a generalization of the max and are a natural interpretation of the

disjunction in the semantics of mathematical fuzzy logics (HÁJEK, 1998); the sufficientarian

operators, which divide a group of worst cases and then treat each of them with the same priority;

and the OWA operators, which generalize the max among other operators by allowing to consider

not only the worst case, but also to combine it with other cases in the group.
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In other words, we propose to answer if it is possible to represent different approaches

of distributive justice in belief merging. We aim at achieving a similar behavior presented for

majority or arbitration operators when considering other kinds of theory of distributive justice.

1.4 Objectives

In short, the main objectives of this thesis are

• To combine the area of belief merging with the theories of distributive justice;

• To explore new merging operators for belief merging;

• To propose new logical properties in belief merging to support the rationality analysis of

the merging operators;

• To characterize the new merging operators in different classes of belief merging operators.

1.5 Main Contributions of this Thesis

The mains contributions of this thesis are

• We explore further new egalitarian operators. The first idea is to relax the maximum (max)

operator and employ fuzzy connectives. When applied in belief merging, max operator

proposes to minimize the worst cases in the group decision. T-conorms (ZADEH, 1983;

KLEMENT et al., 2000) are functions stronger than the max operator, which can be also

used to capture the worst cases in some group decision problems. Thus, we expect to offer

a new view about different merging operators with good logical properties and rationality.

• Besides the original logical properties (KONIECZNY; PINO-PÉREZ, 2011) for belief

merging, we consider other egalitarian properties from social choice theory: the Hammond

Equity Condition (EVERAERE et al., 2014), Pigou-Dalton Principle (DALTON, 1920;

EVERAERE et al., 2014), the Harm Principle (ALCANTUD, 2011; CAPPELEN; TUN-

GODDEN, 2006; LOMBARDI et al., 2013), Strong and Weak Pareto (TUNGODDEN,

2000). We prove that in some cases, restricted versions of these axioms may be satisfied

by the new operators.

• We introduce the theory of Sufficientarianism in the propositional belief merging scene,

based on two sufficientarian approaches: weak sufficientarianism (FRANKFURT, 1987)

and strong sufficientarianism (SEGALL, 2014). This theory accommodates the concern

for people who are badly off relative to a specific aspect (which we commonly call of
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poverty or sufficiency). We show that, according to most versions, sufficientarian operators

reject partially others theories of distributive justice, such as utilitarianism (concerned with

the sum total of happiness of a group) and egalitarianism (which wants to promote equality

for all people in a group). Overall, we deal with two sufficientarian operators: headcount

and shortfall. Their objectives are minimize the number of people in a poverty situation

and the amount of poverty in a group, respectively.

• We bring new logical properties from the sufficientarianism to the belief merging area.

They are inspired and adapted from the work (TUNGODDEN; VALLENTYNE, 2005).

• We continue the investigation on egalitarian operators by introducing Ordered Weighted

Averaging Operators (OWA) merging operators. They are a family of aggregation operators

which assign weights to the values being aggregated. They are powerful enough to include

many well-known operators such as the maximum, minimum and the simple average

(YAGER; KACPRZYK, 1997), and many other operators depending on the values of the

weights applied. As our main contributions, we define OWA merging operators and show

their logical properties. As the operators defined in (EVERAERE et al., 2014), OWA

merging operators do not satisfy all the usual belief merging logical postulates. We show

what conditions are required for an OWA merging operator to satisfy some missing logical

postulates. We show that depending on the chosen weights, OWA merging operators can

be included in a weak form of egalitarianism.

This thesis is structured as follows: In Chapter 2, we will make a survey in the area

of belief merging, where we will compare results involving utilitarian and egalitarian merging

operators. In Chapter 3, we will consider refinements of the maximum merging operator, which is

a kind of egalitarian operator. We will propose some merging operators based on discrimax and

T-conorms from the Fuzzy Logic literature. In Chapter 4, we will introduce the application of the

sufficientarianism in the belief merging context. We will develop two classes of sufficientarian

operators: weak and strong sufficientarian operators. In Chapter 5, we will apply OWA operators

in propositional belief merging. Finally, in Chapter 6, we will conclude this thesis with our final

considerations and future works.

1.6 Publications Related to this Thesis

We published some papers during this doctorate.

• VIANA, H.; ALCÂNTARA, J. Priority-Based Merging Operator Without Distance Measu-
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res. In: Multi-Agent Systems - 12th European Conference, EUMAS 2014, Prague, Czech

Republic, December 18-19, 2014, Revised Selected Papers. Cham: Springer International

Publishing, 2014. p. 398–413.

• VIANA, H.; ALCÂNTARA, J. Propositional Belief Merging with T-conorms. In: Multi-

Agent Systems and Agreement Technologies - 14th European Conference, EUMAS 2016,

and 4th International Conference, AT 2016, Valencia, Spain, December 15-16, 2016,

Revised Selected Papers. Cham: Springer International Publishing, 2016. p. 405–420.

• VIANA, H.; ALCÂNTARA, J. Sufficientarian Propositional Belief Merging. In: Multi-

Agent Systems and Agreement Technologies - 14th European Conference, EUMAS 2016,

and 4th International Conference, AT 2016, Valencia, Spain, December 15-16, 2016,

Revised Selected Papers. Cham: Springer International Publishing, 2016. p. 421–435.

• VIANA, H.; ALCÂNTARA, J. Aggregation with T-Norms and LexiT-Orderings and Their

Connections with the Leximin Principle. In: BARRETO, G. A.; COELHO, R. (Ed.). Fuzzy

Information Processing. Cham: Springer International Publishing, 2018. p. 179–191.

ISBN 978-3-319-95312-0.

• “Propositional Belief Merging with OWA Operators” has been accepted in KR 2018,

authors: Henrique Viana and João Alcântara.
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2 PROPOSITIONAL BELIEF MERGING

2.1 Contributions of this Chapter

The main contributions of this chapter are listed below:

• We will make a survey about propositional belief merging, including the rationality aspects

represented by logical postulates and conditions;

• We will show two forms of defining model-based belief merging: one based on distance

measures and another one based on the notion of partial satisfiability. For the second one,

we will also include our contribution by creating a different notion of merging, taking into

account a priority for the agents based on their formulas;

• We will present a comparison between the utilitarianism and egalitarianism approaches

from the distributive justice in the context of propositional belief merging;

• Moreover, we will show the proofs with respect to the rationality of some belief merging

operators;

• Parts of this chapter have been published in EUMAS 2014, with the title “Priority-based

Merging Operator without Distance Measures”, whose authors are Henrique Viana and

João Alcântara (VIANA; ALCÂNTARA, 2014).

2.2 Introduction

In many fields of Artificial Intelligence we are often confronted with multiple and

conflicting sources of information. Systems organized around reasoning agents face the similar

problem of resolving conflicts among contradictory knowledge or beliefs held by different agents.

At the same time, one can employ these systems to extract additional knowledge that is not

locally held by any agent, but collectively by all of them (LIN; MENDELZON, 1999).

Belief change theory has produced a lot of different operators to model the different

ways the beliefs of one or some agents evolve over time. Among these operators, one can quote

revision (ALCHOURRON et al., 1985; KATSUNO; MENDELZON, 1991b; GÄRDENFORS,

1992), update (KATSUNO; MENDELZON, 1991a; HERZIG; RIFI, 1998), extrapolation (SAINT-

CYR; LANG, 2011) and merging (LIN; MENDELZON, 1999; KONIECZNY; PINO-PÉREZ,

1998; KONIECZNY; PINO-PÉREZ, 1999; KONIECZNY; PINO-PÉREZ, 2002a; KONIECZNY

et al., 2004; KONIECZNY; PINO-PÉREZ, 2011).
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Belief revision consists in incorporating some new information about a world, while

belief update consists in incorporating into a belief base about an old state of the world a

notification of some change in the world. We call belief extrapolation the process of completing

initial belief sets stemming from observations by assuming minimal change.

Belief merging aims at combining several pieces of information coming from dif-

ferent sources through aggregation operators. The agent faces several conflicting pieces of

information coming from several sources of (possibly) equal reliability, and he has to build a

coherent description of the world from them.

Merging operators are useful in a lot of applications: to find a coherent information

in a distributed database system, to solve conflict between several people or several agents, to

find an answer in a decision-making committee, to take decision when information given by

some captors is contradictory, etc (KONIECZNY; PINO-PÉREZ, 1998).

The aim of this chapter is to give an account for the main tools developed in last years

in the area of belief merging. We will focus on the case where the pieces of information have

logical representations, more specifically, using propositional logic. It is important to highlight

that merging is a problem occurring in a lot of situations, some of them do not use propositional

logic as representation language, but more structured languages. We can mention some extensions

of propositional merging operators to some of these frameworks, namely weighted logics (KACI,

2011), first order logic (LIN; MENDELZON, 1996), logic programs (CREIGNOU et al., 2014),

constraint networks (KACI, 2011; KACI; TORRE, 2006) and argumentation frameworks (KACI,

2011; AMGOUD; KACI, 2007). Merging is also at work on numerical data (BLOCH et al.,

2001; KACI, 2011), but they are not specifically the focus of this thesis.

The chapter is structured as follows: in Section 2.3, we will do a survey about propo-

sitional belief merging, ranging from logical properties, examples of operators and comparison

between utilitarian and egalitarian merging operators. In Section 2.4, we will consider a different

framework for propositional belief merging, based on the notion of partial satisfiability. We will

also propose a refinement for this framework as a contribution. In Section 2.5, we will conclude

with some considerations about the results showed along the chapter.

2.3 Model-based Merging

There are numerous ways to define belief merging operators:

• Model-based operators (LIN; MENDELZON, 1999; KONIECZNY; PINO-PÉREZ, 1998;
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KONIECZNY; PINO-PÉREZ, 1999) select the closest outcomes from the set of sources;

• Formula-based operators (KONIECZNY et al., 2004; BARAL et al., 1990; BARAL et al.,

1991; EVERAERE et al., 2007) use a selection function on sets of formulas;

• DA2 operators (KONIECZNY et al., 2004) generalize model-based operators and allow to

take into account inconsistent sources;

• Disjunctive operators (EVERAERE et al., 2010a), that select the result of the merging

inside the disjunction of the bases;

• Conflict-based operators (EVERAERE et al., 2008a) use a vector of conflict to represent

the conflict instead of the numerical distance of model-based operators;

• Default-based operators (DELGRANDE; SCHAUB, 2004) use renaming of the propositio-

nal variables of the language.

In the rest of this work we will be concerned only in the model-based operators,

since we consider it the standard approach for belief merging merging. A complete survey in the

subject can be found in (KONIECZNY; PINO-PÉREZ, 2011). In the sequel, we will consider

some examples of model-based merging operators, their logical properties and their connections

with distributive justice, more specifically with utilitarianism and egalitarianism.

2.3.1 Preliminaries

We will consider a propositional language L over a finite alphabet P of propositio-

nal letters. An outcome ω is a conjunction of propositional letters. The set of all outcomes is

denoted by Ω. An outcome ω satisfies a formula ϕ (i.e., ω |= ϕ) if and only if all interpretations

that satisfy ω also satisfy ϕ (in the usual sense). Let ϕ be a formula, mod(ϕ) denotes the set of

models of ϕ , i.e., mod(ϕ) = {ω ∈Ω | ω |= ϕ}. A formula ϕ is consistent if and only if ϕ 6|=⊥.

A belief base K is simply a propositional formula, representing the beliefs of an

agent. Let K1, . . . ,Kn be n belief bases (not necessarily different). We call belief set the multi-set

E = {K1, . . . ,Kn} consisting of those n belief bases and representing n distinct agents. We denote∧
E the conjunction of the belief bases of E, i.e.,

∧
E = K1∧·· ·∧Kn. The union of multi-sets

will be denoted by t, e.g., E = E1t·· ·tEm.

A pre-order≤ over Ω is a reflexive and transitive relation on Ω. A pre-order is total if

∀ωi,ω j ∈Ω, ωi ≤ ω j or ω j ≤ ωi. Let ≤ be a pre-order over Ω, we define < as follows: ωi < ω j

iff ωi≤ω j and ω j 6≤ωi, and≈ as ωi≈ω j iff ωi≤ω j and ω j ≤ωi. We say ωi ∈min(mod(ϕ),≤)

iff ωi |= ϕ and ∀ω j ∈ mod(ϕ), ωi ≤ ω j.
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Let E1,E2 be two belief sets. E1 and E2 are equivalent, noted E1 ≡ E2, if and only if

there is a bijection f from E1 = {K11, . . . ,Kn1} to E2 = {K12, . . . ,Kn2} such that |= f (Ki1)↔Ki2,

for 1≤ i≤ n.

2.3.2 Logical Properties

We employ a logical definition for merging in the presence of Integrity Constraints

(IC), i.e., the result of the merging has to obey a set of integrity constraints represented by

a formula µ . We will consider merging operators ∆ mapping a belief set E and an integrity

constraint µ to a set of outcomes that represents the merging of E according to µ .

Definition 2.1 (IC Merging Operators) (KONIECZNY; PINO-PÉREZ, 1999) Let E,E1, E2 be

belief sets; K1,K2 be consistent belief bases; and µ,µ1,µ2 be propositional formulas. ∆µ is an

IC merging operator if and only if it satisfies the following logical postulates:

(IC0) ∆µ(E) |= µ .

(IC1) If µ is consistent, then ∆µ(E) is consistent.

(IC2) If
∧

E is consistent with µ , then ∆µ(E)≡
∧

E ∧µ .

(IC3) If E1 ≡ E2 and µ1↔ µ2, then ∆µ1(E1)≡ ∆µ2(E2).

(IC4) If K1 |= µ and K2 |= µ , then ∆µ({K1,K2})∧K1 is consistent if and only if ∆µ({K1,K2})∧

K2 is consistent.

(IC5) ∆µ(E1)∧∆µ(E2) |= ∆µ(E1tE2).

(IC6) If ∆µ(E1)∧∆µ(E2) is consistent, then ∆µ(E1tE2) |= ∆µ(E1)∧∆µ(E2).

(IC7) ∆µ1(E)∧µ2 |= ∆µ1∧µ2(E).

(IC8) If ∆µ1(E)∧µ2 is consistent, then ∆µ1∧µ2(E) |= ∆µ1(E).

The meaning of these properties is the following: (IC0) ensures the result of merging

satisfies the integrity constraint. (IC1) states that if the integrity constraint is consistent, then

the result of merging will be consistent. (IC2) states that if there is no inconsistencies among

the belief bases, the result of merging is simply the conjunction of the belief bases with the

integrity constraint. (IC3) is the principle of irrelevance of syntax: the result of merging has to

depend only on the expressed beliefs and not on their syntactical presentation. (IC4) is a fairness

postulate meaning that the result of merging of two belief bases should not give preference to one

of them. It is a condition aiming at ruling out operators that can give priority to one of the bases.

(IC5) enunciates the following idea: if sets are viewed as expressing the beliefs of the members
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of a group, then if E1 (corresponding to a first group) compromises on a set of alternatives which

a formula A belongs to, and E2 (corresponding to a second group) compromises on another set

of outcomes which contains A too, then A has to be in the chosen outcomes if we join the two

groups. (IC5) and (IC6) together state that if one could find two subgroups which agree on at

least one outcome, then the result of the global merging will be exactly those outcomes the two

groups agree on. (IC7) and (IC8) state that the notion of closeness is well-behaved, i.e., that an

outcome that was chosen among all possible outcomes will remain the result of the merging if

one restricts the possible choices.

Besides these nine postulates presented above, two main sub-classes of IC merging

operators have been defined from two postulates: IC majority operators and IC arbitration

operators. An IC majority operator aims at resolving conflicts by adhering to the majority wishes

(related to utilitarianism), while IC arbitration operator has a more consensual behavior (related

to egalitarianism).

Definition 2.2 (IC Majority Operator) (KONIECZNY; PINO-PÉREZ, 1999) An IC merging

operator is a majority operator if for any belief sets E1 and E2 it satisfies

(Maj) ∃n∆µ(E1tE2t·· ·tE2︸ ︷︷ ︸
n

) |= ∆µ(E2).

This postulate states that if an information has a majority audience, then it will be

the choice of the group.

Definition 2.3 (IC Arbitration Operator) (KONIECZNY; PINO-PÉREZ, 1999) An IC merging

operator is an arbitration operator if for any belief bases K1 and K2 it satisfies

(Arb) If ∆µ1({K1})≡ ∆µ2({K2}),∆µ1↔¬µ2({K1,K2})≡ (µ1↔¬µ2),µ1 6|= µ2, and µ2 6|= µ1,

then ∆µ1∨µ2({K1,K2})≡ ∆µ1({K1}).

Unlike the majority operator, an arbitration operator is intended to satisfy each belief

base as possible. According to (KONIECZNY; PINO-PÉREZ, 2002b), this postulate ensures

this is the median of possible choices that are preferred. The idea of arbitration can be illustrated

in the following scenario:

Example 2.1 (KONIECZNY; PINO-PÉREZ, 2002a) Tom and David missed the soccer match

yesterday between reds and yellows. So they do not know the result of the match. Tom listened in



30

the morning that reds made a very good match. So he thinks that a win of reds is more plausible

than a draw and that a draw is more reliable than a win of yellows. David was told that after that

match yellows have now a lot of chances of winning the championship. From this information he

infers that yellows win the match, or at least take a draw. Confronting their point of view, Tom

and David agree on the fact that the two teams are of the same strength, and that they had the

same chances of winning the match. What arbitration demand is that, with those information,

Tom and David have to agree that a draw between the two teams is the more plausible result.

Intuitively, we can analyze the arbitration as if the outcome ω1 is preferred to the

outcome ω2 by the constraint c1 and ω1 is also more preferred to the outcome ω3 using the

constraint c2 and ω2,ω3 are equally preferred using the constraints c1 or c2, then ω1 is preferred

to ω2 and ω3 using the constraints c1 or c2 (more details in Definition 2.14).

2.3.3 Example of Operators

In this section we give a model-theoretic characterization of merging operators in

terms of functions on sets of outcomes. More exactly we show that each merging operator

corresponds to a function from multi-sets of sets of formulas to sets of outcomes.

Example 2.2 (REVESZ, 1993) Let us consider the academic example of a teacher who asks

his three students among the languages SQL (denoted by s), O2 (denoted by o) and Datalog

(denoted by d) they would like to learn. The first student wants to learn only SQL or O2, that

is, K1 = {(s∨ o)∧¬d}. The second one wants to learn either Datalog or O2 but not both,

i.e., K2 = {(¬s∧d∧¬o)∨ (¬s∧¬d∧o)}. For the last, the third one wants to learn the three

languages: K3 = {(s∧d∧o)}.

With respect to Example 2.2, we have three propositional variables: s,d and o.

The set of all possible outcomes is Ω = {ω1, . . . ,ω8}, where ω1 = ¬s¬d¬o, ω2 = ¬s¬do,

ω3 = ¬sd¬o, ω4 = ¬sdo, ω5 = s¬d¬o, ω6 = s¬do, ω7 = sd¬o and ω8 = sdo. The outcome ω1

may be viewed as ω1 = ¬s¬d¬o or equivalently as ω1 = ¬s∧¬d∧¬o. The size of the set of

outcomes is equal to 2|V |, in which V is the set of propositional variables.

We will recall now some famous families of operators: sum, max, leximax (or

Generalized max), min and leximin (or Generalized min). First, it is needed to know the notion

of a distance between outcomes.
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Definition 2.4 (Distance Between Outcomes) (KONIECZNY; PINO-PÉREZ, 1999) A distance

measure between outcomes is a total function d from Ω×Ω to N such that for every ωi,ω j ∈Ω,

• d(ωi,ω j) = d(ω j,ωi), and

• d(ωi,ω j) = 0 iff ωi = ω j.

In the first works on model-based merging, the distance used was the Hamming

distance between outcomes (DALAL, 1988), but any other distance may be used as well. The

Hamming distance between outcomes characterizes the number of propositional variables that

they differ. For example, the Hamming distance (denoted by dH) between ω1 = ¬s¬d¬o and

ω6 = s¬do is dH(ω1,ω6) = 2 (i.e., they differ in two propositional variables). Other example of

a well-known distance is the drastic distance (KONIECZNY et al., 2004), denoted by dD, which

is defined as: dD(ω1,ω2) = 0, if ω1 = ω2; dD(ω1,ω2) = 1, otherwise.

We will also assume from now that our standard distance measure used in the merging

will be the Hamming distance. Next, we define the distance between an outcome ω and a belief

base K in the following way:

Definition 2.5 (Distance Between ω and K) (KONIECZNY; PINO-PÉREZ, 1999) Let d be an

distance measure. The distance between an outcome ω and a belief base K according to

d is the minimum distance between this outcome and the models of the belief base K, i.e.,

d(ω,K) = min
ωi|=K

d(ω,ωi).

Basically, the distance measure gives the closeness between an outcome and each

formula of a belief base.

Example 2.3 With respect to Example 2.2, the Hamming distance measures between each

outcome w.r.t. K1,K2 and K3 are showed in Table 1. For instance, dH(ω1,K1) = min
ωi|=K1

dH(ω1,

ωi) = min(dH(ω1,ω2),dH(ω1,ω5),dH(ω1,ω6)) = min(1,1,2) = 1.

One simple way of defining the overall distance between an outcome and a belief set

is to take the sum of the distances between all the outcomes of Ω and each knowledge base Ki.

This will be our first merging operator, the sum operator:

Definition 2.6 (sum Operator) (KONIECZNY; PINO-PÉREZ, 1999) Let E be a belief set, d

a distance measure and ω an outcome. We define the distance between an outcome and a

belief set based on sum as dsum(ω,E) = ∑
K∈E

d(ω,K). Then we have the following pre-order:
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Ω dH(ω,K1) dH(ω,K2) dH(ω,K3)
ω1 = ¬s¬d¬o 1 1 3
ω2 = ¬s¬do 0 0 2
ω3 = ¬sd¬o 2 0 2
ω4 = ¬sdo 1 1 1
ω5 = s¬d¬o 0 2 2
ω6 = s¬do 0 1 1
ω7 = sd¬o 1 1 1
ω8 = sdo 1 2 0

Table 1 – The Hamming distances of K1,K2 and K3.

ωi ≤d,sum
E ω j iff dsum(ωi,E) ≤ dsum(ω j,E). The operator ∆

d,sum
µ is defined by ∆

d,sum
µ (E) =

min(mod(µ),≤d,sum
E ).

The ∆
d,sum
µ operator relies on the definition of the distance between an outcome ω

and a belief set as the sum of the distances between ω and the belief bases of the belief set.

The result of ∆
d,sum
µ can be considered as the “election” of the most popular possible choices

satisfying the integrity constraints (KONIECZNY; PINO-PÉREZ, 2002a). When two or more

outcomes are the choices of the merging, we consider the result as the disjunction of these

outcomes.

Example 2.4 The results of sum merging operator w.r.t. Hamming distance for Example

2.3 are in Table 2. The resulting pre-order ≤dH ,sum
E is {ω2,ω6} ≤dH ,sum

E {ω4,ω7,ω8} ≤dH ,sum
E

{ω3,ω5} ≤dH ,sum
E ω1.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH sum(ω,E)
ω1 = ¬s¬d¬o 1 1 3 5
ω2 = ¬s¬do 0 0 2 2
ω3 = ¬sd¬o 2 0 2 4
ω4 = ¬sdo 1 1 1 3
ω5 = s¬d¬o 0 2 2 4
ω6 = s¬do 0 1 1 2
ω7 = sd¬o 1 1 1 3
ω8 = sdo 1 2 0 3

Table 2 – Hamming distances between Ω and E w.r.t. sum operator.

In the example above we have that ω2 ≈dH ,sum
E ω6 (both are the most preferred

outcomes), ω4 ≈dH ,sum
E ω7 ≈dH ,sum

E ω8 and ω3 ≈dH ,sum
E ω5. Consequently, when µ = > (i.e.,

no constraint is applied), ∆
dH ,sum
µ (E) = min(mod(µ),≤dH ,sum

E ) = {ω2,ω6} = ω2∨ω6 = (¬s∧
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¬d∧o)∨ (s∧¬d∧o). If we restrict only one programming language will be taught, i.e., µ1 =

(s∧¬d∧¬o)∨ (¬s∧d∧¬o)∨ (¬s∧¬d∧o), the result is ∆
dH ,sum
µ1 (E) = min(mod(µ1),≤dH ,sum

E

) = ω2 = (¬s∧¬d∧o).

Theorem 2.1 (KONIECZNY; PINO-PÉREZ, 1999) ∆
d,sum
µ is an IC majority merging operator.

Theorem 2.1 ensures the merging operator ∆
d,sum
µ satisfies the postulates (IC0)-(IC8)

and (Maj). In contrast, ∆
d,sum
µ violates (Arb).

Definition 2.7 (max Operator) (LIN; MENDELZON, 1996) Let E be a belief set, d a distance

measure and ω an outcome. We define the distance between an outcome and a belief set based

on max as dmax(ω,E) = max
K∈E

d(ω,K). Then we have the following pre-order: ωi ≤d,max
E ω j iff

dmax(ωi,E)≤ dmax(ω j,E). The operator ∆
d,max
µ is defined by ∆

d,max
µ (E) = min(mod(µ),≤d,max

E ).

This operator is very close to the minimax rule used in decision theory (SAVAGE,

1954). The minimax rule has been conceived to minimize the worst cases and similarly the

operator ∆
d,max
µ minimizes the most remote distance. The motivation behind ∆

d,max
µ is to find the

closest possible outcomes to the overall belief set (KONIECZNY; PINO-PÉREZ, 2002a).

Example 2.5 The results of max merging operator w.r.t. Hamming distance for Example 2.3 are

in Table 3. The resulting pre-order≤dH ,max
E is {ω4,ω6,ω7} ≤dH ,max

E {ω2,ω3,ω5,ω8} ≤dH ,max
E ω1.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH max(ω,E)
ω1 = ¬s¬d¬o 1 1 3 3
ω2 = ¬s¬do 0 0 2 2
ω3 = ¬sd¬o 2 0 2 2
ω4 = ¬sdo 1 1 1 1
ω5 = s¬d¬o 0 2 2 2
ω6 = s¬do 0 1 1 1
ω7 = sd¬o 1 1 1 1
ω8 = sdo 1 2 0 2

Table 3 – Hamming distances between Ω and E w.r.t. max operator.

We have ∆
dH ,max
µ (E) = min(mod(µ),≤dH ,max

E ) = {ω4,ω6,ω7} = ω4 ∨ω6 ∨ω7 =

(¬s∧d∧o)∨ (s∧¬d∧o)∨ (s∧d∧¬o) when µ =>.

Note ∆
d,max
µ is not an IC merging operator since it violates (IC6) (KONIECZNY;

PINO-PÉREZ, 2002a). However, it satisfies a weakened version of it: (IC6’) If ∆µ(E1)∧∆µ(E2)
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is consistent, then ∆µ(E1 tE2) |= ∆µ(E1)∨∆µ(E2). A merging operator is called IC quasi-

merging operator iff it satisfies (IC0)-(IC5), (IC6’) and (IC7)-(IC8) (KONIECZNY; PINO-

PÉREZ, 2002a). Furthermore, ∆
d,max
µ satisfies (Arb) and violates (Maj).

Theorem 2.2 (KONIECZNY; PINO-PÉREZ, 2002a) ∆
d,max
µ is an IC arbitration quasi-merging

operator.

In the sequel, we will present the generalization of the max operator.

Definition 2.8 (leximax Operator) (KONIECZNY; PINO-PÉREZ, 1999) Let E = {K1, . . . ,Kn}

be a belief set. For each outcome ω , we build the list (dω
1 , . . . ,d

ω
n ) of distances between ω and the

n belief bases in E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list obtained from (dω
1 , . . . ,d

ω
n ) by sorting

it in descending order. Let ≤lex be the lexicographical order between sequences of integers, i.e.,

(x1, . . . ,xn)≤lex (y1, . . . ,yn) if (1) for all i, xi ≤ yi or (2) there exists i such that xi < yi and for

all j < i, x j ≤ y j. We define the following pre-order: ωi ≤d,leximax
E ω j iff Ld,E

ωi ≤lex Ld,E
ω j . The

operator ∆
d,leximax
µ is defined by ∆

d,leximax
µ (E) = min(mod(µ),≤d,leximax

E ).

This operator has been tailored to capture the “arbitration” behavior of ∆
d,max
µ , but

without losing the properties of an IC merging operator. This idea of using lexicographic

operators comes from social choice theory (MOULIN, 1988) and its leximin functions (a

generalization of min operator).

Example 2.6 The results of leximax merging operator w.r.t. Hamming distance for Example

2.3 are in Table 4. The resulting pre-order ≤dH ,leximax
E is ω6 ≤dH ,leximax

E {ω4,ω7} ≤dH ,leximax
E

ω2 ≤dH ,leximax
E ω8 ≤dH ,leximax

E {ω3,ω5} ≤dH ,leximax
E ω1.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) LdH ,E
ω

ω1 = ¬s¬d¬o 1 1 3 (3,1,1)
ω2 = ¬s¬do 0 0 2 (2,0,0)
ω3 = ¬sd¬o 2 0 2 (2,2,0)
ω4 = ¬sdo 1 1 1 (1,1,1)
ω5 = s¬d¬o 0 2 2 (2,2,0)
ω6 = s¬do 0 1 1 (1,1,0)
ω7 = sd¬o 1 1 1 (1,1,1)
ω8 = sdo 1 2 0 (2,1,0)

Table 4 – Hamming distances between Ω and E w.r.t. leximax operator.
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When µ = >, we obtain ∆
dH ,leximax
µ (E) = min(mod(µ),≤dH ,leximax

E ) = ω6 = (s∧

¬d∧o).

Theorem 2.3 (KONIECZNY; PINO-PÉREZ, 1999) ∆
d,leximax
µ is an IC arbitration merging ope-

rator.

Note ∆
d,leximax
µ satisfies (IC0)-(IC8) and (Arb). It violates (Maj). We will now

introduce the min operator:

Definition 2.9 (min Operator) Let E be a belief set, d a distance measure and ω an outcome.

We define the distance between an outcome and a belief set based on min as dmin(ω,E) =

min
K∈E

d(ω,K). Then we have the following pre-order: ωi ≤d,min
E ω j iff dmin(ωi,E)≤ dmin(ω j,E).

The operator ∆
d,min
µ is defined by ∆

d,min
µ (E) = min(mod(µ),≤d,min

E ).

The idea of this operator is very simple: it produces outcomes satisfying at least one

belief base of the belief set. It does not take into account how many belief bases are satisfied or

the information of all belief bases.

Example 2.7 The results of min merging operator w.r.t. Hamming distance for Example 2.3 are

in the Table 5. The resulting pre-order ≤dH ,min
E is {ω2,ω3,ω5,ω6,ω8} ≤dH ,min

E {ω1,ω4,ω7}.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH min(ω,E)
ω1 = ¬s¬d¬o 1 1 3 1
ω2 = ¬s¬do 0 0 2 0
ω3 = ¬sd¬o 2 0 2 0
ω4 = ¬sdo 1 1 1 1
ω5 = s¬d¬o 0 2 2 0
ω6 = s¬do 0 1 1 0
ω7 = sd¬o 1 1 1 1
ω8 = sdo 1 2 0 0

Table 5 – Hamming distances between Ω and E w.r.t. min operator.

When µ =>, we obtain ∆
dH ,min
µ (E) = min(mod(µ),≤dH ,min

E ) = ω2∨ω3∨ω5∨ω6∨

ω8 = (¬s∧¬d∧o)∨ (¬s∧d∧¬o)∨ (s∧¬d∧¬o)∨ (s∧¬d∧o)∨ (s∧d∧o). We can see that

the min operator is not a good option to distinguish the outcomes, as it is also reflected in its

logical postulates.
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Theorem 2.4 ∆
d,min
µ does not satisfy (IC2), (IC6), (Maj) and (Arb). The other logical postulates

are satisfied.

Proof. See Appendix A.

∆
d,min
µ is not an IC merging operator since it violates (IC2) and (IC6). Roughly

speaking, ∆
d,min
µ may not be as good as other operators, since it violates postulates (IC2), (IC6),

(Maj) and (Arb), as also it does not discern well the outcomes. In defense of this operator, it

satisfies an additional logical property:

Definition 2.10 (Temperance) (EVERAERE et al., 2008b) A merging operator ∆> satisfies the

temperance property iff for every belief set E = {K1, . . . ,Kn}

(Temp) ∆>({K1, . . . ,Kn})∧Ki 6|=⊥ for each Ki.

This definition shows that the merged base obtained using ∆> is consistent with

every belief base of the belief set (when there is no integrity constraint involved). This postulate

is a particular case of the consensus property (CSS) (BENFERHAT et al., 2009), which is a

stronger version of (IC4):

Definition 2.11 (Consensus) (BENFERHAT et al., 2009) A merging operator ∆µ satisfies the

consensus property iff for every belief set E = {K1, . . . ,Kn}

(CSS) ∀Ki ∈ E, if Ki |= µ , then ∆µ(E)∧Ki 6|=⊥.

(CSS) is a stronger fairness postulate meaning the merging of a belief set should not

give preference to any of the belief bases.

Theorem 2.5 ∆
d,min
µ satisfies (Temp) and (CSS).

Proof. See Appendix A.

It worths noting that the temperance property is not satisfied by many merging

operators. In particular, none of the IC merging operators satisfies temperance (for example, max

operator also does not satisfy it).

Proposition 2.1 (EVERAERE et al., 2008b) There is no merging operator satisfying all of (IC2),

(IC6), and (Temp).

The min operator can also be generalized as showed previously with the max operator:
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Definition 2.12 (leximin Operator) (EVERAERE et al., 2005) Let E = {K1, . . . ,Kn} be a belief

set. For each outcome ω , we build the list (dω
1 , . . . ,d

ω
n ) of distances between ω and the n belief

bases in E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list obtained from (dω
1 , . . . ,d

ω
n ) by sorting it in

increasing order. Let ≤lex be the lexicographical order between sequences of integers. We define

the following pre-order: ωi ≤d,leximin
E ω j iff Ld,E

ωi ≤lex Ld,E
ω j . The operator ∆

d,leximin
µ is defined by

∆
d,leximin
µ (E) = min(mod(µ),≤d,leximin

E ).

As leximax operator, leximin is a refinement of min operator, since it captures the

outcomes which satisfy more belief bases. Originally, it was introduced in (EVERAERE et al.,

2005) intended to refine the k-quota operators. Briefly, a k-quota merging of a belief set E results

in models which satisfy at least k bases in E.

Example 2.8 The results of leximin merging operator w.r.t. Hamming distance for Example 2.3

are in Table 6. The resulting pre-order ≤dH ,leximin
E is ω2 ≤dH ,leximin

E ω6 ≤dH ,leximin
E ω8 ≤dH ,leximin

E

{ω3,ω5} ≤dH ,leximin
E {ω4,ω7} ≤dH ,leximin

E ω1.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) LdH ,E
ω

ω1 = ¬s¬d¬o 1 1 3 (1,1,3)
ω2 = ¬s¬do 0 0 2 (0,0,2)
ω3 = ¬sd¬o 2 0 2 (0,2,2)
ω4 = ¬sdo 1 1 1 (1,1,1)
ω5 = s¬d¬o 0 2 2 (0,2,2)
ω6 = s¬do 0 1 1 (0,1,1)
ω7 = sd¬o 1 1 1 (1,1,1)
ω8 = sdo 1 2 0 (0,1,2)

Table 6 – Hamming distances between Ω and E w.r.t. leximin operator.

When µ = >, we obtain ∆
dH ,leximin
µ (E) = min(mod(µ),≤dH ,leximin

E ) = ω2 = (¬s∧

¬d∧o). The leximin operator captures the idea of the priority for the outcomes which satisfy

more belief bases. ∆
dH ,leximin
µ (E) = ω2 since ω2 satisfies two belief bases. The other outcomes

satisfy only one (ω3,ω5,ω6 and ω8) or zero belief base (ω1,ω4 and ω7). When two outcomes

satisfy the same number of belief bases, we compare the distance measures of the belief bases

(in ascending order) that are not satisfied as a tiebreaker condition.

Theorem 2.6 (EVERAERE et al., 2005) ∆
d,leximin
µ is an IC majority merging operator.

Note ∆
d,leximin
µ satisfies (IC0)-(IC8) and (Maj). Furthermore, it violates (Arb).
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Table 7 summarizes the results involving the postulates satisfied by the operators

presented in this section. Recall that all these operators satisfy (IC0)-(IC1), (IC3)-(IC5), (IC6’)

and (IC7)-(IC8).

(Temp)/
(IC2) (IC6) (Maj) (Arb) (CSS)

∆sum
µ X X X

∆max
µ X X

∆leximax
µ X X X

∆min
µ X

∆leximin
µ X X X

Table 7 – Summary of Logical Properties.

Now that we have a logical definition of IC merging operators, we will exhibit an

alternative way to define IC merging operators. More precisely we will show that each IC

merging operator corresponds to a family of pre-orders on possible worlds (outcomes). First, we

have to introduce the notion of syncretic assignment among pre-orders:

Definition 2.13 (Syncretic Assignment) (KONIECZNY; PINO-PÉREZ, 1999) A syncretic as-

signment is a function mapping each belief set E to a total pre-order ≤E over outcomes

(ω1,ω2 ∈Ω) such that for any belief sets E,E1,E2 and for any belief bases K1,K2 the following

conditions hold:

1. If ω1 |= E and ω2 |= E, then ω1 ≈E ω2.

2. If ω1 |= E and ω2 6|= E, then ω1 <E ω2.

3. If E1 ≡ E2, then ≤E1=≤E2 .

4. ∀ω1 |= K1 ∃ω2 |= K2 such that ω1 ≤K1tK2 ω2.

5. If ω1 ≤E1 ω2 and ω1 ≤E2 ω2, then ω1 ≤E1tE2 ω2.

6. If ω1 ≤E1 ω2 and ω1 <E2 ω2, then ω1 <E1tE2 ω2.

6’. If ω1 <E1 ω2 and ω1 <E2 ω2, then ω1 <E1tE2 ω2.

The two first conditions ensure that the models of the belief set (if any) are the more

plausible outcomes for the pre-order associated to the knowledge set. The third condition states

that two equivalent knowledge sets have the same associated pre-orders. The fourth condition

states that when merging two belief bases, for each model of the first one, there is a model of
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the second one that is at least as good as the first one. It ensures that the two knowledge bases

are given the same consideration. The fifth condition says that if an outcome ω1 is at least as

plausible as an outcome ω2 for a belief set E1 and if ω1 is at least as plausible as ω2 for a belief

set E2, then if one joins the two belief sets, then ω1 will still be at least as plausible as ω2. The

sixth condition strengthens the previous condition by saying that an outcome ω1 is at least as

plausible as an outcome ω2 for a belief set E1 and if ω1 is strictly more plausible than ω2 for a

belief set E2, then if one joins the two belief sets, then ω1 will be strictly more plausible than

ω2. The condition 6’ is a weakened version of condition 6. We can also define two particular

syncretic assignments with additional conditions:

Definition 2.14 (Majority/Fair Syncretic Assignment) (KONIECZNY; PINO-PÉREZ, 1999)

A majority syncretic assignment is an assignment which satisfies the following:

7. If ω1 ≤E2 ω2, then ∃n ω1 <E1tE2t·· ·tE2︸ ︷︷ ︸
n

ω2.

A fair syncretic assignment satisfies

8. If ω1 <K1 ω2, ω1 <K2 ω3 and ω2 ≈K1tK2 ω3, then ω1 <K1tK2 ω2.

Condition 7 guarantees that if an outcome ω1 is stricly more preferred than an

outcome ω2 for a belief set E2, then there is a quorum n of repetitions of the belief set from

which ω1 will be more preferred than ω2 for the larger knowledge set E1tE2t·· ·tE2︸ ︷︷ ︸
n

.

Condition 8 states that if an outcome ω1 is more preferred than an outcome ω2 for a

belief base K1, if ω1 is more preferred than ω3 for an other base K2, and if ω2 and ω3 are equally

preferred for the belief set K1tK2, then ω1 has to be more preferred than ω2 and ω3 for K1tK2.

Now we can state the following representation theorem for merging operators:

Theorem 2.7 (KONIECZNY; PINO-PÉREZ, 1999) An operator ∆µ is an IC merging operator

(respectively IC majority merging operator or IC arbitration merging operator) if and only if there

exists a syncretic assignment (respectively majority syncretic assignment or fair syncretic assign-

ment) that maps each belief set E to a total pre-order ≤E such that ∆µ(E) = min(mod(µ),≤E).

When this equation holds we will say that the assignment represents the operator.

This theorem states that the set of postulates (IC0)-(IC8), (Maj) and (Arb) are equivalent to

a syncretic assignment, i.e., the conditions correspond to the logical postulates. Keep in mind
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that when we talk about logical postulates we are considering a merging operator and when we

talk about conditions, we are referring to pre-orders. Not always that it will have a translation

between a logical postulate and a condition, but both can be considered when we are working

with belief merging operators. This will be common in the next chapters when we will be using

both logical postulates and conditions to present the properties of merging operators.

2.3.4 On Egalitarian Propositional Belief Merging

On Distributive Justice, the utilitarian principle asserts that the best social policy is

that which provides the greatest total welfare to members of a group, where “total welfare” is

measured by summing utility numbers for all individuals (MYERSON, 1981). Utilitarianism is

the theory that individuals are best able to define their needs, desires and goals, and where they

have freedom to make choices, the result will be the greatest possible satisfaction for the greatest

number. Utilitarianism is the doctrine that actions are right if they are useful or for the benefit of

a majority. The main postulate of belief merging related to the utilitarianism is (Maj) and some

examples of operators satisfying it are sum and leximin.

In contrast to the utilitarianism, the egalitarian principle asserts that the best social

policy is that which provides the greatest welfare subject to the constraint that all members

should enjoy equal benefits from society. This principle leads to the same social choices as the

“maximin” principle, which always maximizes the utility of the most unfortunate individuals in

the group. So far, the main postulate of belief merging related to the egalitarianism is (Arb),

which is intended to find a consensual result between belief bases; some examples of operators

satisfying it are max and leximax.

It is natural to consider egalitarian merging operators when we try to achieve a “fair”

result. This could be important to ensure adhesion of agents towards the obtained group goals

(SUZUMURA, 2009). As to the belief merging issue, when the aim is to find the correct state of

the world, majority methods may seem more appealing.

In (EVERAERE et al., 2014) the study of the egalitarianism was deepened and

new egalitarian merging operators were introduced together with the analysis of other fairness

conditions than arbitration. The methodology followed consists of investigating two equity

conditions from social choice theory: the Hammond equity (HAMMOND, 1976) and Pigou-

Dalton property (DALTON, 1920). The merging operators proposed were medk (k-median),

leximedk (or Generalized k-median) and cumulative sum (csum for short).
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Definition 2.15 (medk Operator) (EVERAERE et al., 2014) Let E = {K1, . . . ,Kn} be a belief

set. For each outcome ω we build the list (dω
1 , . . . ,d

ω
n ) (sorted in increasing order) of distances

between this outcome and the n belief bases in E, i.e., dω
i = d(ω,Ki). Let k ∈]0,1] be a real

number; the k-median medk({dω
1 , . . . ,d

ω
n }) = dω

dn∗ke. Let dmedk(ω,E) = medk({dω
1 , . . . ,d

ω
n }).

Then we have the following pre-order: ωi ≤d,medk

E ω j iff dmedk(ωi,E) ≤ dmedk(ω j,E). The

operator ∆
d,medk

µ is defined by ∆
d,medk

µ (E) = min(mod(µ),≤d,medk

E ).

The idea of using the median value was very motivated by trying to be as fair as

possible. Instead of focusing on a unique aggregation function, it was defined a full family

of k-median aggregation functions. For k = 0.5, the usual notion of median is retrieved. For

instance, medk(d1,d2,d3,d4,d5) = med0.5(0,1,3,4,7) = dd5∗0.5e = d3 = 3.

Example 2.9 The results of med0.5 merging operator w.r.t. Hamming distance for Example 2.3

are in Table 8. The resulting pre-order≤dH ,med0.5

E is ω2 ≤dH ,med0.5

E {ω1,ω4,ω6,ω7,ω8} ≤dH ,med0.5

E

{ω3,ω5}.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH med0.5(ω,E)
ω1 = ¬s¬d¬o 1 1 3 1
ω2 = ¬s¬do 0 0 2 0
ω3 = ¬sd¬o 2 0 2 2
ω4 = ¬sdo 1 1 1 1
ω5 = s¬d¬o 0 2 2 2
ω6 = s¬do 0 1 1 1
ω7 = sd¬o 1 1 1 1
ω8 = sdo 1 2 0 1

Table 8 – Hamming distances between Ω and E w.r.t. med0.5 operator.

For instance, when µ = >, we obtain ∆
dH ,med0.5

µ (E) = min(mod(µ),≤dH ,med0.5

E ) =

ω2 = (¬s∧¬d∧o). For the logical postulates, we have

Theorem 2.8 (EVERAERE et al., 2014) For any real number k ∈]0,1], ∆
d,medk

µ satisfies (IC0),

(IC1), (IC3), (IC4), (IC7) and (IC8). If k ≥ 0.5, then ∆
d,medk

µ satisfies (Arb).

The postulates (IC2), (IC5), (IC6) and (Maj) are not satisfied in general. Additio-

nally, we have the following result:

Theorem 2.9 ∆
d,medk

µ does not satisfy (IC6’), (Temp) and (CSS) in general.
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Proof. See Appendix A.

A generalization of k-median operator is defined below.

Definition 2.16 (leximedk Operator) (EVERAERE et al., 2014) Let E be a belief set. Suppose

E = {K1, . . . ,Kn}. For each outcome ω we build the list Ld,E
ω =(dω

1 , . . . ,d
ω
n ) (sorted in increasing

order) of distances between this outcome and the n belief bases in E, i.e., dω
i = d(ω,Ki). Let

k ∈]0,1] be a real number, the k-median medk({dω
1 , . . . ,d

ω
n }) = dω

dn∗ke. Let ≤lexmedk be defined

as Ld,E
ω1 ≤lexmedk Ld,E

ω2 iff

• medk({dω1
1 , . . . ,dω1

n })< medk({dω2
1 , . . . ,dω2

n }) or

• medk({dω1
1 , . . . ,dω1

n }) = medk({dω2
1 , . . . ,dω2

n }) and

Ld,E
ω1 \{medk({dω1

1 , . . . ,dω1
n })} ≤lexmedk Ld,E

ω2 \{medk({dω2
1 , . . . ,dω2

n })}.

Then we have the following pre-order: ωi ≤d,leximedk

E ω j iff Ld,E
ω1 ≤lexmedk Ld,E

ω2 . The operator

∆
d,leximedk

µ is defined by ∆
d,leximedk

µ (E) = min(mod(µ),≤d,leximedk

E ).

Some standard operators are recovered by considering specific values of k: ∆
d,leximedk

µ

with k ∈]0, 1
n [ corresponds to the leximin operator ∆

d,leximin
µ (where n is the number of agents),

and ∆
d,leximed1

µ to the leximax operator ∆
d,leximax
µ .

Example 2.10 The results of leximed0.5 merging operator w.r.t. Hamming distance for Example

2.3 are in Table 9. The resulting pre-order≤dH ,leximed0.5

E is ω2≤dH ,leximed0.5

E {ω6,ω8}≤dH ,leximed0.5

E

{ω4,ω7} ≤dH ,leximed0.5

E ω1 ≤dH ,leximed0.5

E {ω3,ω5}.

Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) LdH ,E
ω

ω1 = ¬s¬d¬o 1 1 3 (1,1,3)
ω2 = ¬s¬do 0 0 2 (0,0,2)
ω3 = ¬sd¬o 2 0 2 (0,2,2)
ω4 = ¬sdo 1 1 1 (1,1,1)
ω5 = s¬d¬o 0 2 2 (0,2,2)
ω6 = s¬do 0 1 1 (0,1,1)
ω7 = sd¬o 1 1 1 (1,1,1)
ω8 = sdo 1 2 0 (0,1,2)

Table 9 – Hamming distances between Ω and E w.r.t. leximed0.5 operator.

The result of the merging is ∆
dH ,leximed0.5

µ (E) = min(mod(µ),≤dH ,leximed0.5

E ) = ω2 =

(¬s∧¬d∧o) when µ =>.
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Theorem 2.10 (EVERAERE et al., 2014) ∆
d,leximedk

µ does not satisfy any of (IC5), (IC6), (Maj)

and (Arb) in general. If k ≥ 0.5, then ∆
d,leximedk

µ satisfies (Arb).

Additionally, we have the following result:

Theorem 2.11 ∆
d,leximedk

µ does not satisfy (IC6’), (Temp) and (CSS).

Proof. See Appendix A.

The next merging operator comes from the notion of Lorenz curve (LORENZ, 1905),

a famous representation of the inequalities of a distribution of income. The principle is to focus

on the poorest (least satisfied) agents, by looking first as the utility of the poorest one, then at the

sum of the utilities of the two poorest ones, etc. Following this, (EVERAERE et al., 2014) was

adhered to the notion of cumulative sum to define a new family of merging operators. First, the

distance measure between a belief base and an outcome has to be translated into a satisfaction

value. This process is formalized below:

Definition 2.17 (Cumulative sum Operator) (EVERAERE et al., 2014) Let d be a distance

between outcomes and E a belief set. Let M = max{d(ω,ω ′) | ω,ω ′ ∈Ω}. For an outcome ω ,

we consider the vector L = (lω

σ(1), . . . , l
ω

σ(n)) where lω
i = M−d(ω,Ki) is the satisfaction value

of belief base i for the outcome ω , and σ is the permutation of {1, . . . ,n} sorting the lω
i in

ascending order. Then we define the vector of accumulated satisfaction Wd(ω,E) = (W1, . . . ,Wn),

where Wi =
i

∑
k=1

lω

σ(k). Let dcsum(ω,E) = ∑Wd(ω,E) (the sum of its elements). Then we have

the following pre-order: ωi ≤d,csum
E ω j iff dcsum(ωi,E)≤ dcsum(ω j,E). The operator ∆

d,csum
µ is

defined by ∆
d,csum
µ (E) = max(mod(µ),≤d,csum

E ).

Example 2.11 The results of csum merging operator w.r.t. Hamming distance for Example 2.3

are in Table 10. The resulting pre-order≤dH ,csum
E is ω1≤dH ,csum

E {ω3,ω5}≤dH ,csum
E {ω8}≤dH ,csum

E

{ω2,ω4,ω7} ≤dH ,csum
E ω6.

The result of the merging is ∆
dH ,csum
µ (E) =max(mod(µ),≤dH ,csum

E ) =ω6 = (s∧¬d∧

o) when µ =>. Note that the operator selects as best outcomes those in which the distribution

of the satisfaction is closer to the maximum value and that the inequality between agents is not

high. In other words, it seeks to choose outcomes where the inequalities of the distribution of

utilities are more stable.
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Ω lω
1 lω

2 lω
3 WdH (ω,E) dH csum(ω,E)

ω1 = ¬s¬d¬o 2 2 0 (0,2,4) 6
ω2 = ¬s¬do 3 3 1 (1,4,7) 12
ω3 = ¬sd¬o 1 3 1 (1,2,5) 8
ω4 = ¬sdo 2 2 2 (2,4,6) 12
ω5 = s¬d¬o 3 1 1 (1,2,5) 8
ω6 = s¬do 3 2 2 (2,4,7) 13
ω7 = sd¬o 2 2 2 (2,4,6) 12
ω8 = sdo 2 1 3 (1,3,6) 10

Table 10 – Hamming distances between Ω and E w.r.t. csum operator.

Theorem 2.12 (EVERAERE et al., 2014) ∆
d,csum
µ satisfies (IC0)-(IC4), (IC7)-(IC8) and (Maj).

Again, postulates (IC5) and (IC6) are not satisfied. But differently from med and

leximed, the cumulative sum belongs to a general family of belief merging operators, called

pre-IC merging operators, obtained by relaxing the two postulates (IC5) and (IC6) into two

natural conditions used in other aggregation theories contexts:

Definition 2.18 (Pre-IC Merging Operator) (EVERAERE et al., 2014) A merging operator ∆

is pre-IC merging operator iff it satisfies (IC0)-(IC4), (IC7)-(IC8) and the following properties:

(IC5b) ∆µ(K1)∧·· ·∧∆µ(Kn) |= ∆µ({K, . . . ,Kn})

(IC6b) If ∆µ(K1)∧·· ·∧∆µ(Kn) is consistent, then ∆µ({K, . . . ,Kn}) |= ∆µ(K1)∧·· ·∧∆µ(Kn)

Thus, switching from IC operators to pre-IC ones simply consists in replacing the

postulates (IC5) and (IC6) by the weaker (IC5b) and (IC6b). Indeed, it is easy to see that

(IC5b) (resp. (IC6b)) is implied by (IC5) (resp. (IC6)). As a consequence, we have that every

IC merging operator is a pre-IC merging operator. Furthermore, a representation theorem suited

to the pre-IC family is given by

Definition 2.19 (Pre-Syncretic Assignment) (EVERAERE et al., 2014) A pre-syncretic assign-

ment is a function mapping each belief set E to a total pre-order ≤E over outcomes (ω1,ω2 ∈Ω)

such that for any belief sets E,E1,E2 and for any belief bases K1,K2 the following conditions

hold:

1. If ω1 |= E and ω2 |= E, then ω1 ≈E ω2.

2. If ω1 |= E and ω2 6|= E, then ω1 <E ω2.

3. If E1 ≡ E2, then ≤E1=≤E2 .
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4. ∀ω1 |= K1 ∃ω2 |= K2 such that ω1 ≤K1tK2 ω2.

5b. If ∀i ω1 ≤Ki ω2, then ω1 ≤K1,...,Kn ω2.

6b. If ∀i ω1 ≤Ki ω2 and ∃k ω1 <Kk ω2, then ω1 <K1,...,K2 ω2.

Conditions 5b and 6b are taken from Pareto conditions, which are usual in social

choice and multicriteria decision making. So they should be considered as minimal aggregation

conditions to be satisfied. Besides, conditions 5 and 6 are much more demanding, since they

constraint all unions of two belief sets.

Proposition 2.2 (EVERAERE et al., 2014) ∆
d,csum
µ is a pre-IC merging operator.

Table 11 summarizes the differences of rationality between the three new merging

operators showed above.

(IC0-1) (IC2) (IC3-4) (IC5b) (IC6b) (IC7-8) (Maj) (Arb)

∆
d,medk

µ X X X k≥0.5

∆
d,leximedk

µ X X X X k≥0.5

∆
d,csum
µ X X X X X X X

Table 11 – Summary of Logical Properties (2).

The only egalitarian property that has been proposed so far for belief merging is

arbitration, represented by (Arb) postulate. So a key issue we would like to address is to

determine whether other egalitarian properties are possible in the belief merging framework, and,

if so, how they relate with arbitration.

We present in the following lines a first alternative coming from social choice theory

to characterize egalitarian behavior in belief merging. This condition, proposed by Hammond

(HAMMOND, 1976) is known as the Hammond Equity condition (SEN, 1982), and can be

expressed as follows:

Definition 2.20 (SEN, 1982) If agent i is worse off than agent j both in outcomes u and in v,

and if i is better off himself in u than in v, while j is better off in v than in u, and if furthermore

all others are just as well off in u as in v, then u is socially better than v.

In the utility theory (BARBERÀ et al., 1998), the Hammond Equity can be defined

in the following way: For all distinct agents i, j and let u,v be utility functions defined on R, if
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u(k) = v(k) for every k 6= i, j and v(i)< u(i)≤ u( j)< v( j), then u≺ v (u is more preferred than

v). It is translated in the belief merging setting as constraints on the total pre-orders associated

with the input profiles. These constraints concern profiles of arbitrary size. When distance-based

merging operators are considered, this condition is equivalent to

Definition 2.21 (Hammond Equity) (EVERAERE et al., 2014) Let d be a distance measure. A

merging operator op satisfies the Hammond Equity property with respect to d iff for any belief

set E = {K1, . . . ,Kn}

(HE) If ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j) and

∀l 6= i, j d(ω,Kl) = d(ω ′,Kl), then ω ′ <d,op
E ω .

Note that the (HE) property is defined as a condition of the syncretic assignment and

not as a logical postulate of propositional belief merging.

Theorem 2.13 (EVERAERE et al., 2014) Let d be any distance and op a merging operator sa-

tisfying strict non-decreasingness, i.e., if xi > x′i, then op(x1, . . . ,xi, . . . ,xm)> op(x1, . . . ,x′i, . . . ,xm).

The IC merging operator ∆
d,op
µ satisfies condition (HE) if and only if op = leximax.

The condition of strict non-decreasingness is quite natural and not very demanding.

Actually all the aggregation functions giving rise to IC merging operators we are aware of satisfy

non-decreasingness. Given this theorem, defining other egalitarian distance-based merging

operators requires to focus on other equity principles, or to weaken some IC postulates. We

explore both ways in the sequel, but first we present a counterpoint of (HE), which is called

Hammond Inequity (BARBERÀ et al., 1998) and it is satisfied by leximin function. When

distance-based merging operators are considered, this condition is equivalent to

Definition 2.22 (Hammond Inequity) Let d be a distance measure. A merging operator op

satisfies the Hammond Inequity property with respect to d iff for any belief set E = {K1, . . . ,Kn}

(HI) If ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j) and

∀l 6= i, j d(ω,Kl) = d(ω ′,Kl), then ω <d,op
E ω ′.

Theorem 2.14 ∆
d,leximin
µ satisfies (HI).
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Proof. See Appendix A.

Now, we focus on another prioritarian condition from social choice, namely Pigou-

Dalton transfer principle (DALTON, 1920). The idea underlying it is that every transfer from the

most satisfied agent to the least satisfied one decreases the inequalities:

Definition 2.23 (Pigou-Dalton Transfer Principle) (EVERAERE et al., 2014) Let d be a dis-

tance measure. An operator op satisfies the Pigou-Dalton transfer principle with respect to d iff

for any belief set E = {K1, . . . ,Kn}

(PD) If ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j),

d(ω ′,Ki)−d(ω,Ki) = d(ω,K j)−d(ω ′,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl), then

ω ′ <d,op
E ω (ω ′ is more preferred than ω).

The axiom (PD) is a restriction of (HE), where the difference between the distances

has the same value. Consequently, we have that (HE) implies (PD). The converse is not generally

true. Pigou-Dalton introduces a very weak kind of distribution sensitivity (VALLENTYNE,

2010; ARROW et al., 2002). It says that a transfer from a relatively better-off agent to a relatively

worse-off, without reversing their ranking, is weakly improving. For example, it says that transfer

d(ω ′,K1) = d(ω ′,K2) = 2 is better than transfer d(ω,K1) = 0 and d(ω,K2) = 4.

Theorem 2.15 (EVERAERE et al., 2014) ∆
d,leximax
µ and ∆

d,csum
µ satisfy (PD).

Similar to the Pigou-Dalton principle, we can name another property, called Incre-

mental Equity (ARROW et al., 2002). Considering the distance-based merging operators, this

property is defined as

Definition 2.24 (Incremental Equity) Let d be a distance measure. An operator op satisfies

the Incremental Equity condition iff for any belief set E = {K1, . . . ,Kn}

(IE) If ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j),

d(ω ′,Ki)−d(ω,Ki) = d(ω,K j)−d(ω ′,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl), then

ω ′ ≈d,op
E ω .

Here, we observe a widening in the result of the implication, in comparison with

the Pigou-Dalton principle; indeed this axiom is not interested in the values of transfer of the

utilities between agents. As a result, we have that
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Theorem 2.16 ∆
d,sum
µ satisfies (IE).

Proof. See Appendix A.

For instance, if we consider d(ω ′,K1) = d(ω ′,K2) = 2, d(ω,K1) = 0 and d(ω,K2) =

4, then dsum(ω
′,{K1,K2}) = dsum(ω,{K1,K2}) = 4. That is, only the result of the sums of

utilities are considered, instead of the transfer of utilities between agents. Table 12 summarizes

the satisfaction of these four logical properties with respect to all the merging operators defined

until now.

∆
d,sum
µ ∆

d,max
µ ∆

d,leximax
µ ∆

d,min
µ ∆

d,leximin
µ ∆

d,medk

µ ∆
d,leximedk

µ ∆
d,csum
µ

(HE) X
(HI) X
(PD) X X
(IE) X

Table 12 – Summary of Logical Properties (3).

So far, we have seen that the number of merging operators satisfying these egalitarian

conditions is quite low. In this thesis, we will be concerned with other different classes of

operators that bring this egalitarian “flavor” to the propositional belief merging. We believe that

the first walk to be made in this direction is to work with the variations of the max and leximax

operators, which will be done in the next chapter.

To finish our overview over the propositional belief merging, we will show an

alternative to distance-based merging, where the distance notion is dropped and a satisfaction

measure is used instead. This approach is important since it brings a different vision from

merging by applying a notion of priority among agents. It also provides some of the initial results

obtained during this thesis.

2.4 Model-Based Merging without Distance Measures

2.4.1 PS-Merge

As showed in the previous section, several merging operators have been defined and

characterized. The model-based merging operators obtain a belief base from a set of outcomes

with the support of a distance measure on outcomes and an aggregation function (merging

operator).
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The major problem with distance-based merging operators is that evaluating the

closeness between outcomes as a number may lead to lose too much information (EVERAERE

et al., 2008b). For example, the widely used Hamming distance (DALAL, 1988) assumes not

only that propositional symbols are equally relevant to determine a distance between outcomes,

but also that they are independent from each other and that nothing else is relevant. These

assumptions are restrictive and give the Hamming distance very little flexibility (LAFAGE;

LANG, 2001).

To overcome this issue, some characterizations of model-based merging operators

were achieved by modifying the distance measure (EVERAERE et al., 2008a; EVERAERE et

al., 2008b; KONIECZNY et al., 2004; LAFAGE; LANG, 2001). In addition, merging operators

without distance measures were also conceived. An alternative method of merging was proposed

in (POZOS-PARRA; MACÍAS, 2007; MACÍAS; POZOS-PARRA, 2009; POZOS-PARRA et

al., 2011), which uses the notion of Partial Satisfiability instead of a distance measure, to define

PS-Merge, a model-based merging operator which depends on the syntax of the belief bases

(MACÍAS; POZOS-PARRA, 2007). It is not based on distance measures of models and we can

say that it can provide more refined results than the usual distance measures since they are too

loose to distinguish the closeness between outcomes. In this section we will review some notions

and definitions about PS-Merge, changing a little the notation in order to fit it to this thesis.

Recall that a belief set E = {K1, . . . ,Kn} represents sets of belief bases Ki, and a

belief base Ki is a finite and consistent set of propositional formulas. In this approach, each

belief base Ki is restricted to a DNF (Disjunctive Normal Form) formula, i.e., it can be viewed

as Ki = (c1∨·· ·∨ cm) and cl = (x1∧·· ·∧ xk), where x1, . . . ,xk are literals, i.e., a propositional

variable or its negation.

Example 2.12 (Revisiting Example 2.2) Let us consider the academic example of a teacher

who asks his three students which among the languages SQL (denoted by s), O2 (denoted by o)

and Datalog (denoted by d) they would like to learn. The first student wants to learn only SQL

or O2, that is, K1 = (s∨o)∧¬d. The second one wants to learn either Datalog or O2 but not

both, i.e., K2 = (¬s∧d∧¬o)∨ (¬s∧¬d∧o). For the last, the third one wants to learn the three

languages: K3 = (s∧d∧o). First of all, we need to convert these preferences to the DNF format.

We shall have K1 = (s∧¬d)∨ (o∧¬d), K2 = (¬s∧d∧¬o)∨ (¬s∧¬d∧o) and K3 = (s∧d∧o).

The definition of outcome is as usual a function ω : P→{0,1}. For instance, when

ω(s) = 1, we say that the interpretation of the propositional variable s is true, whereas when
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ω(s) = 0, we say that its interpretation is false. We have that ω(s) = 1⇔ω(¬s) = 0. Remember

that the outcome ω1 = ¬s¬d¬o may be viewed as ω1(¬s) = 1,ω1(¬d) = 1 and ω1(¬o) = 1.

Definition 2.25 (Partial Satisfiability) (POZOS-PARRA et al., 2011) Let K = {c1∨ ·· ·∨ cm}

be a belief base in DNF. The partial satisfiability of the outcome ω w.r.t. K is given by ω(K) =

max{ω(c1), . . . ,ω(cm)}, where for each ci = (x1∧·· ·∧ xk), 1≤ i≤ k: ω(ci) =
k

∑
l=1

{
ω(xl)

k

}
.

Note that we are abusing the notation w.r.t. partial satisfiability function ω ; it can be

used to express the partial satisfiability of a belief base (K), of a clause (ci) and of literals (xl).

The partial satisfiability of an outcome in a clause indicates the rate of the occurrences of its

literals in the DNF formula. It is a little different from a distance measure, which measures the

closeness of the outcome to its satisfaction: the lower this value, closer it is to its satisfaction.

Example 2.13 From Example 2.12, we have K1 = {(s∧¬d)∨(o∧¬d)}, K2 = {(¬s∧d∧¬o)∨

(¬s∧¬d∧o)} and K3 = {(s∧d∧o)}. The partial satisfiability of each outcome w.r.t. K1,K2

and K3 is computed as

Ω ω(K1) ω(K2) ω(K3)
ω1 = ¬s¬d¬o 1/2 2/3 0
ω2 = ¬s¬do 1 1 1/3
ω3 = ¬sd¬o 0 1 1/3
ω4 = ¬sdo 1/2 2/3 2/3
ω5 = s¬d¬o 1 1/3 1/3
ω6 = s¬do 1 2/3 2/3
ω7 = sd¬o 1/2 2/3 2/3
ω8 = sdo 1/2 1/3 1

Table 13 – The partial satisfiability of K1,K2 and K3.

For example, ω1(K1) = max{ω1(c1),ω1(c2)}= max
{1

2 ,
1
2

}
= 1

2 .

Definition 2.26 (sum Operator) (MACÍAS; POZOS-PARRA, 2009) Let E = {K1, . . . ,Kn} be a

belief set and ω be an outcome. The partial satisfiability of ω w.r.t. E and sum is given by

ωsum(E) =
n

∑
i=1
{ω(Ki)} . The binary relation ≤ps,sum

E is defined as ω ≤ps,sum
E ω ′ if and only if

ωsum(E)≤ ω ′sum(E).

Here, an outcome ω ′ is preferred to ω if the partial satisfiability of ω ′ is greater or

equal to the partial satisfiability of ω .
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Example 2.14 After computing the partial satisfiability of the group of agents in Example 2.13,

we can rank the outcome as ω1 ≤ps,sum
E ω3 ≤ps,sum

E ω5 ≤ps,sum
E {ω4,ω7,ω8} ≤ps,sum

E {ω2,ω6}.

The results of each outcome w.r.t sum can be seen in the second column of Table 14.

We can define this process as a merging operator in the following model-theoretical way:

Ω ωsum(E) dHsum(ω,E) ωmin(E) dHmax(ω,E)
ω1 = ¬s¬d¬o 1.166 5 0 3
ω2 = ¬s¬do 2.333 2 0.333 2
ω3 = ¬sd¬o 1.333 4 0 2
ω4 = ¬sdo 1.833 3 0.5 1
ω5 = s¬d¬o 1.666 4 0.333 2
ω6 = s¬do 2.333 2 0.666 1
ω7 = sd¬o 1.833 3 0.5 1
ω8 = sdo 1.833 3 0.333 2

Table 14 – The partial satisfiability w.r.t. sum and min operators.

Definition 2.27 (PS-Merge (sum)) (POZOS-PARRA et al., 2011) Let E = {K1, . . . ,Kn} be a

belief set and µ be an integrity constraint. The merging operator ∆
ps,sum
µ (E) is defined as

∆
ps,sum
µ (E) = max(mod(µ),≤ps,sum

E ).

Example 2.15 The merging for the previous example when µ => results in mod(∆ps,sum
µ (E)) =

ω2∨ω6 = (¬s∧¬d∧o)∨ (s∧¬d∧o).

Another example of merging operator is the min function, which is a counterpart of

the max function presented in the distance-based merging.

Definition 2.28 (min Operator) (MACÍAS; POZOS-PARRA, 2009) Let E = {K1, . . . ,Kn} be a

belief set and ω be an outcome. The partial satisfiability of ω w.r.t. E and min is given by

ωmin(E) = min(ω(K1), . . . , ω(Kn)). The binary relation≤ps,min
E is defined as ω ≤ps,min

E ω ′ if and

only if ωmin(E)≤ ω ′min(E).

Example 2.16 After computing the partial satisfiability of the group of agents in Example 2.13,

we can rank the outcomes as {ω1,ω3} ≤ps,min
E {ω2,ω5,ω8} ≤ps,min

E {ω4,ω7} ≤ps,min
E ω6.

The definition of the merging process in a model-theoretical way is
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Definition 2.29 (PS-Merge (min)) (MACÍAS; POZOS-PARRA, 2009) Let E = {K1, . . . ,Kn} be

a belief set and µ be an integrity constraint. The merging operator ∆
ps,min
µ (E) is defined as

∆
ps,min
µ (E) = max(mod(µ),≤ps,min

E ).

PS-Merge differs from the distance-based merging (see Table 14) owing to the

sensibility of the syntax of this approach. We can see a different result in the comparison with

the sum operator in the outcomes ω3 and ω5. When the min/max operators are considered, this

difference between the approaches is even wider.

The main question around this approach is what we gain when resorting to partial

satisfiability instead of distance measures in the process of belief merging. In terms of expressi-

vity, we can see that the results can be more disparate, since the range of possible values may be

larger than the possible values of the distance measures seen before. The partial satisfiability is

sensible to syntax, and the variation of the syntax is the feature that provides a larger range of

values. Unfortunately, this will reflect in how much rational will be the merging operators. The

way that the partial satisfiability is defined will imply in the loss of some logical properties.

Theorem 2.17 (POZOS-PARRA; MACÍAS, 2007) Let op ∈ {sum,min} be a merging operator.

∆
ps,op
µ does not satisfy (IC3) and (IC4). Furthermore, ∆

ps,min
µ does not satisfy (IC6).

The postulate (IC3) is the principle of irrelevance of syntax: it says that the result

of merging has to depend only on the expressed opinions (their semantics) and not on their

syntactical presentation. The partial satisfiability is designed in a way that equivalent formulas

can receive different evaluations. For instance, for the formula (a∧ b), both propositional

variables a and b have the same value, which is 1
2 . The formula (a∧ b∧ c)∨ (a∧ b∧¬c) is

equivalent to the former, but the evaluation for each propositional variable will be different: their

partial satisfiability value will be 1
3 .

The postulate (IC4) is the fairness condition, which means that the result of merging

of two belief bases should not give preference to one of them. By the definition of partial

satisfiability, the formulas with only disjunctions tends to have a higher partial satisfiability value

when compared to formulas with only conjunctions. For instance, if a belief base K1 has the

formula (a∨b) and a belief base K2 has the formula (¬a∧¬b), the result of the merging tends

to give more preference to K1. But it is possible to find a condition where the postulates (IC3)

and (IC4) are satisfied. We introduce in the sequel the notion of normalization of a belief set:
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Definition 2.30 (Normalization of a Belief Set) Let E = {K1, . . . ,Kn} be a belief set, where

each Ki is a formula in DNF format and V is the number of different propositional variables in

E. We define an equivalent belief set E ′ = {K′1, . . . ,K′n}, where for each clause in Ki with less

than V propositional variables, we can construct an equivalent K′i , where each clause of K′i has

exactly V literals.

Example 2.17 The normalization E ′ = {K′1,K′2,K′3} of the belief set E = {K1,K2,K3} in Exam-

ple 2.12, where K1 = (s∧¬d)∨(o∧¬d), K2 = (¬s∧d∧¬o)∨(¬s∧¬d∧o) and K3 = (s∧d∧o),

is equal to K′1 = (s∧¬d∧o)∨ (s∧¬d∧¬o)∨ (¬s∧¬d∧o), K′2 = K2 and K′3 = K3.

Hence, we have the following result:

Theorem 2.18 Let E be a belief set and E ′ the normalized version of E. We have that

∆
ps,sum
µ (E ′)≡ ∆

dH ,sum
µ (E) and ∆

ps,min
µ (E ′)≡ ∆

dH ,max
µ (E).

Proof. See Appendix A.

This result can be extended to others merging operators; for instance, ∆
ps,max
µ (E ′)≡

∆
dH ,min
µ (E), ∆

ps,leximax
µ (E ′) ≡ ∆

dH ,leximin
µ (E), etc. Based on Definition 2.17 of cumulative sum

operator, we can define other notion of merging based on satisfaction values, which has a close

similarity with PS-Merge.

Definition 2.31 (Satisfaction Merging) Let d be a distance between outcomes, op a merging

operator and E be a belief set. Let M = max({d(ω,ω ′) | ω,ω ′ ∈Ω}). For an outcome ω , we

consider ld,ω
i = M−d(ω,Ki) as the satisfaction value of belief base i for the outcome ω . Then

we have the following pre-order: ωi ≤l,d,op
E ω j iff op(ld,ωi

1 , . . . , ld,ωi
n )≤ op(ld,ω j

1 , . . . , ld,ω j
n ). The

operator ∆
l,d,op
µ is defined by ∆

l,d,op
µ (E) = max(mod(µ), ≤l,d,op

E ).

Theorem 2.19 Let E be a belief set and E ′ the normalized version of E. We have that

∆
ps,op
µ (E ′)≡ ∆

l,dH ,op
µ (E).

Proof. See Appendix A.

We can see with these results PS-Merge has a strong connection with the Hamming

distance. However, PS-Merge definition can be modified to match other distances measures. For

instance, we can consider a drastic version of PS-Merge.
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Definition 2.32 (Drastic Partial Satisfiability) Let K = {c1∨ ·· · ∨ cm} be a belief base. The

drastic partial satisfiability of the outcome ω w.r.t. K is given by:

ω
D(K) =

 1, if max{ω(c1), . . . ,ω(cm)}= 1

0, otherwise

where for each ci = (x1∧·· ·∧ xk), 1≤ i≤ k: ω(ci) =
k

∑
l=1

{
ω(xl)

k

}
.

Definition 2.33 (DPS-Merge) Let E = {K1, . . . ,Kn} be a belief set and µ be an integrity cons-

traint. The merging operator ∆
d ps,op
µ (E) is defined as ∆

d ps,op
µ (E) = max(mod(µ),≤d ps,op

E ),

where the binary relation ≤d ps,op
E is defined as ω ≤d ps,op

E ω ′ if and only if ωD
op(E)≤ ω ′Dop(E) and

ωD
op(E) = op(ωD(K1), . . . ,ω

D(Kn))..

Theorem 2.20 Let E be a belief set and E ′ the normalized version of E. We have that

∆
d ps,sum
µ (E ′)≡ ∆

dD,sum
µ (E)≡ ∆

l,dD,sum
µ (E) and ∆

d ps,min
µ (E ′)≡ ∆

dD,max
µ (E)≡ ∆

l,dD,min
µ (E).

Proof. See Appendix A.

Indeed, Theorem 2.18 can be extended to others merging operators. In short, these

theorems above show that in some conditions the partial satisfiability is equivalent to the distance-

based merging.

2.4.2 Pr-Merge

In this subsection, we will consider mainly the problem of belief merging without

distance measures, by refining the definition of PS-Merge through the weighting of the infor-

mation in the belief bases. The resulting priority-based merging operator is dubbed Pr-Merge.

Basically, the idea of priority consists in ranking the importance of each outcome in terms of the

belief of each agent. In our work, we will measure the importance of an outcome by considering

the number of propositions’ appearance in the agents’ belief bases.

Example 2.18 The application of this merging is relevant in the following scenario: suppose

that three friends are going to share a meal in a restaurant, which is constituted of a main dish

and a drink. One person is very restrictive with relation to his/her beliefs, e.g., he/she prefers

vegetarian food, while the others two have more choices to make than the first one, since they are

non-vegetarian and there is a greater diversity of choices to make for both, and these possible

options are considered equally satisfactory for them. Since the choices are more restricted and
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objective for the first person, it is natural that we need to give more priority to his/her desires,

but without forgetting completely the desires of the other two people.

The merging operator introduced in what follows will comprise this aspect: it will

give more priority to agents expressing their beliefs in a simplified, objective or restricted way.

On the other hand, it is extremely plausible to think of contexts where we should give more

priority to agents expressing more beliefs (this view can be achieved later by changing a definition

in the merging operator). The details about this approach will be explained during this section.

Before, we will present some preliminary notions and the definition of the Pr-Merge. As well as

with PS-Merge, here a belief base Ki is a finite and consistent set of propositional formulas in

DNF.

Example 2.19 Let us recall Example 2.2, in which a teacher asks his three students which among

the languages SQL (denoted by s), O2 (denoted by o) and Datalog (denoted by d) they would like

to learn. The first student wants to learn only SQL or O2, that is, K1 = (s∨o)∧¬d. The second

wants to learn either Datalog or O2 but not both, i.e., K2 = (¬s∧d∧¬o)∨ (¬s∧¬d∧o). For

the last, the third one wants to learn the three languages: K3 = (s∧d∧o).

First of all, we need to convert these belief bases to the DNF format. We shall

have K1 = (s∧¬d)∨ (o∧¬d), and consequently, K1 = {c1,c2}, where c1 = (s∧¬d) and

c2 = (o∧¬d). For the belief bases K2 and K3, we shall have K2 = {c3,c4} and K3 = {c5}, where

c3 = (¬s∧d∧¬o), c4 = (¬s∧¬d∧o) and c5 = (s∧d∧o). Note the third agent has only one

preferable choice (s∧d∧o), while the first and second ones have both two preferable choices

(for K1, it is (s∧¬d) or (o∧¬d), and for K2, it is (¬s∧d∧¬o) or (¬s∧¬d∧o)). We can say

that K3 is more certain/restricted about his/her beliefs.

We can now begin with the notion of preference priority. In order to do this, we

will work in two levels: the partial satisfiability of a specific agent (Ki ∈ E) and the preference

priorities of a group of agents E (based on the partial satisfiability of each agent). These

definitions are inspired by the works on the PS-Merge operator (MACÍAS; POZOS-PARRA,

2009; POZOS-PARRA; MACÍAS, 2007; POZOS-PARRA et al., 2011).

To define the preference priority in our framework, we will assume that each clause

of a belief base shares the same weight in the belief evaluation. For example, the formula

(s∧d∧o) of the belief base K3 will have a priority weight 1 (because there is only one clause in

the belief base), while the clauses (s∧¬d) and (o∧¬d) of the belief base K1 will have both the
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priority weight 1
2 (the sum of weights needs to be equal to 1). Formally, we will define this idea

in two different ways:

Definition 2.34 (Preference Priority) Let E = {K1, . . . ,Kn} be a belief set and ω an outcome.

The preference priority of ω w.r.t. E is given by ω+(E) =
n

∑
i=1

δi×ω(Ki), where δi =
1
ai

and ai is

the number of clauses in the belief base Ki.

This step reflects the preference priority of the group of agents, which will be a

prioritized sum of the partial satisfiability of each individual belief base of the group. Intuitively,

the higher is the number of choices made by an agent, the lower will be his/her preference

priority among the group of agents.

For the sake of information, if we consider to prioritize agents that are expressing

more choices, we must make a little change in the definitions above. In this case, we shall

have ω+(E) =
n

∑
i=1

ai×ω(Ki). We want to highlight that, although these two approaches express

different ideas, they share similar properties.

Example 2.20 The preference priority of the belief set E of Example 2.2 is shown in Table 15.

Ω ω+(E)
ω1 = ¬s¬d¬o 1/4+1/3+0 = 7/12' 0.583
ω2 = ¬s¬do 1/2+1/2+1/3 = 4/3' 1.333
ω3 = ¬sd¬o 0+1/2+1/3 = 5/6' 0.833
ω4 = ¬sdo 1/4+1/3+2/3 = 5/4 = 1.25
ω5 = s¬d¬o 1/2+1/6+1/3 = 6/6 = 1
ω6 = s¬do 1/2+1/3+2/3 = 3/2 = 1.5
ω7 = sd¬o 1/4+1/3+2/3 = 5/4 = 1.25
ω8 = sdo 1/4+1/6+1 = 17/12' 1.416

Table 15 – Preference Priority of E.

After computing the preference priorities, we can rank the outcomes and decide

which one is the best option for the group:

Definition 2.35 The binary relation ≤pr
E is defined as ω ≤pr

E ω ′ if and only if ω+(E)≤ ω ′+(E).

Here, an outcome ω ′ is preferred to ω if the preference priority of ω ′ is greater or

equal to the preference priority of ω .
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Example 2.21 After computing the preference priority in Example 2.20, we can rank the outco-

mes as ω1 ≤pr
E ω3 ≤pr

E ω5 ≤pr
E {ω4,ω7} ≤pr

E ω2 ≤pr
E ω8 ≤pr

E ω6.

The best outcome is ω6. Comparing our approach to that presented by the PS-Merge

we will have

Pr-Merge PS-Merge
Ω ω(E) ω(E)
ω1 = ¬s¬d¬o 0.583 1.16
ω2 = ¬s¬do 1.333 2.33
ω3 = ¬sd¬o 0.833 1.5
ω4 = ¬sdo 1.25 1.83
ω5 = s¬d¬o 1 1.67
ω6 = s¬do 1.5 2.33
ω7 = sd¬o 1.25 1.83
ω8 = sdo 1.416 1.83

Table 16 – Comparison between PS-Merge and Pr-Merge.

Note that, in general, the preferences between the outcomes are very similar. The

difference appears with ω2 and ω8. The belief base K3 = (s∧d∧o) has a priority greater than

the other bases, which will influence the result of ω8 (only outcome satisfying K3), increasing

its final result, whereas it will decrease the result of the outcome ω2, because it is not a good

outcome to K3 (ω2 satisfies only one propositional variable of K3). We can define this process as

a merging operator in the following model-theoretical way:

Definition 2.36 (Pr-Merge) Let E = {K1, . . . ,Kn} be a belief set and µ an integrity constraint.

The merging operator ∆
pr
µ (E) is defined as ∆

pr
µ (E)=max(mod(µ),≤pr

E ), where max(mod(µ),≤pr
E

) is the set of outcomes that satisfy µ and are maximal with respect to the relation ≤pr
E .

Example 2.22 The merging operator ∆
pr
µ (E) for the previous example when µ => shall result

in ∆
pr
µ (E) = ω6 = (s∧¬d∧o). If we impose only one programming language will be taught, i.e.,

µ1 = (s∧¬d∧¬o)∨ (¬s∧d∧¬o)∨ (¬s∧¬d∧o), the result is ∆
pr
µ1(E) = ω2 = (¬s∧¬d∧o).

To conclude this section, we want to emphasize our choice with respect to partial

satisfiability. The approach introduced here is not restricted only to PS-Merge, i.e., it can be used

with distance-based merging operators too. Indeed, the distance-based merging with priorities
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may be viewed as a particular case of the weighted sum aggregation function (KONIECZNY;

PINO-PÉREZ, 2002a).

Formally, it can be defined in the following way: as said previously, the dis-

tance measure between an outcome and a belief base is defined as d(ω,K) = min
ω ′|=K

d(ω,ω ′),

where d(ω,ω ′) is the distance between outcomes. Using the sum as an aggregation func-

tion, we define the distance measure between an outcome and a belief set E = {K1, . . . ,Kn} as

d(ω,E) =
n

∑
i=1
{d(ω,Ki)}. When the weighted sum is considered as the aggregation function,

we have d(ω,E) =
n

∑
i=1

ai× d(ω,Ki), where ai is the number of clauses in the belief base Ki

in our work. Consequently, the merging operator ∆
d,op
µ (E), where op ∈ {sum,wsum}, is defi-

ned as ∆
d,op
µ (E)) = min(mod(µ),≤d,op

E ). The comparison between distance-based and partial

satisfiability merging is showed below (when d = dH):

Ω ∆
dH ,sum
µ ∆

ps
µ ∆

dH ,wsum
µ ∆

pr
µ

ω1 = ¬s¬d¬o 5 1.16 4 0.583
ω2 = ¬s¬do 2 2.33 2 1.333
ω3 = ¬sd¬o 4 1.33 3 0.833
ω4 = ¬sdo 3 1.83 2 1.25
ω5 = s¬d¬o 4 1.66 3 1
ω6 = s¬do 2 2.33 1.5 1.5
ω7 = sd¬o 3 1.83 2 1.25
ω8 = sdo 3 1.83 1.5 1.416

Table 17 – Comparison between PS-Merge, Pr-Merge and distance-based merging.

In short, we can see that a partial satisfiability-based merging is richer than a distance-

based merging, since it gives us a more detailed evaluation of the outcomes. In terms of logical

properties we have the following results.

Theorem 2.21 ∆
pr
µ satisfies (IC0)-(IC2), (IC5)-(IC8) and (Maj).

Proof. See Appendix A.

∆
pr
µ does not satisfy (IC3) and (IC4). The postulate (IC3) is the principle of irrele-

vance of syntax: it says that the result of merging has to depend only on the expressed opinions

(their semantics) and not on their syntactical presentation. The preference priority is designed in

a way that equivalent formulas can receive different evaluations. For instance, for the formula

(a∧ b), both propositional variables a and b have the same value, which is 1
2 . The formula
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(a∧b∧ c)∨ (a∧b∧¬c) is equivalent to the former, but the evaluation for each propositional

variable will be different: their preference priority value will be 1
6 .

Since (IC4) is not satisfied, it means that this merging operator tends to give prefe-

rence to some specific belief bases. The postulate (IC4) is the fairness condition, which means

that the result of merging of two belief bases should not give preference to one of them. By

the definition of partial satisfiability, the formulas with only disjunctions tends to have a higher

preference priority value when compared to formulas with only conjunctions. For instance, if a

belief base K1 has the formula (a∨b) and a belief base K2 has the formula (¬a∧¬b), the result

of the merging tends to give more preference to K1. This is not a bad result, since we intended

from the beginning to give more priority to some agents.

2.5 Conclusions

This chapter presented a broad vision of merging operators included in the propositi-

onal belief merging literature. We considered the aspects of utilitarianism and egalitarianism

contained in these operators. Besides, we showed an idea of priority among agents was also

approached with an alternative definition for propositional belief merging.

As its central idea, the propositional belief merging owns a method to measure

the utility of the agents, denoted by a distance measure, and an aggregation function between

distances, which can have a more utilitarian or egalitarian flavour. In order to characterize how

good are the distance measures and aggregation operators, series of logical postulates were

defined to belief merging operators. Table 18 illustrate the main results showed in this chapter.

A merging operator is said to be an IC merging operator when it satisfies the logical

postulates (IC0) to (IC8). If it satisfies additionally (Maj) or (Arb), it is called a majority IC

merging operator or arbitration IC merging operator, respectively. Some example of majority

IC merging operators are sum and leximin merging operators, whilst for arbitration IC merging

operators, we have only leximax merging operator. Although satisfying (Arb), max and min do

not satisfy all of the logical postulates, since they violate (IC6). In this case, they are called IC

quasi-merging operators.

We showed some of the first results of other egalitarian merging operators, from

(EVERAERE et al., 2014). Three operators were med (median), leximed (generalized median)

and csum (cumulative sum). In general, they are not IC merging operators, since they do not

satisfy (IC5) and (IC6).
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Lastly, we described a different formalization of the model-based belief merging,

where the distance measure is dropped and a partial satisfiability function is applied. Unfortu-

nately, this approach does not result in an IC merging operator: this time (IC3) and (IC4) are

not satisfied. These logical postulates are related to the sensibility of the syntax of the belief

bases and the fairness of the merging. In fact, we can say the partial satisfiability is influenced

by changes in the syntax of the belief bases, even if these changes produce an equivalent belief

base. Furthermore, this syntax sensibility is also attached to a certain priority among agents.

It happens that some agents have more priority than others, and the result of the merging may

benefit them. In some situations, it can not be expected to give more advantage to some agents.

(IC0) (IC1) (IC2) (IC3) (IC4) (IC5) (IC6) (IC7) (IC8) (Maj) (Arb)

∆
d,sum
µ X X X X X X X X X X

∆
d,max
µ X X X X X X X X X

∆
d,leximax
µ X X X X X X X X X X

∆
d,min
µ X X X X X X X X

∆
d,leximin
µ X X X X X X X X X X

∆
d,medk

µ X X X X X X k ≥ 0.5
∆

d,leximedk

µ X X X X X X X k ≥ 0.5
∆

d,csum
µ X X X X X X X X

∆
ps,sum
µ X X X X X X X X

∆
ps,min
µ X X X X X X X

∆
pr
µ X X X X X X X X

Table 18 – Summary of Logical Properties (3).
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3 PROPOSITIONAL BELIEF MERGING WITH REFINEMENTS OF MAXIMUM

OPERATOR

3.1 Contributions of this Chapter

The main contributions of this chapter are listed below:

• We analyze in this chapter the impact of introducing discrimax and fuzzy T-conorm

operators in belief merging. We prove discrimax and T-conorm merging operators can be

included as a subtype of egalitarian operators based on equity;

• We also study how the different T-conorm operators behave with respect to their logical

properties and how this affects their rationality;

• We introduce LexiT-Conorms as merging operators to avoid the problems brought by

T-conorms and prove some results related to them;

• Some results of this chapter have been published in EUMAS 2016, with the title “Propo-

sitional Belief Merging with T-conorms”, authors: Henrique Viana and João Alcântara

(VIANA; ALCÂNTARA, 2016a); and in NAFIPS 2018, with the title “Aggregation with

T-Norms and LexiT-Orderings and Their Connections with the Leximin Principle”, authors:

Henrique Viana and João Alcântara (VIANA; ALCÂNTARA, 2018).

3.2 Refinements of Maximum Operator

Utilitarianism sustains the idea that the best choice for a group is that which maximi-

zes the utility of the group. Utility can be measured in several ways, but is usually related to the

well-being of the agents. In the framework of model-based belief merging work, it represents the

distance measure between outcomes. The sum merging operator (KONIECZNY; PINO-PÉREZ,

1999) is an example of utilitarian operator. Egalitarianism, on the other hand, is concerned with

reaching a kind of equality for all agents. The max (LIN; MENDELZON, 1996) and leximax

(KONIECZNY; PINO-PÉREZ, 1999) merging operators are examples of egalitarian operators.

Intuitively, they promote equality of the group by favoring the agents with the worst well-being.

This chapter aims at exploring further these egalitarian operators. The first idea is to

relax the max operator and employ fuzzy connectives. As it is known, T-conorms (ZADEH, 1983;

KLEMENT et al., 2000) are functions stronger than the max operator, which can be commonly

used to capture the worst cases in some group decision problems. A motivation for this chapter is

to offer a new view about different merging operators with good logical properties and rationality.
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Then we will prove that extensions of max operator can still preserve some logical properties and

additionally earn new specific properties. Besides the original logical properties (KONIECZNY;

PINO-PÉREZ, 2011), we will consider three other egalitarian conditions: the Hammond Equity

Condition (EVERAERE et al., 2014), Pigou-Dalton Principle (DALTON, 1920; EVERAERE et

al., 2014) and the Harm Principle (ALCANTUD, 2011; CAPPELEN; TUNGODDEN, 2006;

LOMBARDI et al., 2013). We will prove that in some cases, restricted versions of these axioms

may be satisfied by some T-conorms. Besides, we will make a connection between T-conorm

operators and the leximax operator.

We also formalize a discrimax merging operator, an extension of the max operator.

The idea for refining max using an operator between max and leximax is that even if we consider

the worst case of the group and their resulting tiebreakers, a question that remains open is that for

a chosen outcome, in what conditions the rest of the group is really better in an overall manner.

For instance, leximax operator is not influenced by individual variations of the agents. Consider

two vectors of distance measures representing outcomes, a = (2,2,0) and b = (2,2,1). For max

and leximax operators, a is better than b. We can say that the agent 3 (the third position of the

vector) is in a better condition in the outcome a than in b, while the other two agents stand in the

same situation for both outcomes. Consider now the vectors c = (0,2,2) and d = (2,1,2). We

can check that the first element is better in c than d, but the second element is worse in c than

d (third element remains unchanged in both outcomes). When considering max and leximax

operators, c is reckoned as better than d, but these operators are not always sensitive to individual

changes. The question that comes up is in what conditions we can say that outcome c is better

than d.

The chapter is structured as follows. We will start our contributions with the discri-

max extension in Section 3.3. In Section 3.4, we will present some basic notions of T-conorms.

In Subsection 3.4.1, we will find the main contributions of this chapter, where we will introduce

different T-conorm operators and will explore their respective logical properties. In Subsection

3.4.2, we will investigate the connection between T-conorm operators and the egalitarian rea-

soning of the Leximax Principle. Finally, in Section 3.5 we will present our conclusions. In

the sequel, inspired by (FORTEMPS; PIRLOT, 2004) we will consider the discrimax operator

and its refinements as a form of justifying other tiebreaker conditions than those found in the

definitions of max and leximax operators.
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3.3 Belief Merging with Discrimax

Discrimax ordering is the dual notion of Discrimin ordering introduced in (DUBOIS

et al., 1995), and it will be considered here to fit the framework of propositional belief merging

based on distance measures. Formallly, we can define a Discrimax ordering as

Definition 3.1 (Discrimax Ordering) (DUBOIS et al., 1995) Let a = (a1, . . . ,an) and b =

(b1, . . . ,bn) be vectors of values. The difference set, i.e., the set of points of view D(a,b) on which

the evaluations of alternatives a and b differ is defined as D(a,b) = {i ∈ {1, . . . ,n} | ai 6= bi}.

The Discrimax ordering is defined as follows: a≤disc b⇔ a = b or max
i∈D(a,b)

ai ≤ max
i∈D(a,b)

bi.

Discrimax is based on the elimination of identical singleton elements at the same

position (difference set) and the comparison of the maximum with the remaining elements. It

refines max ordering and when the difference set is empty, it is equivalent to Maximum.

We will refer to each position of a vector as the value of an agent. Discrimax differs

from Maximum since it does not take into account the cases where the agents remain with the

same distance value. For instance, a = (0,2,1) is worse than b = (0,2,0) when Discrimax is

considered (for maximum, they are equivalent). We can see that the first and second positions of

vectors a and b are the same. Discrimax ignores these cases and consider only the remaining

position.

The difference between Discrimax and Leximax is that Leximax can be seen as an

application of Discrimax, but employing (decreasing) ordered vectors. Let again a = (0,2,1)

and b = (0,2,0), we call ā = (2,1,0) and b̄ = (2,0,0) the decreasing ordered vectors of a and

b, respectively. We can use the Discrimax operator and state that ā is worse than b̄. Note

that Discrimax orderings are total orders, but not necessarily transitive. For example, let

a = (1,1,0.3), b = (0.6,0.3,1) and c = (0.3,1,0.3). We have a≤disc b, b≤disc c, but a 6≤disc c.

The reason for this is because ≈disc is not necessarily transitive.

Proposition 3.1 (FORTEMPS; PIRLOT, 2004) a≤lex b⇒ a≤disc b⇒ a≤max b.

This proposition states that every Leximax ordering is also a Discrimax ordering,

and every Discrimax ordering is also a Maximum ordering. That is, Leximax is a refinement of

Discrimax and Discrimax is a refinement of Maximum.
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Definition 3.2 (discrimax Operator) Let E = {K1, . . . , Kn} be a belief set, d a distance me-

asure and ω an outcome. We have the following order: ωi ≤d,discrimax
E ω j iff (d(ωi,K1), . . . ,

d(ωi,Kn))≤disc (d(ω j,K1), . . . , d(ω j,Kn)). The operator ∆
d,discrimax
µ is defined by ∆

d,discrimax
µ (E)

= min(mod(µ),≤d,discrimax
E ).

We have to pay attention now for a little problem of discrimax operator. Because of

the lack of transitivity, we need to check its corresponding ordering for each outcome.

Example 3.1 Regarding Example 2.2, the Discrimax orderings w.r.t. Hamming distance and E

are ω6≤disc {ω1,ω2, ω3,ω4,ω5,ω7,ω8}, {ω4,ω7}≤disc {ω1,ω2,ω3,ω5,ω8}, ω2≤disc {ω1,ω3,

ω5,ω8}, ω3 ≤disc {ω1,ω5,ω8}, ω8 ≤disc {ω1, ω3,ω5} and ω5 ≤disc {ω1,ω3}. We obtain

∆
d,discrimax
µ = ω6 when µ =>.

Let us turn now to the analysis of logical postulates and conditions of the discrimax

operator. Besides the basic logical postulates, we will check some additional properties to make

a result for the discrimax operator: they are the Strong Pareto and Anonymity.

Definition 3.3 (Strong Pareto) (TUNGODDEN, 2000) Let E = {K1, . . . ,Kn} be a belief set

and d a distance measure. For all ω,ω ′ ∈Ω, if ∃i ∈ {1, . . . ,n} d(ω,Ki)< d(ω ′,Ki) and ∀ j 6= i,

d(ω,K j)≤ d(ω ′,K j), then ω <E ω ′.

Strong Pareto might be interpreted as the principle of personal good, where the utility

values refers to the good of the agents. An outcome where all utility values are higher or equal

than other outcome (with at least one utility value higher), it might be considered more just. (SP)

is slightly different from (IC6). (SP) compares directly each distance value in the belief bases

from E and (IC6) compares outcomes from belief sets.

Definition 3.4 (Anonymity) (TUNGODDEN, 2000) Let E = {K1, . . . ,Kn} be a belief set and

ld,E
ω = (dω

1 , . . . ,d
ω
n ) the list of distances between the outcome ω and the n belief bases in E. For

all ω,ω ′ ∈Ω, if ld,E
ω is a permutation of ld,E

ω ′ , then ω ≈E ω ′.

Anonymity is a condition of impartiality, which states that the identity of the agents

should not matter in a justice relation. Thus, we have the following result:

Theorem 3.1 ∆
d,discrimax
µ satisfies (IC0), (IC2)-(IC5), (IC7)-(IC8), (Arb), (HE), (SP) and (A),

but it violates (IC1), (IC6) and (Maj).



65

Proof. See Appendix B.

The discrimax operator shows a weaker behavior of leximax operator when consi-

dering the IC logical postulates above. It does not satisfy (IC1) since it lacks transitivity and

(IC6) since it can behave as the max operator. When discrimax is different from max, (IC6) is

satisfied. In addition, we can relate discrimax with the (HE), (SP) and (A) conditions:

Definition 3.5 (Discrimax Principle) Let d be a distance measure and E = {K1, . . . , Kn} a

belief set. An order relation ≤d,op
E satisfies Discrimax Principle (DM) when ω ≤d,op

E ω ′ iff

(d(ω,K1), . . . ,d(ω,Kn)) = (d(ω ′,K1), . . . , d(ω ′,Kn)) or ∃ j ∈ {1, . . . ,n} : d(ω,K j)< d(ω ′,K j)

and ∀i{1, . . . ,n} [d(ω,Ki)≤ max(d(ω ′,Ki), d(ω ′,K j))].

It is easy to see that discrimax operator satisfies (DM) (this principle is the same

stated in (FORTEMPS; PIRLOT, 2004) which is based on the relation named “no reason to

regret”, and it was shown to be equivalent to the discrimin relation). Now, we have the following

result about the Discrimax Principle.

Theorem 3.2 If an order relation satisfies (DM), then it satisfies (HE), (SP) and (A).

Proof: See Appendix B.

(DM) is not an “if and only if” condition. That is, (HE), (SP) and (A) does not imply

(DM) because as in ≤disc, the relation defined in (DM) is not transitive.

3.4 T-conorms

As we have already mentioned, discrimax extends max operator. Now we will show

a quite distinct path to extend max operator by resorting to T-conorms. With regard to the max

operation, the merging compares only the highest value of each outcome to take a decision.

The max operator can also be viewed as the disjunction logic operator, i.e., (a∨b) = max{a,b},

corresponding to a T-conorm in Fuzzy Logic (ZADEH et al., 1996).

Definition 3.6 (T-conorm) (KLEMENT et al., 2000) A binary function⊕ : [0,1]×[0,1]→ [0,1]

is a T-conorm if it satisfies the following conditions:

1. ⊕{a,b}=⊕{b,a} (Commutativity);

2. ⊕{a,⊕{b,c}}=⊕{⊕{a,b},c} (Associativity);

3. a≤ c and b≤ d⇒⊕{a,b} ≤ ⊕{c,d} (Monotonicity);
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4. ⊕{a,0}= a (Neutral Element).

Every T-conorm has an absorbent element, also called annihilator, which is the

natural number 1, i.e., ⊕{a,1}= 1 (in this case, 1 can also be associated as an implicit veto). A

T-conorm is called strict if it is continuous and strictly monotone (i.e., ∀x,y,z⊕{x,y}<⊕{x,z}

whenever x < 1 and y < z). Continuity, which is often required from fuzzy operators, expresses

the idea that, roughly speaking, very small changes in truth values of elements should not

macroscopically affect the truth value of their fuzzy operators. A T-conorm is called nilpotent if

it is continuous and if each a ∈]0,1[ is a nilpotent element. An element a ∈]0,1[ is a nilpotent

element of ⊕ if there exists some n ∈N such that ⊕{a, . . . ,a}︸ ︷︷ ︸
n

= 1. Besides, for all T-conorm ⊕,

⊕{a,b} ≥ max{a,b} (DETYNIECKI et al., 2002; KLEMENT et al., 2002). Recall that for any

a,b ∈ R, ]a,b[= {x ∈ R : a < x < b}.

Definition 3.7 (Basic T-conorms) (KLEMENT et al., 2000) The following are the four basic

T-conorms:

• Maximum T-conorm: ⊕M{x,y}= max(x,y).

• Probabilistic sum T-conorm: ⊕P{x,y}= x+ y− x · y.

• Łukasiewicz T-conorm: ⊕L{x,y}= min(x+ y,1).

• Drastic sum T-conorm: ⊕D{x,y}=

 1, if (x,y) ∈ ]0,1]×]0,1];

max(x,y), otherwise.

These four basic T-conorms are remarkable for several reasons. The drastic sum ⊕D

and the maximum ⊕M are the largest and the smallest T-conorms, respectively (with respect

to the pointwise order). The maximum ⊕M is the only T-conorm where each x ∈ [0,1] is an

idempotent element (recall x ∈ [0,1] is called an idempotent element of ⊕ if ⊕{x,x} = x).

The probabilistic sum ⊕P and the Łukasiewicz T-conorm ⊕L are examples of two important

subclasses of T-conorms, namely, the classes of strict and nilpotent T-conorms, respectively

(more details in (KLEMENT; MESIAR, 2005)).

Definition 3.8 (Strength Between T-conorms) (KLEMENT; MESIAR, 2005) Consider two T-

conorms ⊕1 and ⊕2. If we have ⊕1{x,y} ≤ ⊕2{x,y} for all x,y ∈ [0,1], then we say that ⊕1 is

weaker than ⊕2 or, equivalently, that ⊕2 is stronger than ⊕1, and we write in this case ⊕1 ≤⊕2.

We shall write ⊕1 < ⊕2 if ⊕1 ≤ ⊕2 and ⊕1 6= ⊕2. The drastic sum ⊕D is the

strongest, and the Maximum ⊕M is the weakest T-conorm, i.e., for each T-conorm ⊕ we
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have ⊕M ≤ ⊕ ≤ ⊕D. Between the four basic T-conorms we have these strict inequalities:

⊕M < ⊕P < ⊕L < ⊕D. Many families of T-conorms can be defined by an explicit formula

depending on a parameter λ . We now give a quick overview of them.

Definition 3.9 (Schweizer-Sklar T-conorms) (SCHWEIZER; SKLAR, 1961) The family of

Schweizer-Sklar T-conorms (⊕SS
λ
)λ∈[−∞,∞] is given by

⊕SS
λ
{x,y}=



⊕M{x,y}, if λ =−∞;

⊕P{x,y}, if λ = 0;

⊕D{x,y}, if λ = ∞;

1− (max(((1− x)λ +(1− y)λ −1),0))
1
λ , otherwise.

This family of T-conorms is remarkable as it contains all four basic T-conorms.

When λ = 1, ⊕SS
1 =⊕L. For the rest of the parameters we have the following strict inequalities:

⊕SS
∞ > .. . >⊕SS

1 >⊕SS
0 >⊕SS

−∞.

Definition 3.10 (Frank T-conorms) (BUTNARIU; KLEMENT, 1993) The family of Frank T-

conorms (⊕F
λ
)λ∈[0,∞] is given by

⊕F
λ
{x,y}=



⊕M{x,y}, if λ = 0;

⊕P{x,y}, if λ = 1;

⊕L{x,y}, if λ = ∞;

1− logλ

(
1+ (λ 1−x−1)(λ 1−y−1)

λ−1

)
, otherwise.

The Frank family comprehends a series of T-conorms between the Łukasiewicz and

the probabilistic sum T-conorms (for λ ∈ [2,∞[). The Frank family has the following strict

inequalities: ⊕F
∞ > .. . >⊕F

2 >⊕F
1 >⊕F

0 .

Definition 3.11 (Yager T-conorms) (YAGER, 1980) The family of Yager T-conorms (⊕Y
λ
)λ∈[0,∞]

is given by

⊕Y
λ
{x,y}=


⊕D{x,y}, if λ = 0;

⊕M{x,y}, if λ = ∞;

min((xλ + yλ )
1
λ ,1), otherwise.

It is one of the most popular families for modeling the union of fuzzy sets. The

idea is to use the parameter λ as a reciprocal measure for the strength of the logical operator
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“or”. In this context, λ = 0 expresses the least demanding (i.e., largest) “or”, and λ = ∞ the

most demanding (i.e., smallest) “or”. The Yager T-conorms comprehend a series of T-conorms

between the drastic and the maximum T-conorms. When λ = 1, ⊕Y
1 =⊕L. The Yager family

has the following strict inequalities: ⊕Y
0 >⊕Y

1 >⊕Y
2 > .. . >⊕Y

∞.

Definition 3.12 (Sugeno-Weber T-conorms) (WEBER, 1983) The family of Sugeno-Weber T-

conorms (⊕SW
λ

)λ∈[−1,∞] is given by

⊕SW
λ
{x,y}=


⊕P{x,y}, if λ =−1;

⊕D{x,y}, if λ = ∞;

min(x+ y+λxy,1), otherwise.

Note that (⊕SW
λ

)λ>−1 are increasing functions of the parameter λ . The Sugeno-

Weber family has the following strict inequalities: ⊕SW
−1 <⊕SW

0 <⊕SW
1 < .. . <⊕SW

∞ .

3.4.1 Belief Merging with T-conorms

In this section we will present the main contributions of this chapter by analyzing

the rationality of T-conorms merging operators through their logical postulates. We will also

consider some additional logical postulates during this process.

Definition 3.13 (⊕ Operator) Let E = {K1, . . . ,Kn} be a belief set, ⊕ a T-conorm, d a distance

measure and ω an outcome. Let M = max({d(ω,ω ′) | ω,ω ′ ∈ Ω}). We define the distance

between an outcome and a belief set based on ⊕ as d⊕(ω,E) =
⊕
K∈E

{
d(ω,K)

M

}
. Then we have

the following pre-order: ωi ≤d,⊕
E ω j iff d⊕(ωi,E)≤ d⊕(ω j,E). The operator ∆

d,⊕
µ is defined by

∆
d,⊕
µ (E) = min(mod(µ),≤d,⊕

E ).

The definition is very close to the merging operators defined previously. The diffe-

rence comes from the fact that we need to adapt the distance measures to the interval [0,1].

Example 3.2 The results for the probabilistic sum T-conorm operator w.r.t. Hamming distance

for Example 2.2 are in the last column of Table 19. The resulting pre-order ≤dH ,⊕P
E is ω6 ≤dH ,⊕P

E

ω2 ≤dH ,⊕P
E {ω4,ω7} ≤dH ,⊕P

E ω8 ≤dH ,⊕P
E {ω3,ω5} ≤dH ,⊕P

E ω1.

Observe that for any T-conorm the presence of the annihilator 1 on the evaluation of

ω1 works as an implicit veto for that outcome; if an outcome has the highest distance value for
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Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH max(ω,E) LdH ,E
ω dH⊕P(ω,E)

ω1 = ¬s¬d¬o 1 1 3 3 (3,1,1) 1
ω2 = ¬s¬do 0 0 2 2 (2,0,0) 0.666
ω3 = ¬sd¬o 2 0 2 2 (2,2,0) 0.8884
ω4 = ¬sdo 1 1 1 1 (1,1,1) 0.7032
ω5 = s¬d¬o 0 2 2 2 (2,2,0) 0.8884
ω6 = s¬do 0 1 1 1 (1, 1, 0) 0.5551
ω7 = sd¬o 1 1 1 1 (1,1,1) 0.7032
ω8 = sdo 1 2 0 2 (2,1,0) 0.7772

Table 19 – The Hamming distances of K1,K2, K3 and E.

an agent, that outcome has to be rejected by the group. It brings a principle of justice where the

worst scenarios inside a group need to be avoided. In other words, the use of T-conorms as a

merging operator presupposes that there exists a consensus among the agents stating that if a

choice is the worst for an agent, then this choice has to be the worst for the group. Now, we will

show what logical properties the merging operators with T-conorms satisfy in the general case:

Theorem 3.3 Let ⊕ be a T-conorm. ∆
d,⊕
µ satisfies (IC0)-(IC5), (IC7) and (IC8). ∆

d,⊕
µ does not

satisfy (Maj). The postulates (IC6) and (Arb) are not satisfied in general.

Proof. See Appendix B.

This result is very similar to that for the max and discrimax operator (Theorem

2.2). The difference comes from the fact (Arb) is not satisfied in general for all T-conorms.

The first important concern when dealing with T-conorms is the presence of the annihilator 1.

The first logical postulate that we need to revisit is (IC6). This postulate corresponds to the

following syncretic assignment: 6. if ω <E1 ω ′ and ω ≤E2 ω ′, then ω <E1tE2 ω ′. It states if an

outcome ω is strictly more preferable than an outcome ω ′ for a belief set E1 and if ω is at least as

preferable as ω ′ for a belief set E2, then if one joins the two belief sets, we have ω will be strictly

more preferable than ω ′. Note that the presence of an annihilator is sufficient to falsify this

condition. Consider that ω is equivalently preferable to ω ′ for a belief set E2 (ω ≈E2 ω ′) and that

d⊕(ω,E2) = d⊕(ω ′,E2) = 1. For any E1, we will have d⊕(ω,E1tE2) = d⊕(ω ′,E1tE2) = 1,

that is, ω ≈E1tE2 ω ′, which falsifies the condition 6 (and (IC6)). To overcome this issue, we will

consider a weaker version of the logical postulate (IC6) with the presence of the annihilator 1:

(IC6-1) Let dop(ωi,E2) 6= 1, for i = 1,2. If ω1 <E1 ω2 and ω1 ≤E2 ω2, then ω1 <E1tE2 ω2.

This weaker version of (IC6) considers the principle when the annihilator 1 is safe to

be used without falsifying it. The second important condition we will reconsider comes from the

social choice theory, and it is related to egalitarianism between agents. It was proposed by Peter
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J. Hammond (HAMMOND, 1976) and it is known as the Hammond Equity condition (SEN,

1982): If agent i is worse off than agent j both in ω and in ω ′, and if i is better off himself in ω

than in ω ′, while j is better off in ω ′ than in ω , and if furthermore all others are just as well off

in ω as in ω ′, then ω ′ is socially better than ω .

Intuitively, Hammond Equity (HE) (see Definition 2.21) is an egalitarian condition

between two agents stating that an outcome is more preferred than another if the inequalities

between agents is lower. For instance, according to (HE), the tuple ω =
(1

5 ,1,
2
5

)
representing

the satisfaction of three agents, is less preferred than the tuple ω ′ =
(2

5 ,
3
5 ,

2
5

)
. The reason is

because the inequality between 1
5 and 1 is greater than the inequality between 2

5 and 3
5 . We can

say that in this case ω ′ is more stable than ω .

The next egalitarian operator reconsidered from the social choice literature is the

Pigou-Dalton condition (PD) (DALTON, 1920; EVERAERE et al., 2014). Pigou-Dalton is a

special case of Hammond Equity when the difference between outcomes has the same value.

This condition cannot be applied in the previous example of ω =
(1

5 ,1,
2
5

)
and ω ′ =

(2
5 ,

3
5 ,

2
5

)
,

since 2
5−

1
5 6= 1− 3

5 . If we consider an outcome ω ′′ =
(2

5 ,
4
5 ,

2
5

)
, we can compare ω with ω ′′, and

according with (PD) the outcome ω ′′ should be preferred. Intuitively, (PD) (see Definition 2.23)

is an egalitarian principle which favors a better distribution of satisfaction between outcomes

when the sum of the total amount is equal for both outcomes. Weaker versions of Hammond

Equity and Pigou-Dalton conditions excluding the annihilator 1 are defined respectively as

(HE-1) If ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki) < d(ω ′,Ki) < d(ω ′,K j) < d(ω,K j)

and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1, then dop(ω
′,E) < dop(ω,E); and (PD-1) if ∃i, j ∈

{1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j), d(ω ′,Ki)−d(ω,Ki)= d(ω,K j)−

d(ω ′,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1, then dop(ω
′,E)< dop(ω,E).

The justification for this restriction is the same applied to (IC6): if for any l 6= i, j,

we have sd(ω,Kl) = sd(ω
′,Kl) = 1, then d⊕(ω,E) = d⊕(ω ′,E) = 1 for any T-conorm ⊕, and

consequently falsifying both postulates. The last egalitarian property we want to consider comes

from liberal egalitarianism (ALCANTUD, 2011; CAPPELEN; TUNGODDEN, 2006; LOM-

BARDI et al., 2013); a theory of justice which combines the values of equality, personal freedom

and personal responsibility. It is called Harm Principle (or Principle of Non-Interference).

Definition 3.14 (Harm Principle Condition) (ALCANTUD, 2011) (HP) Let d be a distance

measure, E = {K1, . . . ,Kn} be a belief set and ω1 <
d,op
E ω2, for any merging operator op. An

operator op satisfies the Harm Principle Condition iff for all ω1,ω2,ω
′
1,ω

′
2 ∈Ω, consider ω ′1,ω

′
2
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such that ∃i ∈ {1, . . . ,n}, d(ω1,Ki)< d(ω ′1,Ki), d(ω2,Ki)< d(ω ′2,Ki) and ∀ j 6= i d(ω1,K j) =

d(ω ′1,K j), d(ω2,K j) = d(ω ′2,K j). If d(ω ′1,Ki)< d(ω ′2,Ki), then ω ′1 <
d,op
E ω ′2.

In distributive justice theory, this condition embodies the idea that “an individual has

the right to prevent society from acting against him in all circumstances of change in his welfare,

provided that the welfare of no other individual is affected”. In the distance-based merging

framework, it can be seen as considering that an outcome ω1 is more preferred than ω2, and

if occasionally an agent i has an increase of the distance value in ω1 and ω2, resulting in ω ′1

and ω ′2 respectively, ω ′1 will be preferred to ω ′2 if the distance measure in ω ′1 is still lower than

the distance in ω ′2. In other words, a single agent does not have the power of interference in

the choice of the group when occurring an increase of distance measure (we can also see the

non-satisfaction of the condition as a kind of veto power of agents). The equality emerges from

the fact that no specific agent has the power to interfere in the decision of the group. Finally, we

can continue with the analysis of logical postulates for each specific T-conorm.

Theorem 3.4 ∆
d,⊕M
µ satisfies (Arb) and (HP), but it does not satisfy (IC6-1), (HE-1), (PD-1) in

the general case. ∆
d,⊕P
µ satisfies (IC6-1) and (PD-1), but it does not satisfy (Arb), (HE-1) and

(HP) in the general case.

Proof. See Appendix B.

One interesting point to highlight is any strict T-conorm satisfies (IC6-1) (e.g., ⊕P is

a strict T-conorm).

Theorem 3.5 Let ⊕ be a strict T-conorm, then ∆
d,⊕
µ satisfies (IC6-1).

Proof. See Appendix B.

Below, we have results for the other basic T-conorms operators.

Proposition 3.2 ∆
d,⊕L
µ and ∆

d,⊕D
µ do not satisfy (IC6-1), (Arb), (HE-1), (PD-1) and (HP).

Proof. See Appendix B.

The drastic sum T-conorm is not continuous, which implies that little changes in the

variables can change drastically the result and this reflects the loss of some important logical

properties. The Łukasiewicz T-conorm is a nilpotent T-conorm; in this case, the presence of a

nilpotent element reflects the loss of some properties.
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Proposition 3.3 Let ⊕ be a nilpotent T-conorm, then ∆
d,⊕
µ does not satisfy (IC6-1), (HE-1),

(PD-1) and (HP) in the general case.

Proof. See Appendix B.

The nilpotent element works as a sort of annihilator and then inherits all the problems

discussed above. In the sequel, we will investigate deeper the behavior of T-conorms through

some parameterized T-conorms to see in what conditions we can achieve egalitarian properties

for the propositional belief merging. First, we will consider the Schweizer-Sklar T-conorms.

Theorem 3.6 ∆
d,⊕SS

λ
µ satisfies (IC6-1) and (PD-1) when λ ∈ ]−∞,0]. Let n≥ 3 be the number

of different propositional variables in the belief set E. ∆
d,⊕SS

λ
µ satisfies (Arb), (HE-1) and (HP)

when −∞ < λ ≤−
⌊2n

3

⌋
.

Proof. See Appendix B.

Regarding Theorem 3.6, the interval [1,∞] comprises strictly increasing T-conorms

from the Łukasiewicz T-conorm (⊕SS
1 ) to the drastic sum T-conorm (⊕SS

∞ ). It is clear that all

these conditions are falsified in this interval (since all T-conorms in this interval are weaker than

Łukasiewicz T-conorm). Schweizer-Sklar T-conorm is strict for the interval ]−∞,0], therefore it

satisfies (IC6-1) in this case. Considering this interval yet, we have that any Schweizer-Sklar

T-conorm satisfies (PD-1); and additionally satisfies (Arb) and (HE-1) when −∞ < λ ≤−
⌊2n

3

⌋
,

where n is the number of propositional variables in the belief set. Intuitively, as we decrease

the parameter λ , we strengthen these conditions of egalitarian properties in the Schweizer-Sklar

T-conorm.

Note that when the parameterized T-conorm gets closer to maximum T-conorm, it

has stronger egalitarian properties (e.g., Harm Principle). When it gets closer to drastic sum

and Łukasiewicz T-conorms, it tends to lose its logical properties. Now consider the Frank

T-conorms:

Theorem 3.7 ∆
d,⊕F

λ
µ satisfies (IC6-1) and (PD-1) for λ ∈ ]0,∞[. ∆

d,⊕F
λ

µ does not satisfy (Arb),

(HE-1) and (HP) in the general case.

Proof. See Appendix B.

We observed previously that T-conorms converging to the maximum T-conorm tend

to satisfy properties as (Arb), (HE-1) and (PD-1), while T-conorms converging to probabilistic

sum T-conorm satisfy only (PD-1). When the Frank T-conorm is considered, the convergence to
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Łukasiewicz T-conorm (⊕F
∞ =⊕L) from probabilistic sum (⊕F

1 =⊕P) still implies the satisfaction

of (PD-1). Besides, considering this convergence of Frank T-conorm to the maximum T-conorm,

we can have an additional result for the interval [0,1] (from ⊕F
0 =⊕M to ⊕F

1 =⊕P).

Theorem 3.8 Let n ≥ 3 be the number of different propositional variables in the belief set E.

∆
d,⊕F

λ
µ satisfies (Arb), (HE-1) and (HP) when 0 < λ ≤ 10−n.

Proof. See Appendix B.

The limit of 0 < λ ≤ 10−n is rather loose, but it is a statement that there is an interval

between maximum and probabilistic sum in the Frank T-conorm where (Arb), (HE-1) and (HP)

are satisfied. In the sequel, we will see the Yager family of T-conorms.

Theorem 3.9 Let n ≥ 3 be the number of different propositional variables in the belief set E.

For λ ∈ [2,∞[, ∆
d,⊕Y

λ
µ satisfies (Arb) when λ ≥

⌊2n
3

⌋
.

Proof. See Appendix B.

Yager T-conorms comprise from drastic sum (⊕Y
0 ), passing through Łukasiewicz

T-conorm (⊕Y
1 ), to maximum T-conorm (⊕Y

∞). Unlike the previous parameterized T-conorms,

Yager T-conorms are nilpotent for λ ∈]0,∞[, which does not result in satisfying (IC6-1), (HE-1),

(PD-1) and (HP) in the general case, but (Arb) can be still satisfied.

For the last, we analyze Sugeno-Weber family of T-conorms.

Theorem 3.10 For λ ∈]− 1,∞], ∆
d,⊕SW

λ
µ does not satisfy (IC6-1), (HE-1), (PD-1), (HP) and

(Arb) in the general case.

Proof. See Appendix B.

Sugeno-Weber T-conorms are another class of nilpotent T-conorms. They range

from drastic sum (⊕SW
∞ ) to Łukasiewicz (⊕SW

0 ) and probabilistic sum T-conorms (⊕SW
−1 ). As it is

nilpotent, the conditions (IC6-1), (HE-1), (PD-1) and (HP) do not hold in the general case for

any λ . The absence of convergence for maximum implies the falsification of (Arb).

3.4.2 T-conorms and the Leximax Principle

In this section, we will use the results of (TUNGODDEN, 2000) to characterize an

egalitarian property of some parameterized T-conorms. The Leximax principle will be the key to

this analysis.
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Definition 3.15 (Leximax Principle) (TUNGODDEN, 2000) Let E = {K1, . . . ,Kn} be a belief

set. For each outcome ω , we build the list (dω
1 , . . . ,d

ω
n ) of distances between this outcome and

the n belief bases in E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list obtained from (dω
1 , . . . ,d

ω
n ) by

sorting it in descending order. (LM) For all ω,ω ′ ∈Ω, (1) if there exists a position k ≤ n such

that dω
k < dω ′

k ; and (2) for every j < k, dω ′
j = dω

j , then ω <E ω ′ (ω is more preferred than ω ′).

Otherwise, ω ≈E ω ′.

Basically, it is the same idea behind leximax operator (see Definition 2.8). The first

important characterization we need to consider is

Theorem 3.11 (TUNGODDEN, 2000) A Syncretic Assignment ≤E satisfies (HE), (SP) and (A)

if and only if it satisfies (LM).

This theorem can be used in belief merging to assert that any merging operator

satisfying (HE) and (SP) and (A) is equivalent to the leximax operator. We turn now to the link

between parameterized T-conorm merging operators and the Leximax principle. It is known that

for every T-conorm ⊕, in which ⊕≥⊕M, and despite max operator does not satisfy properties

as (HE) and (PD), some T-conorms can satisfy weakened versions of them.

This analysis shows that some T-conorms present a similar (weaker) behavior to the

leximax operator. What we want to achieve is that those T-conorms can also follow some weaker

versions of the leximax principle. We introduce a restriction to the Leximax principle, named

Leximax principle free from annihilator 1.

Definition 3.16 (Leximax Free From 1) Let E = {K1, . . . ,Kn} be a belief set. For each out-

come ω we build the list (dω
1 , . . . ,d

ω
n ) of distances between this outcome and the n belief bases in

E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list obtained from (dω
1 , . . . ,d

ω
n ) by sorting it in descending

order. (LM-1) For all ω,ω ′ ∈ Ω, (1) if there exists a position k ≤ n such that dω
k < dω ′

k ; and

(2) for every j < k, dω ′
j = dω

j 6= 1, then ω <E ω ′ (ω is more preferred than ω ′). Otherwise,

ω ≈E ω ′.

It is possible then to make a restricted characterization of the Leximax principle for

a belief merging operator:

Definition 3.17 (Strong Pareto Free From 1) Let E = {K1, . . . ,Kn} be a belief set and d be a

distance measure. (SP-1) For all ω,ω ′ ∈ Ω, if ∃i ∈ {1, . . . ,n} such that d(ω,Ki) < d(ω ′,Ki)

and ∀ j 6= i, d(ω,K j)≤ d(ω ′,K j) and d(ω,K j),d(ω ′,K j) 6= 1, then ω <E ω ′.
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Corollary 3.1 A belief merging operator ∆µ satisfies (HE-1), (SP-1) and (A) if and only if it

satisfies (LM-1).

It comes directly from Theorem 3.11. This characterization restricts the Leximax

principle when the annihilator is excluded from the possible distance values of the agents. As a

consequence, we have

Corollary 3.2 Let n≥ 3 be the number of propositional variables in the belief set E. ∆
d,⊕SS

λ
µ and

∆
d,⊕F

λ
µ satisfy (LM-1) when λ ≤−

⌊2n
3

⌋
and 0 < λ ≤ 10−n, respectively.

This result comes from Corollary 3.1 and Theorems 3.6 and 3.7. These operators

satisfy (HE-1), (SP-1) and (A) in those specific intervals. In other words, when the annihilator

is not present in the merging, we can say these T-conorms have a behavior similar to the leximax

operator. The last consideration of this subsection is about the Harm Principle. Although

Hammond Equity and the Harm Principle are conceptually distinct and logically independent, it

was proved the following result:

Theorem 3.12 (MARIOTTI; VENEZIANI, 2008) A Syncretic Assignment ≤E satisfies (HP),

(SP) and (A) if and only if it satisfies (LM).

With the above theorem, it is possible to assert a different version of Corollary 3.1.

Corollary 3.3 A belief merging operator ∆µ satisfies (HP), (SP-1) and (A) if and only if it

satisfies (LM-1).

We just make clear that (HP) and (HE) are not logically equivalent. It is known that

under (A), Harm Principle implies Hammond Equity but the converse is not true (ALCANTUD,

2013).

3.4.3 Belief Merging with LexiT-conorms

In order to present the last contributions of this chapter, we will consider a refinement

of the T-conorm operators. It is the same idea behind the leximax refinement of maximum

operator. We will call it lexiT-conorm and it is the dual notion of lexiT-norms introduced in

(YAGER et al., 2005).
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Definition 3.18 (LexiT-conorm) (YAGER et al., 2005) Let a = (a1,a2, . . . ,an) ∈ [0,1]n and let

⊕ be a T-conorm. Let Pa be the power set of {a1,a2, . . . ,an} excluding the empty set, that is, the

set of all subsets of the indexed set {a1,a2, . . . ,an} minus /0. For any A ∈ Pa, we let⊕(A) indicate

the T-conorm of the elements of A. Let ā = (ā1, ā2, . . . , ¯a2n−1) be the (2n−1)-tuple of the family

{⊕(A) : A ∈ Pa} put into descending order. On [0,1]2
n−1 we have the lexicographic ordering

≤lex which is a linear ordering. The corresponding Lexi⊕ procedure a ≤Lexi⊕ b is defined as

follows:

• For a,b ∈ [0,1]n, use ⊕ to construct ā and b̄ ∈ [0,1]2
n−1. Then a ≤Lexi⊕ b if and only if

ā≤lex b̄.

In other words,

• a <Lexi⊕ b if and only if there exists k ≥ 1 such that āk < b̄k and for 1≤ i < k, āi = b̄i;

• a≈Lexi⊕ b if and only if āi = b̄i for all i = 1,2, . . . ,2n−1.

Here is a simple example: Take the probabilistic sum T-conorm ⊕P{x,y} = x+

y− x · y. Let a = (0.2,0.6) and b = (0.3,0.5). In this case, both Pa and Pb have 3 elements:

Pa = ({0.2},{0.6},{0.2,0.6}) and Pb = ({0.3},{0.5},{0.3,0.5}). After calculating ⊕{A} and

⊕{B} for each A ∈ Pa and B ∈ Pb we get ā = (0.68,0.6,0.2) and b̄ = (0.65,0.5,0.3). Now,

comparing ā and b̄ lexicographically, we see that b̄≤lex ā, and consequently b≤Lexi⊕P a. Before

proceeding with the application of LexiT-conorms as a merging operator, note that we have the

following property about LexiT-conorms:

Theorem 3.13 (YAGER et al., 2005) Let ⊕M be the Maximum T-conorm. Then for a,b ∈ [0,1]n,

a≤Leximax b if and only if a≤Lexi⊕M b.

That is, if ⊕ is the Maximum T-conorm, Leximax and Lexi⊕ are the same ordering.

Definition 3.19 (Lexi⊕ Operator) Let E = {K1, . . . ,Kn} be a belief set, ⊕ a T-conorm and d a

distance measure. For each outcome, ω we build the list ld,E
ω = (dω

1 , . . . ,d
ω
n ) of distances between

this outcome and the n belief bases in E, i.e., dω
i = d(ω,Ki). Let M = max({d(ω,ω ′) | ω,ω ′ ∈

Ω}) and ¯ld,E,⊕
ω = (d̄ω

1 , . . . ,
¯dω

2n−1) be the (2n−1)-tuple of the family
{
⊕
{ A

M

}
: A ∈ Pld,E

ω

}
put in

descending order. Let≤lex be the lexicographical order between sequences of integers. We define

the following pre-order: ωi ≤d,lexi⊕
E ω j iff ¯ld,E,⊕

ωi ≤lex
¯ld,E,⊕

ω j . The operator ∆
d,lexi⊕
µ is defined by

∆
d,lexi⊕
µ (E) = min(mod(µ),≤d,lexi⊕

E ).

For strict T-conorms, computing the LexiT-conorm can be done in a simpler way.
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Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) dH⊕P(ω,E) ¯ldH ,E,⊕P
ω

ω1 = ¬s¬d¬o 1 1 3 1 (1,1,1,1,0.777,0.333,0.333)
ω2 = ¬s¬do 0 0 2 0.666 (0.666,0.666,0.666,0.666,0,0,0)
ω3 = ¬sd¬o 2 0 2 0.888 (0.888,0.888,0.666,0.666,0.666,0.666,0)
ω4 = ¬sdo 1 1 1 0.703 (0.703,0.555,0.555,0.555,0.333,0.333,0.333)
ω5 = s¬d¬o 0 2 2 0.888 (0.888,0.888,0.666,0.666,0.666,0.666,0)
ω6 = s¬do 0 1 1 0.555 (0.555,0.555,0.333,0.333,0.333,0.333,0)
ω7 = sd¬o 1 1 1 0.703 (0.703,0.555,0.555,0.555,0.333,0.333,0.333)
ω8 = sdo 1 2 0 0.777 (0.777,0.777,0.666,0.666,0.333,0.333,0)

Table 20 – The Hamming distances of K1,K2, K3 and E (2).

Theorem 3.14 (WALKER et al., 2005) If an T-conorm ⊕ is strict, it takes at most n steps to

determine whether or not (a1,a2, . . . ,an)<Lexi⊕ (b1,b2, . . . ,bn).

This Theorem points exactly what one needs to compute Lexi⊕ with a strict T-

conorm ⊕. From it, we can calculate (a1,a2, . . . ,an)<Lexi⊕ (b1,b2, . . . ,bn) as follows: let ā =

(ā1, ā2, . . . , ān) be the n-tuple of (a1,a2, . . . ,an) put into descending order, (a1,a2, . . . ,an)<Lexi⊕

(b1,b2, . . . ,bn) if and only if (⊕{ā1, ā2, . . . , ān},⊕{ā1, ā2, . . . , ¯an−1}, . . . ,⊕{ā1, ā2}, ā1)<lex

(⊕{b̄1, b̄2, . . . , b̄n},⊕{b̄1, b̄2, . . . , ¯bn−1}, . . . ,⊕{b̄1, b̄2}, b̄1). We can now then simplify the defini-

tion of a strict Lexi⊕ operator.

Definition 3.20 (Strict Lexi⊕ Operator) Let E = {K1, . . . ,Kn} be a belief set, ⊕ a strict T-

conorm and d a distance measure. Let M = max({d(ω,ω ′) | ω,ω ′ ∈Ω}). For each outcome, ω

we build the list ld,E
ω = (dω

1 , . . . ,d
ω
n ) of distances between this outcome and the n belief bases

in E divided by M, i.e., dω
i = d(ω,Ki)

M . Let ¯ld,E,⊕
ω = (d̄ω

1 , . . . , d̄
ω
n ) be the n-tuple of ld,E

ω put in

descending order. Let ≤lex be the lexicographical order between sequences of integers. We

define the following pre-order: ωi ≤d,lexi⊕
E ω j iff (⊕{ ¯dωi

1 , . . . , ¯dωi
n },⊕{ ¯dωi

1 , . . . , ¯dωi
n−1}, . . . ,

¯dωi
1 )

≤lex (⊕{ ¯dω j
1 , . . . ,

¯dω j
n },⊕{ ¯dω j

1 , . . . ,
¯dω j

n−1}, . . . ,
¯dω j
1 ). The operator ∆

d,lexi⊕
µ is defined by

∆
d,lexi⊕
µ (E) = min(mod(µ),≤d,lexi⊕

E ).

Using Table 20 as example, ¯ldH ,E,⊕P
ω6 = (0.555,0.555,0.333,0.333,0.333,0.333,0)

can now be computed as (⊕P{0.333,0.333,0},⊕P{0.333,0.333},0.333)= (0.555,0.555,0.333).

In terms of results, both forms of computation are equals. This is only a question of complexity,

and since the class of strict T-conorms presented may have similar behavior to the leximax

operator, we will see in the sequel that some LexiT-conorms may be equivalent to leximax, in

terms of complexity and rationality. Let us turn now to the properties of LexiT-conorms operators.

We will separate them in two parts.
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Corollary 3.4 Let ⊕ be a T-conorm. ∆
d,lexi⊕
µ satisfies (IC0)-(IC5), (IC7) and (IC8). ∆

d,lexi⊕
µ

does not satisfy (Maj). The postulate (Arb) is not satisfied in general.

These results come directly from Theorem 3.3. As pointed in the previous sections,

(IC6) is not satisfied in general and its weaker version (IC6-1) is only satisfied by strict T-

conorms. This becomes different for LexiT-conorms:

Theorem 3.15 Let ⊕ be a T-conorm, then ∆
d,lexi⊕
µ satisfies (IC6).

Proof. See Appendix B.

It occurs that (IC6) is satisfied by any LexiT-conorm, strict or nilpotent one.

Theorem 3.16 Let ⊕ be a T-conorm. We have the following results:

• If ∆
d,⊕
µ satisfies (HE-1). then ∆

d,lexi⊕
µ satisfies (HE);

• If ∆
d,⊕
µ satisfies (PD-1). then ∆

d,lexi⊕
µ satisfies (PD);

• If ∆
d,⊕
µ satisfies (SP-1). then ∆

d,lexi⊕
µ satisfies (SP).

Proof. See Appendix B.

From Theorems 3.6, 3.8, 3.11 and 3.17 we have

Corollary 3.5 Let n≥ 3 be the number of propositional variables in the belief set E. ∆
d,lexi⊕SS

λ
µ

and ∆
d,lexi⊕F

λ
µ satisfy (LM) when λ ≤−

⌊2n
3

⌋
and 0 < λ ≤ 10−n, respectively.

Theses results illustrate that some LexiT-conorms have the similar behavior of the

leximax operator, when compared with the logical properties, and produce a kind of egalitarian

reasoning.

3.5 Conclusions

In this chapter, we proposed to use discrimax and T-conorm operators in the proposi-

tional belief merging. As we know, discrimax is a refinement of max, which is situated between

max and leximax operators. T-conorms are generalization of the two-valued logical disjunction,

i.e., the max operator. In belief merging, the max operator is equivalent to the minimax rule in

decision theory: it tries to minimize the worst cases among the agents. Indeed, T-conorms and

discrimax allow us to diversify the method of the minimax rule by applying generalized versions

of the max operator.
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The purpose of this chapter is to offer more diversity of egalitarian merging operators

and explore their logical properties. In order to deepen this analysis, we considered other

logical properties related to egalitarianism, more specifically, the arbitration, Hammond Equity,

Pigou-Dalton principle, Strong Pareto, Harm Principle and their variations. These conditions are

intended to express preference for a more just distribution among the agents, based on principles

of equity or libertarianism. They are well-known conditions in Economics and they state a

society is more stable when the distribution of income is somehow more balanced among all the

individuals.

We make clear that we analyzed, in a great part of this chapter, weaker versions

of the logical properties cited above; we restricted them since T-conorms have an absorbent

element, also called annihilator (which is the value 1). T-conorm operators can be seen as

merging operators with an implicit veto power: any agent having an outcome with distance value

equal to 1 is capable to interpose the decision of the group. This restriction is responsible to

weaken the conditions (HE), (PD) and (SP) and the logical postulate (IC6). When discrimax is

considered, this restriction is discarded and we evaluate the original versions of logical postulates

and conditions.

For the discrimax operator, we proved that it satisfies the so-called discrimax princi-

ple. The discrimax principle implies (HE), (SP) and (A), but the converse is not true. Therefore,

discrimax principle is characterized as a weaker principle than leximax principle.

We chose in this chapter some of the most representative classes of T-conorms.

First, we analyzed the four basic T-conorms: drastic sum, Łukasiewicz, probabilistic sum and

maximum T-conorms. The lowest T-conorm max satisfies only the egalitarian properties (Arb)

and (HP) (falsifies (HE), (PD), (SP) and their variants). The probabilistic sum falsifies (Arb)

and (HE-1), but satisfies (IC6-1) and (PD-1). Łukasiewicz and drastic sum falsify all of them.

When analyzing the parameterized T-conorms, which are basically generalizations

of some of the four basic T-conorms, we observed strict T-conorms converging to the maximum

tend to satisfy (HE-1), (HP) and (Arb), as found in the Schweizer-Sklar and Frank T-conorms.

In fact, in these cases, we have a close connection between (HE-1), (HP) and (Arb). The same

idea does not follow from nilpotent T-conorms as they do not satisfy (HE-1) and(HP). In general,

every parameterized T-conorms exposed in this chapter satisfy (PD-1) in a specific interval

(varying for each T-conorm), except the nilpotent T-conorms. For (IC6-1), we proved it is

satisfied by the class of strict T-conorms, while it is not the case for nilpotent ones. With respect
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(IC6) (IC6-1) (Arb) (PD-1) (HE-1) (PD) (HE) (HP)

∆
d,discrimax
µ X X X X X X

∆
d,⊕M
µ X X

∆
d,⊕P
µ X X

∆
d,⊕L
µ

∆
d,⊕D
µ

∆
d,⊕SS

λ

µ λ ∈]−∞,0] −∞ < λ ≤−
⌊2n

3

⌋
λ ∈]−∞,0] −∞ < λ ≤−

⌊2n
3

⌋
−∞ < λ ≤−

⌊2n
3

⌋
∆

d,⊕F
λ

µ λ ∈]0,∞[ 0 < λ ≤ 10−n λ ∈]0,∞[ 0 < λ ≤ 10−n 0 < λ ≤ 10−n

∆
d,⊕Y

λ

µ λ ≥
⌊2n

3

⌋
∆

d,⊕SW
λ

µ

∆
d,lexi⊕M
µ X X X X

∆
d,lexi⊕P
µ X X X

∆
d,lexi⊕L
µ X X

∆
d,lexi⊕D
µ X X

∆
d,lexi⊕SS

λ

µ X X −∞ < λ ≤−
⌊2n

3

⌋
λ ∈]−∞,0] −∞ < λ ≤−

⌊2n
3

⌋
λ ∈]−∞,0] −∞ < λ ≤−

⌊2n
3

⌋
−∞ < λ ≤−

⌊2n
3

⌋
∆

d,lexi⊕F
λ

µ X X 0 < λ ≤ 10−n λ ∈]0,∞[ 0 < λ ≤ 10−n λ ∈]0,∞[ 0 < λ ≤ 10−n 0 < λ ≤ 10−n

∆
d,lexi⊕Y

λ

µ X X λ ≥
⌊2n

3

⌋
∆

d,lexi⊕SW
λ

µ X X

Table 21 – Summary of Logical Properties (4).

to (Arb), Schweizer-Sklar, Frank and Yager T-conorms satisfy it in some specific intervals. Thus,

it is possible to have a nilpotent T-conorm as an arbitration quasi-merging operator.

Since every merging operator we proposed is weaker than the leximax (it satisfies all

of these properties), we proposed to demonstrate what kind of principle these operators satisfy.

It is known leximax satisfies the Leximax principle, which is equivalent to satisfy the properties

(HE), (SP) and (A). We weakened the Leximax principle and introduced the Leximax free

from 1, which is equivalent to satisfy (HE-1), (SP-1) and (A). We showed that the T-conorms

Schweizer-Sklar and Frank satisfy this principle.

In our quest to discover if there exists an operator similar to leximax, we extended the

T-conorms to LexiT-conorms (its lexicographic version). LexiT-conorm avoids all the problems

caused by the annihilator, as the immediate loss of (IC6), (HE), (PD) and (SP), but it does not

imply that all the LexiT-conorm operators satisfy them all. We showed that all LexiT-conorms

satisfy (IC6) and for the other properties it follows from the previous achieved result: if a

T-conorm operator satisfies (HE-1), for example, its lexicographic version satisfies (HE). The

same idea is applied to the other properties. Finally, we can gather the results and characterize a

hierarchy of the merging operators proposed in this chapter. We have the following results:

Theorem 3.17 Let E be a belief set, d a distance measure, µ an integrity constraint, ⊕ a

T-conorm and ⊕∗ be a parameterized T-conorm such that ∆
d,⊕∗
µ satisfies (LM-1). We have

1. ∆
d,leximax
µ (E) |= ∆

d,⊕∗
µ (E);
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2. ∆
d,leximax
µ (E) |= ∆

d,discrimax
µ (E);

3. ∆
d,discrimax
µ (E) |= ∆

d,max
µ (E);

4. ∆
d,leximax
µ (E)≡ ∆

d,lexi⊕∗
µ (E);

5. ∆
d,lex⊕
µ (E) |= ∆

d,⊕
µ (E).

Proof. See Appendix B.

We can conclude this chapter by showing leximax operator is stronger than max,

discrimax, and ⊕∗ operators. In addition it is equivalent to lexi⊕∗ operator. When we consider

an arbitrary T-conorm⊕, it is not always the case that ∆
d,leximax
µ (E) |= ∆

d,⊕
µ (E). This is explained

by the fact that many T-conorms are not subcases of the maximum, and consequently, they are

not subcases of leximax. Table 21 summarizes all the results obtained in this chapter.
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4 SUFFICIENTARIAN PROPOSITIONAL BELIEF MERGING

4.1 Contributions of this Chapter

The main contributions of this chapter are listed below:

• We introduce two notions of the theory of Sufficientarianism in the propositional belief

merging: weak sufficientarianism and strong sufficientarianism;

• Three operators are considered: headcount, shortfall and Foster-Greer-Thorbecke indi-

ces. We analyze their logical properties and we define a different distributive principle,

called Humanitarian Principle, which differs from the original idea of utilitarianism and

egalitarianism (with its Leximax Principle);

• We prove that it is possible to define IC merging operators based on sufficientarianism;

• Part of this work has been published in “Sufficientarian Propositional Belief Merging”,

authors: Henrique Viana and João Alcântara, which was submitted on EUMAS 2016

(VIANA; ALCÂNTARA, 2016b).

4.2 Introduction

Sufficientarianism (FRANKFURT, 1987) is a theory of distributive justice which

aims at ensuring each person has an adequate amount of benefits. For instance, we recognize the

instrumental importance of having enough sleep, enough money, enough happiness and setting

aside enough time. Obviously, this requires a criterion for how much is adequate. Typically, the

criterion of adequacy is something like enough to meet basic needs, avoid poverty, or have a

minimally decent life, which we refer commonly as the poverty line.

This principle accommodates the concern we normally have for people who are

badly off in absolute terms. According to most versions, Sufficiency rejects partially others

theories of distributive justice, such as utilitarianism (concerned with the sum total of happiness

of a group) and egalitarianism (which promotes equality for all people in a group).

In the area of propositional belief merging, which studies the fusion of independent

and equally reliable sources of information expressed in propositional logic, we need to consider

some aspects of rationality and distributive justice. Indeed, there are already some belief merging

operators based on utilitarianism and egalitarianism (EVERAERE et al., 2014; KONIECZNY;

PINO-PÉREZ, 1999; KONIECZNY; PINO-PÉREZ, 2011), but a study of sufficientarian opera-
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tors in the context of belief merging is still missing.

There are two central views of sufficientarianism (SEGALL, 2014):

Weak Sufficientarianism: Any benefit below poverty line, no matter how small,

and no matter to how few individuals, outweighs any benefit above poverty line,

no matter how large, and no matter to how many individuals. Below poverty line

equally large benefits matter more the worse off the recipient is.

Strong Sufficientarianism: Benefits that lift individuals above some poverty line

level matter more than equally large benefits that don’t (whether they occur above

the poverty line or below it).

In this chapter, we will consider three operators of the theory of weak sufficienta-

rianism in belief merging settings: the headcount and the shortfall operators and the Foster-

Greer-Thorbecke indices. Headcount operator simply counts the number of people below the

poverty line and aims at minimizing the number of people below this line. On the other hand,

shortfall operator adds up each person’s shortfall from the poverty line (or the amount that they

need to reach the poverty line). The objective is also to minimize the amount of shortfall in a

group. The Foster-Greer-Thorbecke indices (FOSTER et al., 1984; FOSTER et al., 2010) are

a family of poverty metrics which generalize headcount and shortfall methods. We will prove

these operators have a different rationality from others previously defined for belief merging by

showing they satisfy different logical postulates. Consequently, we will extend these operators to

their corresponding strong sufficientarianism version.

The chapter is structured as follows. In Section 4.3, we will introduce the headcount

and shortfall operators of sufficiency for belief merging and will explore their respective logical

properties. In Section 4.4, we will compare the differences between the weak sufficientarian

and the egalitarian reasoning. In Section 4.5, we will introduce the Foster-Greer-Thorbecke

index operators and will prove their additional properties. In Section 4.6, we extend these

merging operators to turn them IC merging operators. In Section 4.7, we consider the strong

sufficientarianism in the propositional belief merging. Finally, in Section 4.8 we will conclude

the chapter.
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4.3 Weak Sufficientarian Belief Merging

In this section, we propose a characterization of a sufficientarian merging operator,

based on the IC merging operators postulates and the syncretic assignment. Besides, we present

two different sufficientarian merging operators, as well as additional logical postulates and their

relation with each operator.

The idea of weak sufficientarianism is commonly traced back to Harry Frankfurt’s

doctrine of sufficiency (FRANKFURT, 1987), which inspired and motivated a number of versions

of sufficientarianism in recent works (HIROSE, 2014). Frankfurt claims that the doctrine of

sufficiency aims at maximizing the number of individuals at or above sufficiency (sometimes

denoted as poverty line). We can translate Frankfurt’s claim into our framework’s point of view

as

Definition 4.1 (Frankfurt Sufficientarianism) (FRANKFURT, 1987) (FS) An outcome ω is

at least as good as another ω ′ if and only if the number of agents at or above sufficiency in ω is

at least as large as that in ω ′.

We want to show in the following subsections that the sufficientarian principle can

be a plausible tool in belief merging. Although it differs from utilitarian and egalitarian operators

(EVERAERE et al., 2014), it still can exhibit some interesting properties. First, we will focus on

two different operators: headcount and shortfall (HIROSE, 2014; VALLENTYNE, 2010).

4.3.1 The headcount Operator

One of the simplest measures is the headcount measure, which originally simply

counts the number of agents below a poverty line:

The Headcount Claim: we should maximize the number of agents who secure enough.

This principle assesses outcomes solely in terms of the number of agents who have

secured enough in each outcome. Benefits to those who do not reach the sufficiency do not

improve the assessment of the outcome. As for the framework of belief merging with a distance

measure, we will consider the distance between an outcome and a belief base as the measure of

sufficiency.
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Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) hc(ω,dH ,E,1)
ω1 1 1 3 1
ω2 0 0 2 1
ω3 2 0 2 2
ω4 1 1 1 0
ω5 0 2 2 2
ω6 0 1 1 0
ω7 1 1 1 0
ω8 1 2 0 1

Table 22 – Headcount of Hamming distances between Ω and E for s = 1.

Definition 4.2 (headcount Operator) Let E = {K1, . . . ,Kn} be a belief set, d a distance mea-

sure, ω an outcome and s ≥ 0 a threshold. We define the number of belief bases in E above

s as hc(ω,d,E,s) = #({Ki ∈ E | d(ω,Ki)> s}), where #(A) is the cardinal of the set A. Then

we have the following pre-order: ωi ≤d,hcs
E ω j iff hc(ωi,d,E,s)≤ hc(ω j,d,E,s). The merging

operator ∆
d,hcs
µ is defined by ∆

d,hcs
µ (E) = min(mod(µ),≤d,hcs

E ).

Keep in mind we are counting the agents above the threshold s (our poverty line),

since we are working with distance measures and the welfare of an agent is calculated as how

close its distance measure is from 0. Note that when s = 0, we have ∆
d,hc0
µ ≡ ∆

dD,sum
µ , that is, the

headcount merging operator is equivalent to the distance-based merging with the drastic distance

and the sum operator.

Example 4.1 The results of headcount merging operator w.r.t. Hamming distance and s = 1

for Example 2.3 are found in Table 22. The resulting pre-order ≤dH ,hc1
E is {ω4,ω6, ω7} ≤dH ,hc1

E

{ω1,ω2,ω8} ≤dH ,hc1
E {ω3,ω5}.

In this example, for s = 1, the merging operator is counting the number of agents in

which the Hamming distance value is greater than 1 in a belief base. The outcomes ω4,ω6 and

ω7 are the result of the merging (when µ =>). Note that the sufficientarian principle is only

worried if the agents are below or equal the threshold s and not about their specific values (ω4,ω6

and ω7 are equivalent, independently of their values). To begin with our analysis involving

logical postulates of this weak sufficientarian operator, first we will discuss about the basic IC

postulates.

Theorem 4.1 ∆
d,hcs
µ satisfies (IC0)-(IC1), (IC3)-(IC8). The postulate (IC2) is not satisfied in

the general case. Additionally, ∆
d,hcs
µ satisfies both (Arb) and (Maj).
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Proof. See Appendix C.

When s = 0, the postulate (IC2) is satisfied (i.e., it is equivalent to ∆
dD,sum
µ ). The

reason why (IC2) is not always true comes from the fact that even if an outcome is not a

consensus between agents, it can be a choice of the merging (e.g., outcome ω4 in Example 4.1).

Let us take a closer look on postulate (IC2): If
∧

E is consistent with µ , then

∆µ(E)≡
∧

E ∧µ . It states the result of belief merging needs to be complete and sufficient with

the consensus among agents (if it exists). This postulate corresponds to syncretic assignments 1

and 2 (KONIECZNY; PINO-PÉREZ, 2002a): 1. If ω |=
∧

E and ω ′ |=
∧

E, then ω ≈E ω ′; 2. If

ω |=
∧

E and ω ′ 6|=
∧

E, then ω <E ω ′. We argue the sufficientarian principle is weaker than

(IC2), since the result of belief merging needs to be only sufficient w.r.t. the consensus among

agents (if it exists). Formally, we have

(IC2’): If
∧

E is consistent with µ , then
∧

E ∧µ |= ∆µ(E).

In other words, there are some choices of the merging that are not necessarily the

consensus of the group. The corresponding syncretic assignments for (IC2’) are

1. If ω |=
∧

E and ω ′ |=
∧

E, then ω ≈E ω ′; and

2’. If ω |=
∧

E and ω ′ 6|=
∧

E, then ω ≤E ω ′.

Proposition 4.1 ∆
d,hcs
µ satisfies (IC2’).

Interestingly, the headcount operator satisfies both (Maj) and (Arb). It is not a new

result, since it was already proved in (KONIECZNY; PINO-PÉREZ, 2002b) that the operator

∆
dD,sum
µ and the family of full sense operators ∆

d,sumn

µ satisfy also both (Maj) and (Arb). Based

on these results, we can say that each agent is relevant for the merging and the opinion of

the majority is the priority. The arbitration property guarantees two agents will have a more

consensual behavior in their decisions.

To finish this first part of the chapter, we will bring new logical postulates for this

sufficientarian operator, which come from the literature of liberal egalitarianism (ALCANTUD,

2011; CAPPELEN; TUNGODDEN, 2006; LOMBARDI et al., 2013), a theory of justice which

seeks to combine values of equality, personal freedom and personal responsibility. The first

postulate we will discuss is a weaker version of the Harm Principle (LOMBARDI et al., 2013):

Definition 4.3 (Weak Harm Principle Condition) (LOMBARDI et al., 2013) (WHP) Let E =

{K1, . . . ,Kn} be a belief set, a distance measure d, a merging operator op and ω1 <d,op
E ω2.
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For all ω1,ω2,ω
′
1,ω

′
2 ∈ Ω, consider ω ′1,ω

′
2 such that ∃i ∈ {1, . . . ,n}, d(ω1,Ki) < d(ω ′1,Ki),

d(ω2,Ki)< d(ω ′2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j), d(ω2,K j) = d(ω ′2,K j). If d(ω ′1,Ki)<

d(ω ′2,Ki) then ω ′1 ≤
d,op
E ω ′2.

The Weak Harm Principle assigns a veto power to agents in situations in which

they suffer a harm and no other agent is affected. This veto power is weak as it only applies to

certain welfare configuration (individual preferences after the satisfaction loss must coincide

with group’s initial preferences) and, crucially, the agent cannot force group’s preferences to

coincide with her own. The counterpart of the Harm Principle, where a gain in the agent i’s

distance value is considered, it is called Individual Benefit Principle (ALCANTUD, 2011) and

defined as

Definition 4.4 (Individual Benefit Principle Condition) (LOMBARDI et al., 2013) (IBP) Let

E = {K1, . . . ,Kn} be a belief set, a distance measure d, a merging operator op and ω1 <
d,op
E ω2.

For all ω1,ω2,ω
′
1,ω

′
2 ∈ Ω, consider ω ′1,ω

′
2 such that ∃i ∈ {1, . . . ,n}, d(ω ′1,Ki) < d(ω1,Ki),

d(ω ′2,Ki)< d(ω2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j), d(ω2,K j) = d(ω ′2,K j). If d(ω ′1,Ki)<

d(ω ′2,Ki) then ω ′1 <
d,op
E ω ′2.

The intuition is the same of Harm Principle, but now there is a decrease in agent i’s

distance value in ω ′1 and ω ′2. This condition can be weakened too:

Definition 4.5 (Weak Individual Benefit Principle Condition) (WIBP) Let E = {K1, . . . ,Kn}

be a belief set, a distance measure d, a merging operator op and ω1 <
d,op
E ω2. For all ω1,ω2,

ω ′1,ω
′
2 ∈ Ω, consider ω ′1,ω

′
2 such that ∃i ∈ {1, . . . ,n}, d(ω ′1,Ki) < d(ω1,Ki), d(ω ′2,Ki) <

d(ω2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j), d(ω2,K j) = d(ω ′2,K j). If d(ω ′1,Ki) < d(ω ′2,Ki)

then ω ′1 ≤
d,op
E ω ′2.

Now we can relate headcount merging operator with the conditions presented above:

Theorem 4.2 ∆
d,hcs
µ satisfies (WHP) and (WIBP). The conditions (HP) and (IBP) are not

satisfied in the general case.

Proof. See Appendix C.

We highlight that the sum merging operator does not satisfy any of these properties.

The max and leximax operators satisfy all four postulates. In this sense, the headcount operator

has an intermediate behavior for these postulates when compared with the basic merging operators

sum and max/leximax.
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Ω dH(ω,K1) dH(ω,K2) dH(ω,K3) sh(ω,dH ,E,1)
ω1 1 1 3 2
ω2 0 0 2 1
ω3 2 0 2 2
ω4 1 1 1 0
ω5 0 2 2 2
ω6 0 1 1 0
ω7 1 1 1 0
ω8 1 2 0 1

Table 23 – Shortfall of Hamming distances between Ω and E for s = 1.

4.3.2 The shortfall Operator

Let us consider another measure of aggregation. The shortfall measure simply adds

up each agent’s total gap from the distance measure (where an agent’s shortfall is zero if her

distance value is at or below s). The total shortfall operator simply adds up the shortfall from

s across agents above s, and takes the unweighted sum to be the measure of the disvalue of

the group (HIROSE, 2014). Differently from headcount operator, which tries to minimize the

number of agents above s, the shortfall is concerned with the total amount of deficit of the agents

above s, and aims at minimizing it.

Definition 4.6 (shortfall Operator) Let E = {K1, . . . ,Kn} be a belief set, d a distance measure,

ω an outcome and s ≥ 0 a threshold. We define the shortfall of belief bases in E above s in

ω as sh(ω,d,E,s) = ∑
d(ω,Ki)>s

d(ω,Ki)− s. Then we have the following pre-order: ωi ≤d,shs
E

ω j iff sh(ωi,d,E,s) ≤ sh(ω j,d,E,s). The merging operator ∆
d,shs
µ is defined by ∆

d,shs
µ (E) =

min(mod(µ),≤d,shs
E ).

We can see this approach is prioritarian for those satisfaction values above s. The

relative overall goodness of an outcome is judged on the basis of a sum of different agent’s

well-being where it is determined by the disvalue of an agent’s shortfall from s.

Example 4.2 The results of shortfall merging operator w.r.t. Hamming distance and s = 1

for Example 2.3 are in Table 23. The resulting pre-order ≤dH ,sh1
E is {ω4,ω6,ω7} ≤dH ,sh1

E

{ω2,ω8} ≤dH ,sh1
E {ω1,ω3,ω5}.

Shortfall operator is influenced by variations of the distance values. In the above

example, we can see this change with respect to outcome ω1. The total shortfall of ω1 is equal
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to 2 and it is equivalent to ω3 and ω5. Regarding the headcount operator in Example 4.1, the

outcome ω1 is more preferred than ω3 and ω5, because only one agent has the distance value

above s = 1, against two agents for ω3 and ω5. With respect to logical postulates some alterations

also occur:

Theorem 4.3 ∆
d,shs
µ satisfies (IC0), (IC1), (IC2’), (IC3)-(IC8) and (Maj). The postulates (IC2),

(Arb), (HP), (WHP), (IBP) and (WIBP) are not satisfied in the general case.

Proof. See Appendix C.

The shortfall merging operator is a majority sufficientarian operator. The diffe-

rence between headcount and shortfall operators appears when some egalitarian and libertarian

conditions are considered, as in the loss of logical postulates (Arb), (WHP) and (WIBP).

4.4 A Humanitarian Principle

In this section, we will present some logical postulates which characterize the beha-

vior of sufficientarian merging operators. We consider them as representative of a humanitarian

principle and, in light of this principle, we show shortfall operator is more just than headcount

operator. We will include some positions in the general category of egalitarian perspectives of

distributive justice presented in (TUNGODDEN, 2000). Some families of egalitarian properties

were defined in this work and we will use a particular one, modified to fit into our framework of

belief merging.

Definition 4.7 (Weak Povertymax for s) (WPM-s) Let E = {K1, . . . ,Kn} be a belief set, d be

a distance measure and s ≥ 0. For all ω,ω ′, if (1) there exists a k ≤ n such that d(ω,Kk) <

d(ω ′,Kk) and s < d(ω ′,Kk); (2) every position i that s < d(ω,Ki) implies d(ω,Ki)≤ d(ω ′,Ki),

then ω <d,ops
E ω ′.

Weak Povertymax differs from the leximax principle by giving priority to those

agents above the threshold s, while the leximax gives absolute priority to the worst off agent (also

referred as equity promotion (TUNGODDEN, 2000)). We argue that (WPM-s) can be seen as a

humanitarian condition, since it tries to favor a group of agents instead of prioritizing a unique

agent. The agents below the threshold s are not considered essential for the group’s choice. By

way of illustration, (WPM-s) implies the loss of a single agent satisfaction value s outweighs

any gain of any number of agents above s. Now, consider the following new condition:
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Definition 4.8 (Weak Absolute Priority of those Above s) (WAPA-s) Let E = {K1, . . . ,Kn} be

a belief set, d be a distance measure and s ≥ 0. For all ω,ω ′, if there exist j,k such that (1)

d(ω ′,K j) < d(ω,K j) ≤ s ; (2) s ≤ d(ω,Kk) < d(ω ′,Kk); (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki),

then ω ≤d,ops
E ω ′.

With the addition of Strong Pareto (SP) and Anonymity (A) (TUNGODDEN, 2000),

we can achieve an important result:

Theorem 4.4 (TUNGODDEN, 2000) If a Syncretic Assignment satisfies (WAPA-s), (SP) and

(A), then it satisfies (WPM-s).

By taking into account the humanitarian concern, Povertymax shows there are

alternatives to the Leximax Principle of justice. Such an egalitarian position deals with both the

claim of equality promotion and the humanitarian perspective. Hence, we have the following

results for the headcount and shortfall operators.

Theorem 4.5 ∆
d,hcs
µ satisfies (WAPA-s) and (A), but (SP) and (WPM-s) are not satisfied in

general. ∆
d,shs
µ satisfies (WAPA-s), (A) and (WPM-s), but (SP) is not satisfied in general.

Proof. See Appendix C.

Note that (SP) is not satisfied because s is not considered in its definition. If we

imagine a situation where all the distance values of the outcomes are below s, we have these

outcomes are equivalent, independently of their values. Moreover, an operator may satisfy

(WPM-s), even if it does not satisfy (WAPA-s), (SP) and (A) (Theorem 4.4 is not an “if and

only if” condition). (WPM-s) is not satisfied by ∆
d,hcs
µ since the conclusion ω <d,ops

E ω ′ is too

strong for this operator. However, we may consider a weaker version of (WPM-s).

Definition 4.9 (Weaker Povertymax for s) (W1PM-s) Let E = {K1, . . . ,Kn} be a belief set, d

be a distance measure and s≥ 0. For all ω,ω ′ ∈Ω, if (1) there exists a k≤ n such that d(ω,Kk)<

d(ω ′,Kk) and s < d(ω ′,Kk); (2) every position i that s < d(ω,Ki) implies d(ω,Ki)≤ d(ω ′,Ki),

then ω ≤d,ops
E ω ′.

Besides, we can also consider the condition of Weak Pareto, instead of Strong Pareto:

Definition 4.10 (Weak Pareto) (WP) Let E = {K1, . . . ,Kn} be a belief set and d a distance

measure. For all ω,ω ′ ∈Ω, if ∀i ∈ {1, . . . ,n} d(ω,Ki)≤ d(ω ′,Ki), then ω ≤d,ops
E ω ′.
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Then the following result is obtained:

Corollary 4.1 If a pre-order satisfies (WAPA-s), (WP) and (A), it satisfies (W1PM-s).

It follows from Theorem 4.4. Therefore, along with Theorem 4.5 and Corollary 4.1,

∆
d,hcs
µ satisfies these properties:

Corollary 4.2 ∆
d,hcs
µ satisfies (WAPA-s), (WP), (A) and (W1PM-s).

Headcount satisfies (W1PM-s) because when d(ω,Kk)> s, the conclusion is that

ω ≈d,ops
E ω ′; otherwise, it concludes that ω <d,ops

E ω ′. Weak Pareto is achieved because the

distance measures below s are equivalent w.r.t to the pre-order ≤ and do not bring any impact

to the conclusion of the property (note that shortfall also satisfies Weak Pareto). For now, we

established a weak Humanitarian Principle for sufficientarian merging operators. In the next

sections we will strengthen this principle.

4.5 Generalizing headcount and shortfall Operators

The headcount and shortfall operators present a basic kind of humanitarian principle.

In this section, we will extend the Weak Povertymax principle by introducing a more egalitarian

feature to it. We will achieve this by employing a Foster-Greer-Thorbecke index operator.

The Foster-Greer-Thorbecke indices (FOSTER et al., 1984; FOSTER et al., 2010)

are a family of poverty metrics generalizing headcount and shortfall operators. It is a class of

poverty measures having the formula FGT α = 1
n

m

∑
i=1

(
s− xi

s

)α

, where s is the poverty line, xi is

the i-th lowest income (or other standard of living indicator), n is the total population, m is the

number of agents who are below the poverty line, and α ≥ 0 is a “poverty aversion” parameter.

The FGT class is based on the normalized gap gi =
(s−xi)

s of a poor agent i, which

is the income shortfall expressed as a share of the poverty line. Viewing gα
i = (s−xi)

α

s as the

measure of individual poverty for a poor agent (that one below the poverty line), and 0 as the

respective measure for non-poor agents, FGT α is the average poverty in the given population.

The case α = 0 yields a distribution of individual poverty levels in which each poor

agent has poverty level 1; the average across the entire population is simply the headcount

ratio, i.e., FGT 0 = hc
n (observe it differs from headcount by applying the ratio of the group of

agents, although that does not influence their logical properties in the belief merging). The case

α = 1 employs the normalized gap gi of a poor person i as a poor agent’s poverty level, thereby
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differentiating among the poor; the average becomes the poverty gap measure FGT 1 = sh
n (as in

headcount, this representation is equivalent to a shortfall operator in terms of logical properties).

The case α = 2 squares the normalized gap and thus weights the gaps by the gaps; this yields to

the squared gap measure FGT 2 = 1
n

m

∑
i=1

(
s− xi

s

)2

. As α tends to infinity, the condition of the

poorest is all that matters (i.e., they have absolute priority).

When we are considering the distance based merging, we need to make some adjusts

in the definition of FGT (remind that we consider those agents above some threshold s when we

deal with distance measures instead of those agents below a poverty line).

Definition 4.11 (FGT α Operator) Let E = {K1, . . . ,Kn} be a belief set, d a distance measure,

ω an outcome and s≥ 0 a threshold. We define the FGT α index of belief bases in E below s in

an outcome ω as FGT (α,ω,d,E,s) = 1
n ∑

d(ω,Ki)>s

(
d(ω,Ki)− s

s

)α

. Consequently, we have the

following pre-order: ωi ≤
d,FGT α

s
E ω j iff FGT (α,ωi,d,E,s)≤ FGT (α, ω j,d,E,s). The operator

∆
d,FGT α

s
µ is defined by ∆

d,FGT α
s

µ (E) = min(mod(µ),≤d,FGT α
s

E ).

In terms of the logical properties already presented in this chapter, we can easily

prove FGT α operator, for α ≥ 2, is equivalent to the logical properties of shortfall. Although

FGT α and shortfall differ a little in their definition (shortfall has a tie condition in case of equal

shortfalls), this does not change their logical properties.

We want to emphasize FGT α can satisfy a stronger condition than the two previous

described operators. Let us define now a stronger restriction to the (wAPA-s) property:

Definition 4.12 (weak Absolute Priority of those Above s) (wAPA-s) Let E = {K1, . . . ,Kn} be

a belief set, d be a distance measure and s ≥ 0. For all ω,ω ′, if there exist j,k such that: (1)

d(ω ′,K j)< d(ω,K j), and s< d(ω,K j); (2) s≤ d(ω,Kk)< d(ω ′,Kk), and d(ω,K j)≤ d(ω,Kk);

(3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki), then ω <d,ops
E ω ′.

Now we have that the distance measure of an outcome ω is above s in both positions

j and k. Even in this situation, ω is still more preferred than ω ′. This property suggests that

we will give absolute preference to the worst off agents. It is similar to the Hammond Equity

condition, but only considering the case where the agents are above s.

Theorem 4.6 ∆
d,FGT α

s
µ satisfies (wAPA-s), when α ≥ n

2 , such that n is the number of propositio-

nal variables in the belief set.
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Proof. See Appendix C.

As (TUNGODDEN, 2000), we can make an analogy between (wAPA-s) and Lexi-

max Principle, considering the cases where the agents are above s:

Definition 4.13 (Leximax Above s) (LMA-s) Let E = {K1, . . . ,Kn} be a belief set. For each

outcome ω , we build the list (dω
1 , . . . ,d

ω
n ) of distances between this outcome and the n belief

bases in E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list obtained from (dω
1 , . . . ,d

ω
n ) by sorting it in

descending order. For all ω,ω ′ ∈ Ω, (1) if there exists a position k ≤ n such that dω
k < dω ′

k ;

(2) s < dω
k ; and (3) for every j < k, dω ′

j = dω
j , then ω <E ω ′ (ω is more preferred than ω ′).

Otherwise, ω ≈E ω ′.

(LMA-s) is silent in conflicts below s, but gives absolute priority to the worse off in

any other conflict.

Theorem 4.7 Given some s > 0, if a Syncretic Assignment satisfies (WAPA-s), (wAPA-s), (SP)

and (A), then it satisfies (LMA-s).

Proof. See Appendix C.

This result guarantees the Syncretic Assignment is equivalent to the Leximax Prin-

ciple when only utility level above s is considered. With this theorem we can observe that can

exist sufficientarian operators with a behavior similar to egalitarian operators.

Proposition 4.2 ∆
d,FGT α

s
µ does not satisfy (LMA-s) and (SP) in general.

Unfortunately, (LMA-s) is not satisfied owing to the falsification of (SP). For this

operator, (SP) is a required condition to satisfy (LMA-s). In fact, we saw in this section all

sufficientarian operators do not satisfy (IC2) and (SP). A question that arises is in what conditions

we can verify these properties. In other words, if there is a sufficientarian operator that is also a

merging operator (satisfy all the basic logical postulates). That questions will be tackled in the

next section.

4.6 Sufficientarian IC Merging Operators

In the previous sections, it was showed a first access to sufficientarian operators with

propositional belief merging. However, none of them is, in fact, an IC merging operator, since

(IC2) is not implied by them. In order to overcome such weakness, we give now a further step
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by presenting a class of belief merging operators: axiological sufficientarian merging operators.

The axiological sufficientarian belief merging operators have been conceived to satisfy all the

eight IC postulates by combining sufficientarianism with utilitarianism.

The doctrine of sufficiency has established itself as a distinctive position among many

theories of distributive justice. It has attracted many proponents and they have proposed several

variants of the doctrine of sufficiency that retains its general spirit (CHUNG, 2017). For instance,

in (CASAL, 2007), it was pointed out that the doctrine of sufficiency (or sufficientarianism) is

committed to both the “positive thesis” and the “negative thesis”:

• The Positive Thesis: It is morally important for people to have enough resources.

• The Negative Thesis: Once everybody has enough resources, whether somebody has

more or less than others has absolutely no moral significance.

In general terms, proponents and opponents of sufficientarianism find the positive

thesis plausible. So, the usual target of criticisms is focused on sufficientarianism’s commitment

to the negative thesis. According to the negative thesis, the moral insignificance of some agents

having more than others is limited to situations in which everybody has enough resources. This

means that there is room for sufficientarians to give priority to those who are below such threshold

if we discard the negative thesis condition.

There are different ways to approach the violation of the negative thesis. One of

them is to depict the sufficientarianism as an axiological principle, i.e., a criterion for ranking

the outcomes in terms of goodness. In (HIROSE, 2014), it was proposed the Axiological

Sufficientarianism, which can be translated as a hybrid doctrine of sufficiency + utilitarianism:

• The Positive Thesis: It is morally important for people to have enough resources.

• The Utilitarian Negative Thesis: Once everybody has enough resources, whether some-

body has more resources than others has moral significance.

It is possible to have a merging operator and to be sufficientarian at the same time.

We will change headcount, shortfall and FGT index in the following way:

Definition 4.14 (Axiological Sufficientarian Operators) Let E = {K1, . . . ,Kn} be a belief set,

d a distance measure, ω an outcome and s≥ 0 a threshold.

1. We define the number of belief bases in E above s as hc(ω,d,E,s)= #({Ki ∈E | d(ω,Ki)>

s}), where #(A) is the cardinal of the set A. Then we have the following pre-order:

ωi ≤d,ahcs
E ω j iff (if hc(ωi,d,E,s) = hc(ω j,d,E,s) then dsum(ωi,E) ≤ dsum(ω j,E); else
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hc(ωi,d,E,s)≤ hc(ω j,d,E,s)). The merging operator ∆
d,ahcs
µ is defined by ∆

d,ahcs
µ (E) =

min(mod(µ),≤d,ahcs
E ).

2. We define the shortfall of belief bases in E above s in ω as sh(ω,d,E,s)= ∑
d(ω,Ki)>s

d(ω,Ki)−

s. Then we have the following pre-order: ωi≤d,ashs
E ω j iff (if sh(ωi,d,E,s) = sh(ω j,d,E,s)

then dsum(ωi,E)≤ dsum(ω j,E); else sh(ωi,d,E,s)≤ sh(ω j,d,E,s)). The merging opera-

tor ∆
d,ashs
µ is defined by ∆

d,ashs
µ (E) = min(mod(µ),≤d,ashs

E ).

3. We define the FGT α index of belief bases in E below s in an outcome ω as: FGT (α,ω,

d,E,s) = 1
n ∑

d(ω,Ki)>s

(
d(ω,Ki)− s

s

)α

. Consequently, we have the following pre-order:

ωi ≤
d,aFGT α

s
E ω j iff (if FGT (α,ωi,d,E,s) = FGT (α,ω j,d,E,s) then dsum(ωi,E)≤

dsum(ω j,E); else FGT (α,ωi,d,E,s) ≤ FGT (α,ω j,d,E,s)). The operator ∆
d,aFGT α

s
µ is

defined by ∆
d,aFGT α

s
µ (E) = min(mod(µ),≤d,aFGT α

s
E ).

When the outcomes are not equally sufficient, these operators behave as the original

headcount, shortfall and FGT operators. Otherwise, they behave as the sum operator among the

distance measures. These changes are enough to achieve the satisfaction of the logical postulate

(IC2) and still preserve the remaining basic logical postulates:

Theorem 4.8 ∆
d,ahcs
µ , ∆

d,ashs
µ and ∆

d,aFGT α
s

µ satisfy (IC0)-(IC8) and (Maj). Additionally, ∆
d,ahcs
µ

satisfies (Arb).

Proof. See Appendix C.

Now, these operators can be called merging operators, since they satisfy (ICO)-(IC8).

∆
d,ahcs
µ is a majority/arbitration merging operator; ∆

d,ashs
µ and ∆

d,aFGT α
s

µ are majority merging

operators. However, for ∆
d,ahcs
µ , the properties (WHP) and (WIBP) are not satisfied anymore

(headcount operator satisfies them). An axiological operator is also robust enough to satisfy

Strong Pareto for both headcount and shortfall.

Theorem 4.9 ∆
d,ahcs
µ , ∆

d,ashs
µ and ∆

d,aFGT α
s

µ satisfy (SP). Additionally, ∆
d,ahcs
µ satisfies (WAPA-s).

Proof. See Appendix C.

∆
d,ahcs
µ and ∆

d,ashs
µ preserve the results from ∆

d,hcs
µ and ∆

d,shs
µ , respectively, while they

additionally satisfy (SP). For ∆
d,aFGT α

s
µ , the situation is even better: it satisfies now (SP) and

(LMA-s) when α is restricted to α ≥ n
2 , such that n is the number of propositional variables in

the belief set.
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4.7 Strong Sufficientarian Belief Merging

In this section, we shed light on the role strong sufficientarianism can play on

aggregation. Recalling (SEGALL, 2014), there are two central views of sufficientarianism:

• Weak Sufficientarianism: Any benefit above s, no matter how small, and no matter to

how few agents, outweighs any benefit below s, no matter how large, and no matter to how

many agents. Above s, equally large benefits matter more the worse off the agent is;

• Strong Sufficientarianism: Benefits that lift agents below some threshold level s matter

more than equally large benefits that do not, whether they occur above or below s.

In previous sections, weak sufficientarian merging operators were described. Now

we will show a first approach to strong sufficientarian merging operators. For this, we will define

strong versions of the headcount and shortfall operators:

Definition 4.15 (Strong headcount Operator) Let E = {K1, . . . ,Kn} be a belief set, d a dis-

tance measure, ω an outcome and s ≥ 0 a threshold. We define the number of belief bases

in E across s w.r.t. ω and ω ′ as shc(ω,ω ′,d,E,s) = #({Ki ∈ E | d(ω,Ki) ≥ s > d(ω ′,Ki)}),

where #(A) is the cardinal of the set A. Then we have the following pre-order: ωi ≤d,shcs
E ω j iff

shc(ωi,ω j,d,E,s)≤ shc(ω j,ωi,d,E,s). The merging operator ∆
d,shcs
µ is defined by ∆

d,shcs
µ (E) =

min(mod(µ),≤d,shcs
E ).

This definition comes directly from strong sufficientarianism statement: an outcome

ω is better than ω ′ if the number of agents above s in ω is less than in ω ′. Furthermore, it is silent

for the case where the number of agents above s are equal in the outcomes. Note that, although

different definitions, headcount and strong headcount operators produce exactly the same result

in terms of merging operator and logical properties (they are in fact the same operator).

Proposition 4.3 ∆
d,shcs
µ ≡ ∆

d,hcs
µ .

Now, let us analyze the definition of the strong shortfall operator:

Definition 4.16 (Strong shortfall Operator) Let E = {K1, . . . ,Kn} be a belief set, d a distance

measure, ω an outcome and s ≥ 0 a threshold. We define the shortfall of belief bases in E

across s w.r.t. ω and ω ′ in ω as ssh(ω,ω ′,d,E,s) = ∑
d(ω,Ki)≥s>d(ω ′,Ki)

d(ω,Ki)− s. Then we

have the following pre-order: ωi ≤d,sshs
E ω j iff ssh(ωi,ω j, d,E,s) ≤ ssh(ω j,ωi,d,E,s). The

merging operator ∆
d,sshs
µ is defined by ∆

d,sshs
µ (E) = min(mod(µ),≤d,sshs

E ).
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The same scenario that occurred for the strong headcount will not occur with the

Strong shortfall operator: the strong shortfall justice relation is not equivalent to the original

shortfall justice relation (although they satisfy tha same IC logical postulates). Now, considering

the humanitarian principle, we can state the strong version of (WPM-s) below:

Definition 4.17 (Strong Povertymax for s) (SPM-s) Let E = {K1, . . . ,Kn} be a belief set, d

be a distance measure and s ≥ 0. For all ω,ω ′ ∈ Ω, if (1) there exists a k ≤ n such that

d(ω,Kk)< d(ω ′,Kk) and s < d(ω ′,Kk); (2) every position i that d(ω ′,Ki)< d(ω,Ki) implies

s < d(ω ′,Ki) or d(ω,Ki)≤ s, then ω ≤d,ops
E ω ′.

As in (WPM-s), this principle is followed by some other properties. We will describe

them below:

Definition 4.18 (Indifference for those Above or Below s) (IAB-s) Let E = {K1, . . . ,Kn} be

a belief set, d be a distance measure and s≥ 0. For all ω,ω ′ ∈Ω, if there exist j,k such that (1)

d(ω ′,K j) < d(ω,K j) < s; (2) s ≤ d(ω,Kk) < d(ω ′,Kk); (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki),

then ω ≈d,ops
E ω ′.

The addition of (IAB-s) comes from the definition of strong sufficientarianism:

benefits that lift agents below some threshold level s matter more than equally large benefits

that do not, whether they occur above or below s. For the strong operators we introduced, we

considered null any benefit occurring above or below s.

Proposition 4.4 If a pre-order satisfies (WAPA-s), (IAB-s), (WP) and (A), then it satisfies

(SPM-s).

We have the following results for the strong headcount.

Theorem 4.10 ∆
d,shcs
µ satisfies (WAPA-s), (IAB-s), (WP), (A) and (SPM-s).

Proof. See Appendix C.

This proposition shows headcount operator is a weaker and strong sufficientarian

operator. The same can not be said about strong shortfall operators:

Theorem 4.11 ∆
d,sshs
µ satisfies (WAPA-s), (IAB-s), (WP) and (SPM-s), but (A) is not satisfied

in general.
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Proof. See Appendix C.

It is possible to strengthen the (SPM-s) property as follows:

Definition 4.19 (Stronger Povertymax for s) (S1PM-s) Let E = {K1, . . . ,Kn} be a belief set,

d be a distance measure and s ≥ 0. For all ω,ω ′ ∈ Ω, if (1) there exists a k ≤ n such that

d(ω,Kk)< d(ω ′,Kk) and s < d(ω ′,Kk); (2) every position i that d(ω ′,Ki)< d(ω,Ki) implies

s < d(ω ′,Ki) or d(ω,Ki)≤ s, then ω <d,ops
E ω ′.

This condition can be achieved similarly as shown in Proposition 4.4, but replacing

the Weak Pareto with the Strong Pareto property.

Proposition 4.5 If a pre-order ≤ f satisfies (WAPA-s), (IAB-s), (SP) and (A), then it satisfies

(S1PM-s).

For the two strong operators described in this section, we have this result.

Theorem 4.12 ∆
d,shcs
µ and ∆

d,sshs
µ satisfy neither (S1PM-s) nor (SP).

Proof. See Appendix C.

In order to satisfy (SP), we can also define an axiological version of the strong

sufficientarian merging operators.

Definition 4.20 (Strong Axiological Sufficientarian Operators) Let E = {K1, . . . ,Kn} be a

belief set, d a distance measure, ω an outcome and s≥ 0 a threshold.

1. We define the number of belief bases in E across s w.r.t. ω and ω ′ as shc(ω,ω ′,d,E,s) =

#({Ki ∈ E | d(ω,Ki)≥ s > d(ω ′,Ki)}), where #(A) is the cardinal of the set A. Then we

have the following pre-order: ωi ≤d,sahcs
E ω j iff (if shc(ωi,ω j,d,E,s) = shc(ω j,ωi,d,E,s)

then dsum(ωi,E) ≤ dsum(ω j,E); else shc(ωi,ω j,d,E,s) ≤ shc(ω j,ωi,d,E,s)). The mer-

ging operator ∆
d,sahcs
µ is defined by ∆

d,sahcs
µ (E) = min(mod(µ),≤d,sahcs

E ).

2. We define the shortfall of belief bases in E across s w.r.t. ω and ω ′ in ω as ssh(ω,ω ′,d,E,s)

= ∑
d(ω,Ki)≥s>d(ω ′,Ki)

d(ω,Ki)− s. Then we have the following pre-order: ωi ≤d,sashs
E

ω j iff (if ssh(ωi,ω j,d,E,s) = ssh(ω j,ωi,d,E,s) then dsum(ωi,E) ≤ dsum(ω j,E); else

ssh(ωi,ω j,d,E,s) ≤ ssh(ω j,ωi,d,E,s)). The merging operator ∆
d,sashs
µ is defined by

∆
d,sashs
µ (E) = min(mod(µ),≤d,sashs

E ).



99

Finally, for the strong axiological operators, using all the results obtained until now

we have:

Proposition 4.6 ∆
d,sahcs
µ satisfies (WAPA-s), (IAB-s), (SP), (A) and (S1PM-s). ∆

d,sashs
µ satisfies

(WAPA-s), (IAB-s), (SP) and (S1PM-s), but does not satisfy (A) in general.

4.8 Conclusions

In this chapter, we investigated another theory of distributive justice called suffi-

cientarianism. It is a prioritarian approach concerned with alleviating the inequalities among

groups of agents who have not reached a sufficient condition. It is an alternative to the egali-

tarianism, where the inequalities are remedied by giving absolute preference to the worst off

agents in a group. The sufficientarian claim considers not only one, but everyone in the group

of the less favored agents. It is important since it brings a more humanitarian approach to the

distributive justice. In the literature, these inequalities are calculated mainly using Poverty index

measurement. We applied three of them: the headcount operator, the shortfall operator and the

Foster-Greer-Thorbecke (FGT) index.

We showed a principle of sufficientarianism is presented in a logical postulate that

we named (IC2’). Furthermore, we showed sufficientarian operators may satisfy additional

logical postulates, e.g., the headcount operator satisfies properties like (WHP) and (WIBP).

A point of discussion in this work was about conditions for a humanitarian distribu-

tion of justice. We found headcount operator is weaker than shortfall with respect to a property

called Povertymax (named Weaker Povertymax for s or (W1PM-s)), which is a humanitarian

alternative to the Leximax Principle. The shortfall operator establishes a strong version of

Povertymax (named Weak Povertymax for s or (WPM-s)).

We also extended headcount and shortfall operators by resorting to the FGT index, a

poverty measure index. This index is defined through a parameter α ≥ 0, called poverty aversion

parameter. It puts higher weight on the poverty of the poorest agents as long as α increases,

giving preference for those in necessity (below the poverty line). We showed FGT index operator

does not satisfy a new principle called Leximax Above s or (LMA-s). It is a corresponding

version of Leximax Principle for the sufficientarian reasoning. In other words, it is the Leximax

Principle applied only for those agents who have not reached a sufficient condition. In fact, a

strong property was needed to satisfy (LMA-s), which is the satisfaction of Strong Pareto (SP).
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(IC2’) (IC2) (Maj) (Arb) (W1PM-s) (WPM-s) (LMA-s) (SPM-s) (SP) (A)

∆
d,hcs
µ X X X X X X

∆
d,shs
µ X X X X X

∆
d,FGT α

s
µ X X X α > 1 X

∆
d,ahcs
µ X X X X X X X X X

∆
d,ashs
µ X X X X X X X

∆
d,aFGT α

s
µ X X X X α > 1 α ≥ n

2 X X

∆
d,shcs
µ X X X X X X

∆
d,sshs
µ X X X X X

∆
d,sahcs
µ X X X X X X X X X

∆
d,sashs
µ X X X X X X X

Table 24 – Summary of Logical Properties (5).

We verified none of these three operators satisfies (SP). In order to bring Strong

Pareto to them, we made these operators a hybrid between sufficientarianism and utilitarianism:

the operator behaves as a utilitarian operator when a condition is satisfied, otherwise, it is

sufficientarian. This change benefits these operators not only satisfying (SP), but all the basic

logical postulates (IC0) to (IC8), making them merging operators. Finally, with this change,

the merging operator FGT index is capable to fulfill (LMA-s), when α ≥ n
2 (n is the number of

propositional variables in the belief set).

Lastly, we began to analyze another form of sufficientarianism called strong suffici-

entarianism (we assume the classical one is treated as the weak sufficientarianism). We glimpsed

two different kinds of operators: the strong headcount and strong shortfall. As a result, we

showed that the strong version of headcount does not bring anything new to the results of the

aggregation, since they are equivalent to its classical version. However, the strong shortfall

loses the Anonymity (A) logical property. Consequently, we proved these strong sufficientarian

operators satisfy the Strong Povertymax property. Finally, we considered an axiological version

of the strong sufficientarian operators to overcome again the loss of (SP).

Some work still needs to be done. For instance, what other characterizations of

sufficientarianism can be proposed, along with the axiological and strong sufficientarianism? For

the Strong sufficientarianism, a deep research in its logical properties is still missing. Besides, a

future work about other possible strong operators that satisfy all logical properties (in special a

version of strong shortfall which satisfies (A)) is envisaged.

Besides, an integration of sufficientarianism with other distributive justice theories



101

are an interesting research field. The original definition of the doctrine of sufficiency may be

sometimes vague and imprecise. Some works in this line are being glimpsed (CHUNG, 2017),

and their relation with the belief merging is a work that deserves to be considered.

Another relevant point about sufficientarianism is that some authors argue this theory

has the necessity of a threshold (e.g., the poverty line). We conjecture it is possible to avoid

this fixed value and work with other parameters, as for example the mean of the utilities (each

outcome would have its own mean value). The consequences of this representation as well as its

rationalization and intuition deserve more attention and a deeper analysis.

Table 24 summarizes the main contributions of this chapter. Recall that all of these

operators satisfy (IC0), (IC1), (IC3)-(IC8).
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5 PROPOSITIONAL BELIEF MERGING WITH OWA OPERATORS

5.1 Contributions of this Chapter

The main contributions of this chapter are listed below:

• We introduce Ordered Weighted Averaging (OWA) operators as belief merging operators.

They are a family of aggregation functions which include many well-known operators

such as the maximum, minimum and the simple average. We show that OWA merging

operators can also be included as a subtype of egalitarian operators. More specifically, as

pre-IC merging operators;

• We study how the different OWA operators behave with respect to their logical properties

and how this affects their rationality;

• Part of this chapter has been accepted in KR 2018, with the title “Propositional Belief

Merging with OWA Operators”, authors: Henrique Viana and João Alcântara.

5.2 Introduction

Aggregation of information are basic concerns for all kinds of knowledge based

systems, from image processing to decision making, from pattern recognition to machine learning.

From a general point of view we can say that aggregation has as purpose the simultaneous use

of different pieces of information (provided by several sources/agents) in order to come to a

conclusion or a decision (DETYNIECKI, 2001).

The Ordered Weighted Averaging (OWA) operators were originally introduced in

(YAGER, 1988) to provide means for aggregating information associated with the satisfaction

to multiple criteria. They have proved to be a useful family of aggregation operators for many

different types of problems. A fundamental aspect of this operation is to assign weights to the

values being aggregated.

When regarding egalitarian operators, it is natural to consider merging operators

which tries to achieve a “fair” result. In (EVERAERE et al., 2014), two egalitarian conditions

coming from social choice theory were translated into the propositional belief merging fra-

mework: Hammond equity, and Pigou-Dalton condition (DALTON, 1920; HAMMOND, 1976).

Besides, two new families of belief merging operators based on the median and on a cumulative

sum were introduced. A general family of belief merging operators called pre-IC merging
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operators was defined, by weakening two IC logical postulates. The egalitarian operators defined

in (EVERAERE et al., 2014) do not satisfy all the usual IC postulates. However, the ones based

on the cumulative sum were proved to be in the family of pre-IC merging operators.

One of the aims of this chapter is to continue this investigation on egalitarian opera-

tors, by introducing OWA merging operators. As our main contributions, we will define OWA

merging operators and show their logical properties. As the operators defined in (EVERAERE et

al., 2014), OWA merging operators will not satisfy all the usual IC logical postulates. We will

show what conditions need to be achieved for an OWA merging operator to satisfy some missing

IC logical postulates. We will show that depending on the chosen weights, OWA merging

operators can be in the family of IC or pre-IC merging operators.

We will consider some families of OWA operators during this chapter: S-OWA

merging operators, which combines max and min with the sum operator and seeks to join the

theories of utilitarianism and egalitarianism; Step-OWA merging operators, which extends the

notion of giving the priority for the worst case by giving the priority to any case among the

group; Window-OWA merging operators extends step-OWA merging operators considering a

group of agents to giving the priority instead of only one; Buoyancy Measure merging Operators

have the idea of giving more priority to the worst cases and less priority to the best cases; and

leximax Like OWA merging operators, which simulates the leximax operator by giving some

specific configuration of weights for the group.

The chapter is organized as follows. First, in Section 5.3 we will review some notions

about OWA operators and define OWA merging operators. We will show the results involving

OWA merging operators and in Section 5.4, we will provide some families of OWA merging

operators, with their respective results. Finally, in Section 5.5 we will conclude the chapter with

some discussions about all the results obtained.

5.3 Belief Merging with OWA Operators

5.3.1 Ordered Weighted Averaging Operators

In this section we review the basic concepts associated with OWA operators (YAGER,

1988). They are a parameterized family of aggregation operators which include many well-known

operators such as the maximum, minimum and the simple average (YAGER; KACPRZYK, 1997).

Definition 5.1 (OWA Operator) (YAGER, 1988) An OWA operator of dimension n is a mapping
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fW : Rn → R that has an associated n vector of weights W = [w1,w2, . . . ,wn], such that (1)

wi ∈ [0,1] and (2) ∑
i

wi = 1. Furthermore fW (a1, . . . ,an) = ∑
j

w jb j, where b j is the jth largest

of the ai in (a1, . . . ,an).

A fundamental aspect of this operation is the re-ordering step, in particular an

aggregate ai is not associated with a particular weight wi but rather a weight is associated with a

particular ordered position of aggregate.

Example 5.1 Let W = [0.4,0.1,0.3,0.2] be a vector of weights, then fW (0.7,1,0.3,0.6) =

(0.4)(1)+(0.1)(0.7)+(0.3)(0.6)+(0.2)(0.3) = 0.71.

Note that different OWA operators are distinguished by their vector of weights. In

(YAGER, 1988) it was pointed out three important cases of vectors:

1. W ∗ = [1,0, . . . ,0];

2. W∗ = [0, . . . ,0,1];

3. WA =
[1

n , . . . ,
1
n

]
.

W ∗ gives weight only to the highest value of a vector (whilst W∗ gives it to the lowest

value) and the rest of the values have no associated weight. WA associates an equal weight to all

values in a vector. It can easily be seen that

1. fW ∗(a1, . . . ,an) = max
i
(ai);

2. fW∗(a1, . . . ,an) = min
i
(ai);

3. fWA(a1, . . . ,an) =
1
n ∑

i
ai.

Some important properties can be associated with the OWA operators. We shall now

discuss some of these. For any OWA operator f ,

fW∗(a1, . . . ,an)≤ fW (a1, . . . ,an)≤ fW ∗(a1, . . . ,an).

Thus, the minimum and maximum operators are its boundaries. Besides, any OWA

operator is commutative. Let a = (a1,a2, . . . ,an) be a set of values and let (d1,d2, . . . ,dn) be any

permutation of a. Then for any OWA operator

fW (a1,a2, . . . ,an) = fW (d1,d2, . . . ,dn).

A third characteristic associated with these operators is monotonicity. Assume

a = (a1,a2, . . . ,an) and c = (c1,c2, . . . ,cn) such that for each i, ai ≥ ci. Then

fW (a1,a2, . . . ,an)≥ fW (c1,c2, . . . ,cn).
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Another characteristic associated with these operators is idempotency. If ai = x for

all i, then for any OWA operator

fW (a1, . . . ,an) = x.

5.3.2 OWA Merging Operators

An OWA Merging Operator may be defined directly in the following way:

Definition 5.2 (OWA Merging Operators) Let d be a distance measure and E = {K1, . . . ,Kn}

a belief set. For each outcome ω , we consider the vector Lω
E = (lω

1 , . . . , l
ω
n ) where lω

i =

d(ω,Kσ(i)) is the distance between Kσ(i) and ω , and σ is the permutation of {1, . . . ,n} such

that lω
i ≥ lω

i+1 for every 1≤ i < n. Then we define the vector W = [w1, . . . ,wn], where wi ∈ [0,1]

and ∑i wi = 1. Let d(W,Lω
E ) =

n

∑
i=1

wilω
i . Then we have the following pre-order: ωi ≤d,W

E

ω j iff d(W,Lωi
E ) ≤ d(W,Lω j

E ). The OWA merging operator ∆
d,W
µ is defined by ∆

d,W
µ (E) =

min(mod(µ),≤d,W
E ).

The idea for an OWA merging operator is to give the possibility of allowing different

priorities for the information in a group. Different from max and leximax, which give priority

to the worst case, an OWA is flexible enough to give more or less priority for any position in a

group, and consequently dealing with different degrees of priorities. As a first result about the

logical properties of OWA merging operators, we have

Theorem 5.1 ∆
d,W
µ satisfies (IC0), (IC1), (IC3), (IC4), (IC5b), (IC7) and (IC8).

Proof. See Appendix D.

In general, an OWA merging operator is not an IC or pre-IC merging operator, since

it does not satisfy (IC2), (IC5), (IC6) or (IC6b). However, it is possible to state some conditions

which validates some of these logical properties.

Theorem 5.2 ∆
d,W
µ satisfies (IC6b) if and only if wi 6= 0, for all wi ∈W.

Proof. See Appendix D.

(IC6b) is equivalent to Strong Pareto, which can be translated as if ∀i d(ω ′,Ki)≤

d(ω,Ki) and ∃ j d(ω ′,K j)< d(ω,K j), then ω ′ < ω . Thus, the existence of w j = 0 is sufficient

to falsify this condition.
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Theorem 5.3 ∆
d,W
µ satisfies (IC2) if and only if w1 6= 0, where w1 ∈W.

Proof. See Appendix D.

The reason why (IC2) is not always true comes from the fact that even if an outcome

does not have a consensus between agents, it can still be a choice of the merging operator, e.g.,

(0,0,0,0) can as preferred as (0,1,0,0) if we ignore the worst cases in both vectors, and that

is equivalent to consider w1 = 0. Consequently, any OWA merging operator ∆
d,W
µ is a pre-IC

merging operator when it satisfies Theorems 5.2 and 5.3.

Corollary 5.1 Let W = [w1,w2, . . . ,wn] be a vector of weights.

• If wi =
1
n for all wi ∈W and W = |n|, then ∆

d,W
µ satisfies (Maj), (IC5) and (IC6).

• If w1 = 1 and wi = 0 for all i 6= 1, then ∆
d,W
µ satisfies (IC5). If wn = 1 and wi = 0 for all

i 6= n, then ∆
d,W
µ satisfies (IC5).

These restrictions come directly from the sum, max and min operators. It is not

known if there are two-sided conditions for (IC5), (IC6) and (Maj) in relation with OWA

merging operators. The same holds for (Arb).

Theorem 5.4 Let d be a distance measure, ω an interpretation and m=max({d(ω,ω ′) |ω,ω ′ ∈

Ω}). If w1 > (m−1)w2, then ∆
d,[w1,w2]
µ satisfies (Arb) .

Proof. See Appendix D.

Here, (Arb) is a two-agents property that states when the weight of the worst case is

greater than the best case in these conditions, we are giving absolute preference to the worst case.

When we refer to (PD), we have the following result:

Theorem 5.5 ∆
d,W
µ satisfies (PD) if and only if w1 > w2 > w3 > .. . > wn, for W = [w1, . . . ,wn].

Proof. See Appendix D.

In other words, if we are prioritizing the worst case, and the weights are successively

decreasing for the next cases, we are guaranteeing a more balanced merging for the group.

5.4 Families of OWA Operators

The OWA operators have a great flexibility in the choice of the types of aggregation

based on the choice of their weights. In this section, we shall look at some families of OWA
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operators (YAGER, 1993a). These families will be specified by a few parameters which can be

used to generate the weights.

5.4.1 S-OWA Merging Operators

Two families of OWA weights were introduced by Yager and Filev (YAGER; FILEV,

1994) and are called S-OWA operators. More specifically, the first one is “orlike” (a family

of operators closer to maximum) and the second is “andlike” (a family of operators closer to

minimum).

Definition 5.3 (orlike S-OWA Operators) (YAGER; FILEV, 1994) The “orlike” S-OWA ope-

rators, denoted by fWSO,α , are defined as a family of weights WSO,α = [w1, . . . ,wn] such that for

α ∈ [0,1],

• w1 =
1
n(1−α)+α,

• wi =
1
n(1−α), for i = 2, . . . ,n.

Using these weights, we get an equivalent form for this operator: fWSO,α (a1, . . . ,an) =

α max
i
(ai)+

1
n
(1−α)∑

i
ai. Thus we are getting a weighted average of the max and the average

of the values in the vector. Note that when α = 0, we get 1
n ∑

i
ai and when α = 1, we get

max
i
(ai).

Definition 5.4 (andlike S-OWA Operators) (YAGER; FILEV, 1994) The “andlike” S-OWA

operators, denoted by fWSA,α , are defined as a family of weights WSA,α = [w1, . . . ,wn] such that

for α ∈ [0,1],

• wi =
1
n(1−α), for i 6= n,

• wn =
1
n(1−α)+α.

Using these weights we get fWSA,α (a1, . . . ,an) = α min
i
(ai)+

1
n
(1−α)∑

i
ai. Analo-

gous to fWSO,α , we are getting now a weighted average of the min and the average of the values

in the vector.

Definition 5.5 (S-OWA Merging Operators) Let d be a distance measure, ω an outcome and

E = {K1, . . . ,Kn} a belief set.

• Let dSO(ω,E,α) = α ×max
K∈E

d(ω,K)+ (1−α)× ∑
K∈E

d(ω,K)

|E|
, where α ∈ [0,1]. Then

we have the following pre-order: ωi ≤d,SOα

E ω j iff dSO(ωi,E,α) ≤ dSO(ω j,E,α). The

operator ∆
d,SOα

µ is defined by ∆
d,SOα

µ (E) = min(mod(µ),≤d,SOα

E ).



108

• Let dSA(ω,E,α) = α×min
K∈E

d(ω,K)+(1−α)× ∑
K∈E

d(ω,K)

|E|
, where α ∈ [0,1]. Then we

have the following pre-order: ωi≤d,SAα

E ω j iff dSA(ωi,E,α)≤ dSA(ω j,E,α). The operator

∆
d,SAα

µ is defined by ∆
d,SAα

µ (E) = min(mod(µ),≤d,SAα

E ).

Then we have the following results:

Corollary 5.2 Considering the S-OWA merging operators:

1. ∆
d,SO1
µ satisfies (IC0)-(IC4), (IC5), (IC7), (IC8) and (Arb);

2. ∆
d,SA1
µ satisfies (IC0), (IC1), (IC3), (IC4), (IC5), (IC7) and (IC8);

3. ∆
d,SO0
µ and ∆

d,SAn
µ satisfy (IC0)-(IC8) and (Maj);

4. For 0 < α < 1, ∆
d,SOα

µ and ∆
d,SAα

µ satisfy (IC0)-(IC4), (IC5b), (IC6b), (IC7) and (IC8).

Item 1. is equivalent to max operator; items 2. and 4. come from Theorems 5.1, 5.2

and 5.3; and item 3. is equivalent to sum operator. This corollary shows when 0 < α < 1, ∆
d,SOα

µ

and ∆
d,SAα

µ are pre-IC merging operators.

5.4.2 Step-OWA Merging Operators

We shall now present another family of OWA operators, called step-OWA operators

(YAGER, 1993a).

Definition 5.6 (Step-OWA Operators) (YAGER, 1993a) The Step-OWA operator is denoted by

fWstep(k) and their weights are defined as Wstep(k) = [w1, . . . ,wn] such that 1≤ k ≤ n and

• wk = 1,

• wi = 0, for i 6= k.

Thus with a step-OWA operator we have just one non-zero weight and that is the

kth weight. Note that when k = 1 we get fW ∗ and when k = n we get fW∗ . It is easily seen that

fWstep(k)(a1, . . . ,an) = bk where bk is the kth largest of the values.

Definition 5.7 (Step-OWA Merging Operators) Let d be a distance measure and E = {K1, . . . ,

Kn} a belief set. For each outcome ω , we consider the vector Lω
E = (lω

1 , . . . , l
ω
n ) where lω

i =

d(ω,Kσ(i)) is the distance between Ki and ω , and σ is the permutation of {1, . . . ,n} such

that lω
i ≥ lω

i+1 for every 1 ≤ i < n. Let k > 0 and dstep(Lω
E ,k) = lω

k , if k ≤ n; 0, otherwise.

Additionally, dstep(Lω
E ,k) = dstep(Lω

E ,n), if k > n. Then we have the following pre-order:
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ωi ≤d,stepk
E ω j iff dstep(L

ωi
E ,k)≤ dstep(L

ω j
E ,k). The operator ∆

d,stepk
µ is defined by ∆

d,stepk
µ (E) =

min(mod(µ),≤d,stepk
E ).

Corollary 5.3 ∆
d,stepk
µ satisfies (IC0), (IC1), (IC3), (IC4), (IC5b), (IC7) and (IC8). If k = 1,

then ∆
d,stepk
µ satisfies (Arb).

It follows from Theorems 5.1, 5.2, 5.3 and 5.4. ∆
d,stepk
µ shows a similar behavior

of the k-median aggregation functions, introduced in (EVERAERE et al., 2014). In fact, they

satisfy the same logical postulates.

5.4.3 Window-OWA Merging Operators

We now consider a family of OWA operators called Window-OWA operators. These

operators are determined by two parameters k and m which are responsible to generate the vector

of weights.

Definition 5.8 (Window-OWA Operators) (YAGER, 1993a) The Window-OWA operator is

denoted by fWwindow(k,m)
and their weights are defined as Wwindow(k,m) = [w1, . . . ,wn] such that

1≤ k ≤ m≤ n and

• wi = 0, for i < k or m < i,

• w j =
1

m−k+1 , for k ≤ j ≤ m.

We see that these window-OWA operators have m− k+1 non-zero weights, all with

the same weight 1
m−k+1 , and that k is the place where the non-zero weights start. Using these

class of weights, we get fWwindow(k,m)
(a1, . . . ,an) =

1
m−k+1

m

∑
j=k

b j, where b j is the jth largest value

of the vector. Thus we are taking a window of elements, starting at k and going until m and then

averaging these elements. Note that when m = k we have an equivalence with the step-OWA

fWstep(k) . When k = m = 1 (resp. k = m = n), we have the case where the OWA operator is

equivalent to fW ∗ (resp. fW∗). Lastly, when k = 1 and m = n, then we have the case where the

operator is equivalent to fWA .

Definition 5.9 (Window-OWA Merging Operators) Let d be a distance measure and E =

{K1, . . . ,Kn} a belief set. For each outcome ω , we consider the vector Lω
E = (lω

1 , . . . , l
ω
n ) where

lω
i = d(ω,Kσ(i)) is the distance between Ki and ω , and σ is the permutation of {1, . . . ,n}

such that lω
i ≥ lω

i+1 for every 1 ≤ i < n. Let dwindow(Lω
E ,k,m) = lω

k + lω
k+1 + · · ·+ lω

m , where



110

k ≤ m. If k < 1, then dwindow(Lω
E ,k,m) = dwindow(Lω

E ,1,m). If m > n, then dwindow(Lω
E ,k,m) =

dwindow(Lω
E ,k,n). We have the following pre-order: ωi ≤

d,windowk,m
E ω j iff dwindow(L

ωi
E ,k,n) ≤

dwindow(L
ω j
E ,k,m). The operator ∆

d,windowk,m
µ is defined by ∆

d,windowk,m
µ (E) = min(mod(µ),

≤d,windowk,m
E ).

Corollary 5.4 Considering the Window-OWA operators, we obtain

1. ∆
d,windowk,m
µ satisfies (IC0), (IC1), (IC3), (IC4), (IC5b), (IC7) and (IC8);

2. ∆
d,window1,m
µ satisfies additionally (IC2);

3. ∆
d,window1,n
µ satisfies (IC0)-(IC8) and (Maj).

Item 1. follows from Theorem 5.1; item 2. follows from Theorem 5.3 and item 3. is

equivalent to sum operator. ∆
d,windowk,m
µ is an extension of ∆

d,stepk
µ and can gain additional logical

postulates, depending on the choice of the weights.

5.4.4 Buoyancy Measure Merging Operators

We now introduce a class of OWA operators called buoyancy measures (YAGER,

1993a; YAGER, 1993b; YAGER, 1993c):

Definition 5.10 (Buoyancy Measures) (YAGER, 1993a) We say that fW is a buoyancy measure

if the weights W = [w1, . . . ,wn] satisfy the condition wi ≥ w j, for i < j. We call fW a buoyancy

measure extensive if the condition is made slightly stronger, that is, wi > w j, for i < j.

Thus, a buoyancy measure gives a non increasing weight for the values in the vector.

In other words, the largest values have more or equal weight than the smallest values.

Definition 5.11 (Bouyancy Merging Operators) Let d be a distance measure and E = {K1, . . . ,

Kn} a belief set. For each outcome ω , we consider the vector Lω
E = (lω

1 , . . . , l
ω
n ) where lω

i =

d(ω,Kσ(i)) is the distance between Ki and ω , and σ is the permutation of {1, . . . ,n} such that

lω
i ≥ lω

i+1 for every 1≤ i < n. Then we define the vectors

• Wb = [w1, . . . ,wn], where wi ∈ [0,1], ∑i wi = 1 and wi ≥ w j for i < j, and

• Web = [w1, . . . ,wn], where wi ∈ [0,1], ∑i wi = 1 and wi > w j for i < j.

Let d(W,Lω
E ) =

n

∑
i=1

wilω
i , for W ∈ {Wb,Web}. We have the following pre-order: ωi ≤d,W

E

ω j iff d(W,Lωi
E ) ≤ d(W,Lω j

E ). The operators ∆
d,Wb
µ and ∆

d,Web
µ are defined by ∆

d,Wb
µ (E) =

min(mod(µ),≤d,Wb
E ) and ∆

d,Web
µ (E) = min(mod(µ),≤d,Web

E ), respectively.
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Corollary 5.5 ∆
d,Wb
µ and ∆

d,Web
µ satisfy (IC0)-(IC4), (IC5b), (IC7) and (IC8). Additionally,

• ∆
d,Web
µ satisfies (PD);

• If wn > 0, then ∆
d,Web
µ satisfies (IC6b).

It follows from Theorems 5.1, 5.2, 5.3 and 5.5. Bouyancy merging operators have a

behavior similar to the cumulative sum (csum) operator (EVERAERE et al., 2014). The csum is

a weighted sum of the distances between belief bases, but the vector of weights are fixed for the

number of belief bases. If E = (K1, . . . ,Kn), then the we have the following set of weights for

csum: W = [w1,w2, . . . ,wn] = [n,n−1, . . . ,1]. Therefore, a csum is not an OWA operator, since

the sum of weights is higher than 1, but it preserves the idea of ordering among the weights and

some results related to the logical postulates. For example, if a bouyancy merging operator is

extensive and all the weights are greater than 0, then it is equivalent to csum merging operator in

terms of logical properties.

5.4.5 leximax Like OWA Merging Operators

We shall now consider an OWA operator that simulates the leximax ordering. It is

based on the operator defined in (YAGER, 1997), and it is assumed that we have δ ∈]0,1], which

can be seen as a degree of dispersion with leximax.

Definition 5.12 (leximax like OWA Operators) We say fWδ
is a leximax like OWA Operator if

their weights are defined as Wδ = [w1, . . . ,wn], such that δ ∈]0,1] and

• wi =
δ i−1

(1+δ )i , for i 6= n,

• wn =
δ n−1

(1+δ )n−1 .

The idea behind this operator is to give the highest weight to the highest value of

a vector and this weight decreases to the consequent values. Depending of the value of δ , the

difference of weights are so large that the operator gives an absolute priority to the highest value

than the other values of the vector. That is the idea we find in the leximax ordering.

Theorem 5.6 Let d be a distance measure, ω an interpretation and m=max({d(ω,ω ′) |ω,ω ′ ∈

Ω}). Consider W = [w1, . . . ,wn], where wi =
δ i−1

(1+δ )i , for i 6= n and wn =
δ n−1

(1+δ )n−1 . If δ ≤ 1
m , then

∆
d,Wδ
µ satisfies (HE).

Proof. See Appendix D.
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In other words, ∆
d,Wδ
µ is not equivalent to ∆

d,leximax
µ (E), but as every belief set E

has a finite number of belief bases, which are also finite, it is possible to find a δ ′ such that

∆
d,W

δ ′
µ (E)≡ ∆

d,leximax
µ (E).

5.5 Conclusions

In this chapter, we proposed Ordered Weighted Averaging (OWA) operators as belief

merging operators. The class of OWA operators includes maximum, minimum and the simple

average. Besides, it is powerful enough to encompass other operators such as the median,

cumulative sum and leximax.

OWA merging operators exploit a set of weights to generate different kind of priorities

among the information. For instance, maximum and leximax operators are known to give absolute

priority to the worst information in a group. With a set of weights, we are free to determine

what information has more priority or not. It is important because, for example, we can explore

different forms of egalitarianism.

(IC2) (IC5) (IC6) (IC6b) (Maj) (Arb) (PD) (HE)

∆
d,W
µ THM. 5.3 COR. 5.1 COR. 5.1 THM. 5.2 COR. 5.1 THM. 5.4 THM. 5.5 THM. 5.6

∆
d,SOα

µ 0 < α < 1 α = 1 0 < α < 1 α = 0
∆

d,SAα

µ 0 < α < 1 α = 1 0 < α < 1 α = n
∆

d,stepk
µ k = 1

∆
d,windowk,m
µ k = 1 k = 1, m = n k = 1, m = n k = 1, m = n k = 1, m = n

∆
d,Wb
µ COR. 5.5

∆
d,Web
µ COR. 5.5 COR. 5.5 COR. 5.5

Table 25 – Summary of Logical Properties (6).

Regarding egalitarian operators, generally they do not satisfy all the usual IC postu-

lates in belief merging. Some are included in a family of belief merging operators called pre-IC

merging operators. As a result of this chapter, we showed some OWA merging operators that are

included in this family.

The choice of the weights plays a fundamental role in the relation of the satisfaction

of some IC logical postulates. In general, logical postulates like (IC2), (IC5), (IC6), (Maj) and

(Arb) are not satisfied by OWA merging operators. We showed in this chapter that when some

conditions are met, these properties can hold. Furthermore, we still explored two egalitarian

conditions: Pigou-Dalton and Hammond Equity. We also proved that these conditions can be

satisfied when some restrictions are applied to the weights. Therefore, OWA merging operators
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are powerful enough to represent IC and pre-IC merging operators.

As future work we intend to find necessary and sufficient conditions to satisfy (IC5),

(IC6), (Maj), (Arb) and (HE). Another task involves to investigate new families of OWA

operators and under which conditions they are IC or pre-IC merging operators.

Table 25 summarizes the main contributions of this chapter. Remember that all of

these operators satisfy (IC0), (IC1), (IC3), (IC4), (IC5b), (IC7) and (IC8).
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6 FINAL CONCLUSIONS

In this thesis, we proposed to combine the area of belief merging with the theories of

distributive justice. As said in the beginning of this work, the distributive justice is associated

with the four concepts of justice. They are Equality, Fairness, Desert and Rights. We focused

mainly on these two first concepts of justice along the chapters.

Equality states that our treatment of agents ought to reflect they are all morally

equal. There are no morally relevant differences between agents which make it permissible to

treat them differently. As a consequence, it states that each agent should receive an equal share

of amounts. In the context of belief merging, the operators max and leximax are related with this

concept, as they promote a merging with less injustice by giving preference to the worst cases

in a group. Using this as a starting point, in Chapter 3, we considered two max refinements of

belief merging operators: they are Discrimax and T-conorms.

Discrimax is based on the elimination of identical singleton elements at the same

position (difference set) and the comparison of the maximum with the remaining elements. It

refines max as when the difference set is empty, it is equivalent to Maximum. On the other hand,

T-conorms are functions stronger than the max operator, using the interval [0,1] instead of the

classical values 0 or 1.

The big problem when it comes to max in belief merging is the loss of postulate

(IC6), which is bypassed with its extension to leximax. The same can be observed with Discrimax

and T-conorms. With the Discrimax it is even worse as it also loses (IC1) (due to the loss of

transitivity). Again, this can also be remedied by a lexi version of these operators. We extend

T-conorms to lexiT-conorms with the aim of making them an IC merging operator (satisfying

all the basic postulates). In the literature, there is also a lexi version of Discrimax, called

lexidiscrimax (FORTEMPS; PIRLOT, 2004), but it has been proved to be equivalent to leximax

and, therefore, it was not used in this work.

Still speaking of equality, another important point is the question of the contribution

of each agent in a group. In chapter 4, we considered the concept of sufficientarianism in belief

merging. In this approach, we give preference to agents who have not contributed enough (they

have not reached an estimated level, called commonly as the sufficiency line). These agents are

in a need situation and our goal is to help them to improve. We can also call this approach as

equality from necessity.

We used as base in the study of sufficientarianism the operators of headcount,
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shortfall and a generalization of them called FGT index. Headcount counts the number of agents

who are in need. On the other hand, shortfall counts the amount of value of these agents who are

in need.

Sufficientarianism has an interesting feature that says that not always the best group

of agents (or the best outcomes) will be exactly the result of merging. This is equivalent to

the loss of the basic postulate (IC2). To circumvent this and turn the sufficientarian operators

into IC merging operators, we resorted to another doctrine of sufficiency, called axiological

sufficientarianism. It considers important to help the agents in need, and in addition, the amount

of the total contribution of the group is also taken into account. That is enough to bring the

satisfaction of (IC2). With this we show that the operators of axiological sufficientarianism are

IC merging operators.

We can cite two main contributions for this thesis. The first one is to bring different

forms of distributive justice to belief merging and check if they are compatible with IC belief

merging operators. We have shown that equality and necessity are concepts of egalitarianism

that are in some way compatible with belief merging, through lexiT-conorms and axiological

sufficientarianism. It is an important result because the area of propositional belief merging was

grounded on only two subclasses of operators: majority (based on utilitarianism) and arbitration

(based on egalitarianism) operators, and we brought new options for operators besides them.

The second contribution is to analyze these theories of distributive justice, through

the logical properties that characterize their behaviors. We analyzed the leximax principle from a

starting point, which is one of the main characterizations when we deal with egalitarianism. In

Chapter 3, we saw the relationship between the Discrimax, the T-conorms and lexiT-conorms

with this principle. In Chapter 4, we have seen the Povertymax principle, which is deeply related

to sufficientarianism. We showed how the headcount and shortfall operators relate to it and we

also compared the leximax and Povertymax principles, that is, we compared the egalitarianism

and sufficiency in terms of merging operators. All this work contributes to hierarchize these

operators with respect to their rationality, i.e., the satisfaction of the logical properties.

Finally, in chapter 5, we looked at OWA operators in belief merging. The motivation

comes from the notion of Fairness, in the sense that we must treat similar cases in the same

way. OWA operators are powerful operators that ranges from the maximum to the minimum, and

allow us to give different priorities for each level of information. They do not give preference

to the agents themselves, but to the values presented within the group of agents. Similar cases
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within the group can be seen as the order of the information, such as the worst case of the group,

the second worst case, etc... OWA operators allow us to treat them together or separately, among

all possible combinations.

We showed that OWA operators offer a weaker form of egalitarianism when com-

pared to max, leximax, Discrimax or T-conorms, since they do not satisfy, in general, three

postulates: (IC2), (IC5) and (IC6). However, there are some classes of OWA operators that

have interesting properties. We have proved there are some OWA classes that are characterized

by being pre-IC merging operators, a weaker form of IC merging operators, and some classes

of operators that are also IC merging operators, and it is even possible to represent leximax

depending on the chosen parameters. Pre-IC merging operators are a general family of belief

merging operators where the Pareto-related conditions (IC5) and (IC6) are replaced by unanimity

conditions, denoted by (IC5b) and (IC6b). They are relevant because it is known in the literature

that egalitarian operators tend not to be compatible with Pareto conditions (TUNGODDEN;

VALLENTYNE, 2005), that is, Pareto conditions are not a mandatory property to be satisfied

when we are considering Distributive Justice.

6.1 Future Works

It is possible to extend the results of this thesis to work on belief merging with

Desert and Rights. As for Desert, it uses the idea that agents ought to get what they deserve (i.e.,

good deeds should be rewarded, and bad deeds should be punished). For instance, we can define

a belief merging model in which agents receive weights that represent rewards or punishments,

something similar to what happens with the Pr-Merge model or OWA operators, but in this case,

rather than prioritizing information, it is given to the agents themselves.

An initial research on this area was done, based on these works (FEINBERG, 1970;

MILLER, 1976; MILLER, 1990; SADURSKI, 2010; DICK, 1975; LAMONT, 1997), where it

were presented a catalog of types of desert claims: a student might deserve a high grade in virtue

of having written a good paper; an athlete might deserve a prize in virtue of having excelled

in a competition; a successful researcher might deserve an expression of gratitude in virtue of

having perfected a disease-preventing serum; etc. In all these familiar cases, the deserver is

an agent. Desert claims also typically involve a desert. A typical desert claim is that someone

deserves something from someone on some basis. For example, consider the claim that a certain

student deserves a high grade from her teacher because she did an excellent work in the course.
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This is the thing that the deserver is said to deserve. When we consider our framework of belief

merging this claim is a little simpler: an agent deserves a better well-being from the choice of

the group in virtue of she has a high grade of deserving. The well-being measured here is the

distance value between interpretations and belief bases, and the grade of deserving is an arbitrary

numerical value.

At a first view, when we deal with Desert on belief merging, the main logical

postulates that conflict with the theory of distributive justice are (IC2), (IC3) and (IC4). The

problem with (IC2) comes from the same situation of the sufficientarianism. (IC3) and (IC4)

also cannot be satisfied because these operators may have the same problem of the Pr-merge:

they can be sensitive to syntax and are tended to give more preference to some agents than the

others. The main question about this approach is if there exists a desertarian merging operator

that is an IC merging operator.

With relation to the idea of inserting Rights in belief merging, one direction to

explore is the connection between the belief merging and the Judgment Aggregation areas

(PIGOZZI, 2016). The question judgment aggregation addresses is how we can define aggre-

gation procedures that preserve individual rationality at the collective level. Thus, the formal

approach to judgment aggregation can serve to cast light on the dependence between individual

and collective beliefs. We can think in a model of belief merging where if a right of an agent is

violated, he/she has a legitimate claim against them, since they have an obligation to respect the

rights of each agent.
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APPENDIX A – PROOF THEOREMS - CHAPTER 2

Theorems 2.4 and 2.5. Proof: (IC0) By definition ∆
d,min
µ (E)⊆ mod(µ).

(IC1) min is a function with values inN, so if mod(µ) 6= /0, there is always a minimal

model ω of µ such that for every model ω ′ of µ , dmin(ω,E)≤ dmin(ω
′,E). So ω |= ∆

d,min
µ (E)

and ∆
d,min
µ (E) |=⊥.

(IC2) As a counterexample, suppose that (d(ω,K1,ω,K2)) = (0,0) and (d(ω ′,K1,

ω ′,K2)) = (0,1). We have that ω,ω ′ ∈ ∆
d,min
µ (E), but ω ′ 6|=

∧
E ∧µ .

(IC3) Assume that E1 ≡ E2 and µ1 ≡ µ2. Hence we can find a permutation δ such

that for every i ∈ 1, . . . ,n,Kδ (i) ≡ K′i . Now, since d(ω,Kδ (i)) = d(ω,K′i ) one gets dmin(ω,E1) =

min(d(ω,K1), . . . ,d(ω,Kn)) = dmin(ω,E2). Consequently ∆
d,min
µ (E1)≡ ∆

d,min
µ (E2).

(IC4) Suppose that ∆
d,min
µ ({K1,K2})∧K1 6|= ⊥ and that ∆

d,min
µ ({K1,K2})∧K2 6|=

⊥. As a consequence, we have min
ω|=K1

min(d(ω,K1),d(ω,K2)) = min
ω|=K2

min(d(ω,K1),d(ω,K2)),

because min
ω|=K1

min(0,d(ω,K2)) = min
ω|=K2

min(d(ω,K1),0) = 0.

(IC5) It is enough to show that the following property holds: if dmin(ω,E1) ≤

dmin(ω
′,E1) and dmin(ω,E2) ≤ dmin(ω

′,E2), then dmin(ω,E1 tE2) ≤ dmin(ω
′,E1 tE2). It is

easy to see that this property is satisfied.

(IC6) It is enough to show that the following property holds: if dmin(ω,E1) <

dmin(ω
′,E1) and dmin(ω,E2) ≤ dmin(ω

′,E2), then dmin(ω,E1 tE2) < dmin(ω
′,E1 tE2). This

property is not satisfied by min. A counter-example is E1 = {K1,K2}, where K1 = {(a∧¬b)},

K2 = {(a∧ b)} and E2 = {K3}, where K3 = {(a∧ b)∨ (¬a∧¬b)}. We have dmin(ω4,E2) =

0 < dmin(ω2,E2) = 1 and dmin(ω4,E1) = 0 ≤ dmin(ω2,E2) = 0, but dmin(ω4,E1 tE2) = 0 =

dmin(ω2,E1tE2) = 0.

Ω dH(ω,K1) dH(ω,K2) dH min(ω,E1) dH min(ω,E2) dH min(ω,E1tE2)
ω1 = ¬a¬b 1 2 1 0 0
ω2 = a¬b 0 1 0 1 0
ω3 = ¬ab 2 1 1 1 1
ω4 = ab 1 0 0 0 0

(IC6’) It is enough to show that the following property holds: if dmin(ω,E1) <

dmin(ω
′,E1) and dmin(ω,E2) < dmin(ω

′,E2), then dmin(ω,E1 tE2) < dmin(ω
′,E1 tE2). It is

easy to see that this property is satisfied.

(IC7) Suppose ω |= ∆
d,min
µ1 (E) ∧ µ2. For any ω ′ |= µ1, we have dmin(ω,E) ≤

dmin(ω
′,E). Hence ω ′ |= µ1∧µ2,dmin(ω,E)≤ dmin(ω

′,E). Subsequently ω |= ∆
d,min
µ1∧µ2(E).
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(IC8) Suppose that ∆
d,min
µ1 (E)∧ µ2 is consistent. Then there exists a model ω ′ of

∆
d,min
µ1 (E)∧ µ2. Consider a model ω of ∆

d,min
µ1∧µ2

(E) and suppose that ω 6|= ∆
d,min
µ1 (E). We have

dmin(ω
′,E) < dmin(ω,E), and since ω ′ |= µ1 ∧ µ2, we have ω 6∈ min(mod(µ1 ∧ µ2),≤d,min

E ),

hence ω 6|= ∆
d,min
µ1∧µ2

(E). Contradiction.

(Maj) ∆
d,min
µ does not satisfy (Maj). We can find a counter-example where the

repetition of one base does not change the result. Consider the following counter-example:

Let µ = >, E1 = {K1} = {a∧ b} and E2 = {K2} = {¬a∧¬b}. Clearly, we have ∆
d,min
µ (E1t

E2t·· ·tE2︸ ︷︷ ︸
n

) 6≡ ∆
d,min
µ (E2) for any n ∈N.

(Arb) ∆min
µ does not satisfy (Arb). Consider the following counter-example: K1 =

{a∧ b},K2 = {¬a∧¬b},µ1 = ¬(a∧ b) and µ2 = a∨ b. We have that ∆
d,min
µ1∨µ2

({K1,K2}) =

(ω1∨ω4) 6≡ (ω2∨ω3) = ∆
d,min
µ1 ({K1}).

Ω dH(ω,K1) dH(ω,K2) dH min(ω,{K1,K2})
ω1 = ¬a¬b 2 0 0
ω2 = a¬b 1 1 1
ω3 = ¬ab 1 1 1
ω4 = ab 0 2 0

(Temp) Let E = {K1, . . . ,Kn}. For each Ki, there is ω that ω |= Ki. By definition

d(ω,Ki) = 0 and then, dmin(ω,E) = 0. Consequently, ω ∈ mod(∆d,min
> (E)).

(CSS) Let E = {K1, . . . ,Kn}. For each Ki, there is ω that ω |= Ki. By definition

d(ω,Ki) = 0 and then, dmin(ω,E) = 0. Consequently, if ω |= µ , then ω ∈ mod(∆d,min
µ (E)).

�

Theorems 2.9 and 2.11. Proof: (IC6’) (Counterexample taken from (EVERA-

ERE et al., 2014)) Suppose k = 0.5, and ω1 such that dmed0.5(ω1,E1) = med0.5(0,0) = 0,

dmed0.5(ω1,E2)=med0.5(3,4,4)= 4 and accordingly dmed0.5(ω1,E1tE2)=med0.5(0,0,3,4,4)=

3. Suppose ω2 such that dmed0.5(ω2,E1)=med0.5(1,1)= 1, dmed0.5(ω2,E2)=med0.5(2,6,7)= 6

and dmed0.5(ω2, E1 tE2) = med0.5(1,1,2,6, 7) = 2. Let µ = ω1 ∨ω2, mod(∆d,med0.5

µ (E1)) =

{ω1} and

mod(∆d,med0.5

µ (E2)) = {ω1}, whereas mod(∆d,med0.5

µ (E1tE2)) = {ω2}. This example shows that

(IC6’) is not satisfied.

(Temp)/(CSS) It is easy to see that these properties are not satisfied (the example

above can even be used to construct the counterexamples).

Theorem 2.11 is similar to Theorem 2.9.
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�

Theorem 2.14. Proof: (HI) Let E = {K1, . . . ,Kn}. Suppose that for ω,ω ′ ∈ Ω,

∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j) and ∀l 6= i, j d(ω,Kl) =

d(ω ′,Kl) holds. Then we can build the lists Ld,E
ω = (dω

1 , . . . ,d
ω
n ) and Ld,E

ω ′ = (dω ′
1 , . . . ,dω ′

n ) by

sorting the elements in increasing order, where dω
i = d(ω,Ki).

• If dω
1 = d(ω,Ki), then d(ω,Ki) < d(ω ′,Kl), for all l 6= i. Then Ld,E

ω <lex Ld,E
ω ′ and

ω <d,leximin
E ω ′.

• Otherwise, dω
1 = d(ω,Kl), where l 6= i, j. In this case, d(ω,Kl) = d(ω ′,Kl). Then, the

previous step is repeated for dω
2 . Consequently, there will be an i, where dω

i < dω ′
i and

then ω <d,leximin
E ω ′.

�

Theorem 2.16. Proof: (IE) Let E = {K1, . . . ,Kn}. Suppose that for ω,ω ′ ∈ Ω,

∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)< d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j), d(ω ′,Ki)−d(ω,Ki) =

d(ω,K j)− d(ω ′,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) holds. Since d(ω ′,Ki)− d(ω,Ki) =

d(ω,K j)−d(ω ′,K j), we have that d(ω ′,Ki)+d(ω ′,K j) = d(ω,K j)+d(ω,Ki). By definition,

dsum(ω,E)=∑(d(ω,K1), . . . ,d(ω,Ki), . . . ,d(ω,K j), . . . , d(ω,Kn))=∑(d(ω ′,K1), . . . ,d(ω ′,Ki),

. . . ,d(ω ′,K j), . . . , d(ω ′,Kn)) = dsum(ω
′,E). Then ω ≈d,sum

E ω ′.

�

Theorem 2.18. Proof: Let E = {K1, . . . ,Kn} be a belief set and E ′ = {K′1, . . . ,K′n}

its corresponding normalized belief set. We want to show that ∆
ps,sum
µ (E ′) ≡ ∆

d,sum
µ (E) and

∆
ps,min
µ (E ′) ≡ ∆

d,max
µ (E). Let V be the number of propositional variables of E and op ∈

{sum,min}. Then the partial satisfiability of each Ki ∈ E ′ (i.e., ω(Ki)) ranges from {0, 1
V , . . . ,

V
V }.

It is easy to see that there exists a correspondence of the partial satisfiability with the Hamming

distance, which ranges from {0, . . . ,V}. If the partial satisfiability of a belief base Ki is equal

to m, this means that its highest value clause satisfies m literals. Consequently, the Hamming

distance of Ki (i.e., dH(ω,Ki)) is equal to V −m, that is, it is needed to change V −m literals in

order to satisfy Ki.

Let ω ∈ ∆
ps,sum
µ (E ′). By definition, the outcome ω is in max(mod(µ),≤ps,sum

E ′ ), that

is, the sum of the partial satisfiability of ω is greater or equal than any other ω ′. This implies

that the Hamming distance between ω and E w.r.t. the sum operator is less or equal to any other

ω ′. Consequently, ω is in min(mod(µ),≤dH ,sum
E ) and ω ∈ ∆

dH ,sum
µ (E). The same ideia can be

used to show that ∆
ps,min
µ (E ′)≡ ∆

d,max
µ (E).
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�

Theorem 2.19. Proof: The proof is very similar to the Theorem 2.18. The only

difference in the construction is that the partial satisfiability ω(Ki) of each Ki ∈ E ′ ranges from

{0, 1
V , . . . ,

V
V } and the satisfiability ldH ,ω

i ranges from {0,1, . . . ,V} and the mapping is direct: 0

maps to 0, and for every other m, it maps to 1
m .

�

Theorem 2.20. Proof: Similar to the previous proofs, but with the restriction that

the drastic distance values include only {0,1}.

�

Theorem 2.21. Proof: (IC0) By definition, ∆
pr,op
µ (E)⊆ mod(µ).

(IC1) The function ω(E) maps to values in R, so if mod(µ) 6= /0, there is a model ω

of µ such that for every model ω ′ of µ , ω(E)≥ ω ′(E). So ω |= ∆
pr
µ (E) and ∆

pr
µ (E) 6|=⊥.

(IC2) By assumption,
∧

E is consistent and without loss of generality let E =

{K1, . . . ,Kn}. There exists ω such that ω |= (c11 ∨ ·· · ∨ c1k)∧ ·· · ∧ (cn1 ∨ ·· · ∨ cnm), where

K1 = {c11, . . . ,c1k}, . . . ,Kn = {cn1, . . . ,cnm}. By definition, ω(K1) = max{ω(c11), . . . ,ω(c1n)}

and as ω |= (c11∨ ·· ·∨ c1n), there is a clause c1 j such that ω |= c1 j. It is easy to see that this

clause has the maximum value, i.e. ω(ci j) = 1 (see the Definition 4). Thus, ω(K1) will also

receive the maximum possible value. The same idea holds for every Ki, 1≤ i≤ n. Hence, as

ω(E) =
n

∑
i=1

1
ai
×ω(Ki), for every ω ′, ω(E)≥ω ′(E) (the same holds for ω×(E)). So ω |=∆

pr
µ (E)

if and only if ω |=
∧

E ∧µ .

(IC5) In order to show that the operator satisfy (IC5), it is enough to guarantee

that the following property holds: if ω(E1)≥ ω ′(E1) and ω(E2)≥ ω ′(E2), then ω(E1tE2)≥

ω ′(E1tE2). We can see clearly that this is satisfied.

(IC6) In order to show that the operator satisfy (IC6), it is enough to guarantee

that the following property holds: if ω(E1)> ω ′(E1) and ω(E2)≥ ω ′(E2), then ω(E1tE2)>

ω ′(E1tE2). We can see clearly that this is satisfied.

(IC7) Suppose that ω |= ∆
pr
µ1(E)∧ µ2. For any ω ′ |= µ1, we have ω(E) ≥ ω ′(E).

Hence, for any ω ′ |= µ1∧µ2, we have ω(E)≥ ω ′(E). Subsequently ω |= ∆
pr
µ1∧µ2

(E).

(IC8) Suppose that ∆
pr
µ1(E)∧ µ2 is consistent. Then there exists a model ω ′ of

∆
pr
µ1(E)∧ µ2. Consider a model ω of ∆

pr
µ1∧µ2

(E) and suppose that ω 6|= ∆
pr
µ1(E). In this case

ω ′(E) > ω(E), and since ω ′ |= µ1 ∧ µ2, we have ω 6∈ ∆
pr
µ1∧µ2

(E) = max(mod(µ1 ∧ µ2),≤pr
E ),

hence ω 6|= ∆
pr
µ1∧µ2

(E). Contradiction.
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(Maj) Showing that the operator satisfies (Maj) is easy from the properties of

sum. Since ω(E) =
n

∑
i=1

1
ai
×ω(Ki), without loss of generality we can assume two cases: (i)

let ω be a model for ∆
pr
µ (E1 t E2) and for all ω ′, ω(E2) ≥ ω ′(E2). In this case, we also

have that ω is a model for ∆
pr
µ (E2), and for every n, ∆

pr
µ (E1 tEn

2) |= ∆
pr
µ (E2); (ii) let ω be

a model for ∆
pr
µ (E1 tE2) and there is a ω ′ such that ω(E2) < ω ′(E2). In this case we can

always find a number n of repetitions to E2 such that ω ′ will be a model for ∆
pr
µ (E1tEn

2), i.e.,

ω ′(E2)×n+ω ′(E1)> ω(E2)×n+ω(E1). Consequently, ∆
pr
µ (E1tEn

2) |= ∆
pr
µ (E2).

�
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APPENDIX B – PROOF THEOREMS - CHAPTER 3

Theorem 3.1. Proof: (IC0) By definition, mod(∆d,discrimax
µ (E))⊆ mod(µ).

(IC1) As discrimax is not transitive we do not have a guarantee that always exists a

ω such that ω |= ∆
d,discrimax
µ (E).

(IC2) By assumption,
∧

E is consistent and without loss of generality let E =

{K1, . . . , Kn}. There exists ω such that ω |= (c11 ∨ ·· · ∨ c1k)∧ ·· · ∧ (cn1 ∨ ·· · ∨ cnm), where

K1 = {c11∨·· ·∨ c1k}, . . . ,Kn = {cn1∨·· ·∨ cnm}. By definition, d(ω,Ki) = 0 if ω |= Ki, so we

have (d(ω,K1), . . . ,d(ω,Kn)) = (0,0, . . . ,0). Therefore, for every ω ′, (d(ω,K1), . . . ,d(ω,Kn))

≤disc (d(ω ′,K1), . . . ,d(ω ′,Kn)). So ω |= ∆
d,discrimax
µ (E) if and only if ω |=

∧
E ∧µ .

(IC3) Let E1 = {K1, . . . ,Kn} and E2 = {K′1, . . . ,K′n} be belief sets and suppose that

E1 ≡ E2 and µ1↔ µ2. Hence we can find a function f such that for every i,Ki ≡ f (K′i ), and if

(d(ω,K1), . . . ,d(ω,Kn))≤disc (d(ω ′,K1), . . . , d(ω ′,Kn)), then (d(ω, f (K′1)), . . . ,d(ω, f (K′n)))

≤disc (d(ω ′, f (K′1)), . . . ,d(ω
′, f (K′n))). Consequently, ∆

d,discrimax
µ1 (E1)≡ ∆

d,discrimax
µ1 (E2).

(IC4) Let K1 and K2 be a belief bases and suppose that ∆
d,discrimax
µ ({K1,K2})∧

K1 6|= ⊥. We have min
ω|=K1

(d(ω,K1), d(ω,K2)) = min
ω|=K1

(0,d(ω,K2)). By the definition of dis-

tance, it holds that min
ω|=K1

d(ω,K2) = min
ω|=K2

d(ω,K1). Therefore, min
ω|=K1

(d(ω,K1), d(ω,K2)) =

min
ω|=K1

(0,d(ω,K2)) = min
ω|=K2

(d(ω,K1),0) = min
ω|=K2

(d(ω,K1),d(ω,K2)). Then,

∆
d,discrimax
µ ({K1,K2})∧K2 6|=⊥.

(IC5) It is enough to guarantee that if (d(ω,K1), . . . , d(ω,Kn)) ≤disc (d(ω ′,K1),

. . . ,d(ω ′,Kn)) and (d(ω,K′1), . . . , d(ω,K′n)) ≤disc (d(ω ′,K′1), . . . ,d(ω
′,K′n)), then (d(ω,K1),

. . . ,d(ω,Kn), d(ω,K′1), . . . ,d(ω,K′n))≤disc (d(ω ′,K1), . . . , d(ω ′,Kn), d(ω ′,K′1), . . . ,d(ω
′,K′n)).

It is easy to see that this holds.

(IC6) discrimax falsifies (IC6) when it is the case that discrimax = max.

(IC7) Suppose that ω |= ∆
d,discrimax
µ1 (E)∧µ2. For any ω ′ |= µ1, we have (d(ω,K1),

. . . ,d(ω,Kn))≤disc (d(ω ′,K1), . . . ,d(ω ′,Kn)). Hence, for any ω ′ |= µ1∧µ2, we have (d(ω,K1),

. . . ,d(ω,Kn))≤disc (d(ω ′,K1), . . . ,d(ω ′,Kn)). As result, ω |= ∆
d,discrimax
µ1∧µ2

(E).

(IC8) Suppose that ∆
d,discrimax
µ1 (E) ∧ µ2 is consistent. Then there exists a mo-

del ω ′ of ∆
d,discrimax
µ1 (E)∧ µ2. Consider a model ω of ∆

d,discrimax
µ1∧µ2

(E) and suppose that ω 6|=

∆
d,discrimax
µ1 (E). In this case, (d(ω ′,K1), . . . ,d(ω ′,Kn))<disc (d(ω,K1), . . . , d(ω,Kn)), and since

ω ′ |= µ1 ∧ µ2, we have ω 6∈ mod(∆d,discrimax
µ1∧µ2

(E)) = min(mod (µ1 ∧ µ2),≤d,discrimax
E ). Hence

ω 6|= ∆
d,discrimax
µ1∧µ2

(E). Contradiction.
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(Arb) We can show that the following property holds: If ω <d,discrimax
K1

ω ′,

ω <d,discrimax
K2

ω ′′ and ω ′ ≈d,discrimax
{K1,K2} ω ′′, then ω <d,discrimax

{K1,K2} ω ′. Suppose that ω <d,discrimax
K1

ω ′,ω <d,discrimax
K2

ω ′′ and ω ′ ≈d,discrimax
{K1,K2} ω ′′. Consequently, d(ω,K1) < d(ω ′,K1), d(ω,K2) <

d(ω ′′,K2) and (d(ω ′,K1), d(ω ′,K2)) =disc (d(ω ′′,K1), d(ω ′′,K2)). W.l.o.g. assume that

d(ω,K1) ≤ d(ω,K2), then we have (d(ω,K1),d(ω, K2)) <disc (d(ω ′,K1), d(ω ′,K2)). There-

fore, ω <d,discrimax
{K1,K2} ω ′.

(HE) Suppose that ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki) < d(ω ′,Ki) < d(ω ′,K j) <

d(ω,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl), then max
k∈D(ω,ω ′)

d(ω ′,Kk) < max
k∈D(ω,ω ′)

d(ω,Kk)⇒

d(ω ′,K j) < d(ω,K j), where D(ω,ω ′) = {k ∈ {1, . . . ,n} | d(ω,Ki) 6= d(ω ′,Ki)}. Therefore,

ω ′ <d,discrimax
E ω .

(SP) Similar to (IC6).

(A) By definition, a≤disc b⇔ a = b or max
i∈D(a,b)

ai ≤ max
i∈D(a,b)

bi. If b is a permutation

of a then a = b or max
i∈D(a,b)

ai = max
i∈D(a,b)

bi. Therefore, a≈disc b.

�

Theorem 3.2. Proof: Suppose that (DM) holds. Assume that ∃i, j ∈ {1, . . . ,n} such

that d(ω,Ki) < d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl). Then, it is

true that ω ′ <d,op
E ω , because by the definition of (DM), ∃ j ∈ {1, . . . ,n} : d(ω,K j)< d(ω ′,K j)

and ∀i{1, . . . ,n}[d(ω,Ki)≤ max(d(ω ′,Ki), d(ω ′,K j))]. (SP) also follows directly from (DM).

For (A), note that ld,E
ω = (dω

1 , . . . ,d
ω
n ), the list of distances, has a maximum value

max = dω
k and for any permutation σ , ∃i,dω

σ(i) ≤ dω
k . If dω

σ(i) < dω
k , then ∀ j, dω

σ( j) ≤ dω
k and

consequently, ω ≤d,op
E σ(ω) (with the same idea we can show the converse and that ω ≈d,op

E

σ(ω)). If dω

σ(i) = dω
k , we can repeat the same idea used before to find another maximum less

than dω
k and consequently show that ω ≤d,op

E σ(ω). The case where σ is equal to the identity is

trivial.

�

Theorem 3.3. Proof: (IC0) By definition, ∆
d,⊕
µ (E)⊆ mod(µ).

(IC1) The function d⊕(ω,E) maps to values in the interval [0,1], so if mod(µ) 6= /0,

there is a model ω of µ such that for every model ω ′ of µ , d⊕(ω,E) ≤ d⊕(ω ′,E). So ω |=

∆
d,⊕
µ (E) and ∆

d,⊕
µ (E) 6|=⊥.

(IC2) By assumption,
∧

E is consistent and without loss of generality let E =

{K1, . . . , Kn}. There exists ω such that ω |= (c11∨·· ·∨c1k)∧·· ·∧ (cn1∨·· ·∨cnm), where K1 =

{c11∨·· ·∨ c1k}, . . . ,Kn = {cn1∨·· ·∨ cnm}. By definition, d(ω,Ki) = 0 if ω |= Ki, so we have
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d⊕(ω,E) =⊕
{

d(ω,K1)
M , . . . , d(ω,Kn)

M

}
= {0,0, . . . ,0}= 0. Therefore, for every ω ′, d⊕(ω,E)≤

d⊕(ω ′,E). So ω |= ∆
d,⊕
µ (E) if and only if ω |=

∧
E ∧µ .

(IC3) Let E1 = {K1, . . . ,Kn} and E2 = {K′1, . . . ,K′n} be belief sets and suppose

that E1 ≡ E2 and µ1 ↔ µ2. Hence we can find a permutation σ such that for every i ∈

{1, . . . ,n},Kσ(i)≡K′i . Now, since⊕ satisfies symmetry (i.e. for any permutation σ ,⊕{x1, . . . ,xm}=

⊕{σ(x1, . . . ,xm)}) one gets d⊕(ω,E1) =⊕
{

d(ω,K1)
M , . . . , d(ω,Kn)

M

}
= d⊕(ω,E2). Consequently,

∆
d,⊕
µ1 (E1)≡ ∆

d,⊕
µ1 (E2).

(IC4) Let K1 and K2 be a belief bases and suppose that ∆
d,⊕
µ ({K1,K2})∧K1 6|=⊥. We

have min
ω|=K1

⊕{d(ω,K1),d(ω,K2)}= min
ω|=K1

⊕{0,d(ω,K2)}= min
ω|=K1

d(ω,K2). By the definition of

distance, it holds that min
ω|=K1

d(ω,K2)= min
ω|=K2

d(ω,K1). Therefore, min
ω|=K1

⊕{d(ω,K1),d(ω,K2)}=

min
ω|=K1

d(ω,K2) = min
ω|=K2

d(ω,K1) = min
ω|=K2

⊕{d(ω,K1),0} = min
ω|=K2

⊕{d(ω,K1),d(ω,K2)}. Then,

∆
d,⊕
µ ({K1,K2})∧K2 6|=⊥.

(IC5) In order to show that the operator satisfy (IC5), it is enough to guarantee

that the following property holds: if d⊕(ω,E1)≤ d⊕(ω ′,E1) and d⊕(ω,E2)≤ d⊕(ω ′,E2), then

d⊕(ω,E1tE2)≤ d⊕(ω ′,E1tE2). Let E1 = {K11, . . . ,K1n}, E2 = {K21, . . . ,K2m} and suppose

that d⊕(ω,E1)≤ d⊕(ω ′,E1) and d⊕(ω,E2)≤ d⊕(ω ′,E2) hold. By definition,

⊕
{

d(ω,K11)
M , . . . , d(ω,K1n)

M

}
≤⊕

{
d(ω ′,K11)

M , . . . , d(ω ′,K1n)
M

}
and

⊕
{

d(ω,K21)
M , . . . , d(ω,K2m)

M

}
≤⊕

{
d(ω ′,K21)

M , . . . , d(ω ′,K2m)
M

}
.

Then,

⊕
{

d(ω,K11)
M , . . . , d(ω,K1n)

M , d(ω,K21)
M , . . . , d(ω,K2m)

M

}
≤

⊕
{

d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M , d(ω,K21)
M , . . . , d(ω,K2m)

M

}
and ⊕

{
d(ω,K21)

M , . . . , d(ω,K2m)
M , d(ω ′,K11)

M , . . . , d(ω ′,K1n)
M

}
≤

⊕
{

d(ω ′,K21)
M , . . . , d(ω ′,K2m)

M , d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M

}
,

as if a≥ b then ⊕{a,c} ≥ ⊕{b,c} (monotonicity). Thus, by commutativity,

⊕
{

d(ω,K11)
M , . . . , d(ω,K1n)

M , d(ω,K21)
M , . . . , d(ω,K2m)

M

}
≤

⊕
{

d(ω,K21)
M , . . . , d(ω,K2m)

M , d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M

}
and

⊕
{

d(ω,K21)
M , . . . , d(ω,K2m)

M , d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M

}
≤

⊕
{

d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M , d(ω ′,K21)
M , . . . , d(ω ′,K2m)

M

}
.

By transitivity, we have that
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⊕
{

d(ω,K11)
M , . . . , d(ω,K1n)

M , d(ω,K21)
M , . . . , d(ω,K2m)

M

}
≤

⊕
{

d(ω ′,K11)
M , . . . , d(ω ′,K1n)

M , d(ω ′,K21)
M , . . . , d(ω ′,K2m)

M

}
.

That is, d⊕(ω,E1tE2)≤ d⊕(ω ′,E1tE2).

(IC7) Suppose that ω |= ∆
d,⊕
µ1 (E)∧ µ2. For any ω ′ |= µ1, we have d⊕(ω,E) ≤

d⊕(ω ′,E). Hence, for any ω ′ |= µ1 ∧ µ2, we have d⊕(ω,E) ≤ d⊕(ω ′,E). As result, ω |=

∆
d,⊕
µ1∧µ2

(E).

(IC8) Suppose that ∆
d,⊕
µ1 (E)∧ µ2 is consistent. Then there exists a model ω ′ of

∆
d,⊕
µ1 (E)∧µ2. Consider a model ω of ∆

d,⊕
µ1∧µ2

(E) and suppose that ω 6|= ∆
d,⊕
µ1 (E). In this case,

d⊕(ω ′,E)< d⊕(ω,E), and since ω ′ |= µ1∧µ2, we have ω 6∈mod(∆d,⊕
µ1∧µ2

(E)) =min(mod(µ1∧

µ2),≤d,⊕
E ). Hence ω 6|= ∆

d,⊕
µ1∧µ2

(E). Contradiction.

(Maj) We can find a counter-example where the repetition of one base does not

change the result. Consider the following counter-example: Let µ =>, E1 = {K1}= {{a∧b}}

and E2 = {K2}= {{¬a∧¬b}}. Clearly, we have ∆
d,⊕
µ (E1tE2t·· ·tE2︸ ︷︷ ︸

n

) 6≡ ∆
d,⊕
µ (E2) for any

T-conorm ⊕ and n ∈N.

�

Theorem 3.4. Proof: -∆d,⊕M
µ :

(Arb) To show that the operator satisfies (Arb), we can show that the following

property holds: If ω <d,⊕M
K1

ω ′,ω <d,⊕M
K2

ω ′′ and ω ′ ≈d,⊕M
{K1,K2} ω ′′, then ω <d,⊕M

{K1,K2} ω ′.

Suppose that ω <d,⊕M
K1

ω ′,ω <d,⊕M
K2

ω ′′ and ω ′≈d,⊕M
{K1,K2} ω ′′. Then we have d(ω,K1)<

d(ω ′,K1), d(ω,K2)< d(ω ′′,K2) and max
{

d(ω ′,K1)
M , d(ω ′,K2)

M

}
=max

{
d(ω ′′,K1)

M , d(ω ′′,K2)
M

}
. W.l.o.g.

assume that d(ω,K1)< d(ω,K2) and that if

• max
{

d(ω ′,K1)
M , d(ω ′,K2)

M

}
= d(ω ′,K1)

M . Then, max
{

d(ω,K1)
M , d(ω,K2)

M

}
= d(ω,K2)

M and d(ω,K2)
M <

d(ω ′,K1)
M . Suppose that d(ω,K2)

M 6< d(ω ′,K1)
M . As d(ω,K2)

M < d(ω ′′,K2)
M , then

max
{

d(ω ′′,K1)
M , d(ω ′′,K2)

M

}
= d(ω ′′,K2)

M 6= d(ω ′,K1)
M . Contradiction.

Therefore, ω <d,⊕M
{K1,K2} ω ′.

• max
{

d(ω ′,K1)
M , d(ω ′,K2)

M

}
= d(ω ′,K2)

M . We have that d(ω,K1)
M < d(ω ′,K2)

M and d(ω,K2)
M < d(ω ′,K2)

M

(previous item). Therefore, ω <d,⊕M
{K1,K2} ω ′.

(HP) Suppose that ω1 <
d,⊕M
E ω2. Then, by definition max

{
d(ω1,K1)

M , . . . , d(ω1,Kn)
M

}
<

max
{

d(ω2,K1)
M , . . . , d(ω2,Kn)

M

}
. Consider ω ′1,ω

′
2 such that ∃i ∈ {1, . . . ,n}, d(ω1,Ki) < d(ω ′1,Ki),

d(ω2,Ki)< d(ω ′2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j), d(ω2,K j) = d(ω ′2,K j).
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If d(ω ′2,Ki) > d(ω ′1,Ki), then we need to show that max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M ,

. . . , d(ω1,Kn)
M

}
< max

{
d(ω2,K1)

M , . . . ,
d(ω ′2,Ki)

M , . . . , d(ω2,Kn)
M

}
:

• If max
{

d(ω1,K1)
M , . . . , d(ω1,Kn)

M

}
= d(ω1,K1)

M , then it is clear that

max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M , . . . , d(ω1,Kn)

M

}
< max

{
d(ω2,K1)

M , . . . ,
d(ω ′2,Ki)

M , . . . , d(ω2,Kn)
M

}
, be-

cause d(ω ′2,Ki)
M >

d(ω ′1,Ki)
M .

• If max
{

d(ω1,K1)
M , . . . , d(ω1,Kn)

M

}
6= d(ω1,K1)

M , but

max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M , . . . , d(ω1,Kn)

M

}
=

d(ω ′1,K1)
M . Then

max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M , . . . , d(ω1,Kn)

M

}
<

max
{

d(ω2,K1)
M , . . . ,

d(ω ′2,Ki)
M , . . . , d(ω2,Kn)

M

}
is true since d(ω ′2,Ki)

M >
d(ω ′1,Ki)

M .

• If max
{

d(ω1,K1)
M , . . . , d(ω1,Kn)

M

}
6= d(ω1,K1)

M , and

max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M , . . . , d(ω1,Kn)

M

}
6= d(ω ′1,K1)

M . Then

max
{

d(ω1,K1)
M , . . . ,

d(ω ′1,Ki)
M , . . . , d(ω1,Kn)

M

}
<

max
{

d(ω2,K1)
M , . . . ,

d(ω ′2,Ki)
M , . . . , d(ω2,Kn)

M

}
since max

{
d(ω1,K1)

M , . . . , d(ω1,Kn)
M

}
< max

{
d(ω2,K1)

M , . . . , d(ω2,Kn)
M

}
.

-∆d,⊕P
µ :

(IC6-1) To show that (IC6-1) is satisfied for ∆
d,⊕P
µ , it is enough to guarantee that the

following property holds: if d⊕P(ω,E1)< d⊕P(ω
′,E1) and d⊕P(ω,E2)≤ d⊕P(ω

′,E2) 6= 1, then

d⊕P(ω,E1tE2)< d⊕P(ω
′,E1tE2). We can see that this is satisfied.

(PD-1) The Pigou-Dalton (with annihilator 1) condition can be defined alternati-

vely in the following way: Let d be a distance measure. An operator op satisfies the Pigou-

Dalton principle iff for any belief set E = {K1, . . . ,Kn}, if ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)<

d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j), d(ω ′,Ki) = d(ω,Ki)+δ , d(ω ′,K j) = d(ω,K j)−δ and ∀l 6=

i, j d(ω,Kl) = d(ω ′,Kl), then dop(ω
′,E)< dop(ω,E).

So, assume that d(ω,Ki) = x, d(ω,K j) = y, d(ω ′,Ki) = x+δ and d(ω ′,K j) = y−δ .

We want to show that x
M + y

M −
x
M ·

y
M > (x+δ )

M + (y−δ )
M − (x+δ )

M · (y−δ )
M , then

x
M

+
y
M
− x

M
· y

M
>

x
M

+
y
M
− (

x
M
· y

M
− δ

M
· x

M
+

δ

M
· y

M
− δ 2

M2 ),

>
x
M

+
y
M
− (

x
M
· y

M
+

δ

M2 · (y− x︸︷︷︸
>δ

−δ )).

So, we have ω ′ <d,⊕P
E ω .

(Arb) To show that the operator does not satisfy (Arb), we can show that the fol-

lowing property does not hold: If ω <d,⊕P
K1

ω ′,ω <d,⊕P
K2

ω ′′ and ω ′ ≈d,⊕P
{K1,K2} ω ′′, then ω <d,⊕P

{K1,K2}
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ω ′. Suppose that M = 4, d(ω,K1) = d(ω,K2) = 2, d(ω ′,K1) = d(ω ′′,K2) = 3 and d(ω ′,K2) =

d(ω ′′,K1) = 0. Then,

• ω <d,⊕P
K1

ω ′, since d(ω,K1)< d(ω ′,K1).

• ω <d,⊕P
K2

ω ′′, since d(ω,K2)< d(ω ′′,K2).

• ω ′ ≈d,⊕P
{K1,K2} ω ′′, since 3

4 +0− 3
4 ·0 = 0+ 3

4 −0 · 3
4 = 3

4 .

But, ω ≈d,⊕P
{K1,K2} ω ′, since 1

2 +
1
2 −

1
2 ·

1
2 = 3

4 = 3
4 +0− 3

4 ·0.

(HE-1) A counterexample for⊕P is M = 4, d(ω,K1) = 3,d(ω,K2) = 0,d(ω ′,K1) =

d(ω ′,K2) = 2. We have d(ω,K1) > d(ω ′,K1) ≥ d(ω ′,K2) > d(ω,K2), but ω ′ <d,⊕P
{K1,K2} ω is

false.

(HP) A counterexample for⊕P is M = 6, d(ω1,K1) = 4,d(ω1,K2) = 0,d(ω2,K1) =

1,d(ω2,K2) = 4, d(ω ′1,K1) = 4,d(ω ′1,K2) = 4,d(ω ′2,K1) = 1,d(ω ′2,K2) = 5.

ω1 <
d,⊕P
K1,K2

ω2 since 4
6 +

0
6 −

4
6 ·

0
6 = 0.666 < 0.722 = 1

6 +
4
6 −

1
6 ·

4
6 , but ω ′1 <

d,⊕P
K1,K2

ω ′2

is false since 4
6 +

4
6 −

4
6 ·

4
6 = 0.888 > 0.861 = 1

6 +
5
6 −

1
6 ·

5
6 .

�

Theorem 3.5. Proof: Let ⊕ be a strict T-conorm, i.e., ⊕{x,y}<⊕{x,z} whenever

x < 1 and y < z. Assume that d⊕(ω,E1)< d⊕(ω ′,E1) (y < z) and d⊕(ω,E2)≤ d⊕(ω ′,E2) 6= 1

(x ≤ x′ < 1). Assume in the worst case that d⊕(ω,E2) = d⊕(ω ′,E2) 6= 1. As ⊕ is strict, by

its definition we have then d⊕(ω,E1tE2)< d⊕(ω ′,E1tE2). Clearly, this is the definition of

(IC6-1).

�

Proposition 3.2. Proof: (IC6-1) The property d⊕(ω,E1)< d⊕(ω ′,E1) and

d⊕(ω,E2) ≤ d⊕(ω ′,E2) 6= 1 ⇒ d⊕(ω,E1 t E2) < d⊕(ω ′,E1 t E2) does not hold for the T-

conorms ⊕L and ⊕D, a counter-example is E1 = {K1,K2}, where K1 = {(¬a∧ b)}, K2 =

{(a∧b)} and E2 = {K3,K4}, where K3 = {(a∧b)∨ (¬a∧¬b)} and K4 = {(¬b∧a)}.

(Arb) Consider the following counter-example: K1 = {a∧b},K2 = {¬a∧¬b},µ1 =

¬(a∧b) and µ2 = a∨b. We have that ∆
d,⊕
µ1∨µ2

({K1,K2}) 6≡ ∆
d,⊕
µ1 ({K1}), when ⊕ ∈ {⊕L,⊕D}.

(HE-1), and (PD-1). It is easy to see some examples where these properties are not

satisfied for ⊕L and ⊕D. For instance, when M = 5, d(ω,Ki) = 1, d(ω,K j) = 3, d(ω ′,Ki) = 2

and d(ω ′,K j) = 2, (HE-1) and (PD-1) are not satisfied.

(HP) A counterexample for ⊕L is M = 4, d(ω1,K1) = 1,d(ω1,K2) = 2,d(ω2,K1)

= 2,d(ω2,K2) = 3, d(ω ′1,K1) = 1,d(ω ′1,K2) = 3,d(ω ′2,K1) = 2,d(ω ′2,K2) = 4. A counterexam-

ple for ⊕D is M = 4, d(ω1,K1) = 1,d(ω1,K2) = 0,d(ω2,K1) = 1,d(ω2,K2) = 1, d(ω ′1,K1) =
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1,d(ω ′1,K2) = 1,d(ω ′2,K1) = 1,d(ω ′2,K2) = 2.

�

Proposition 3.3. Proof: Let ⊕ be a nilpotent T-conorm, i.e., there is an element a ∈

]0,1[ called nilpotent element that there exists some n ∈N such that ⊕{a, . . . ,a}︸ ︷︷ ︸
n

= 1. For (IC6-

1), assume that d⊕(ω,E1)< d⊕(ω ′,E1) and d⊕(ω,E2)≤ d⊕(ω ′,E2) 6= 1. If d⊕(ω,E1)≥ a and

d⊕(ω,E2)≥ a, then it is possible that d⊕(ω,E1tE2) = 1 and consequently d⊕(ω ′,E1tE2) = 1,

falsifying the postulate.

The idea is similar for (HE-1) and (PD-1). The problem comes from the condition

∀l 6= i, j d(ω,Kl)= d(ω ′,Kl) 6= 1 contained in both postulates. If ∀l 6= i, j d(ω,Kl)= d(ω ′,Kl)≥

a, then possibly d⊕(ω,E) = d⊕(ω ′,E) = 1, falsifying the postulates.

For (HP), it is similar: for ∀ j 6= i if d(ω,K j)≥ a, then possibly d⊕(ω,E) = 1.

�

Theorem 3.6. Proof: (IC6-1) It is enough to guarantee that the following property

holds: if d⊕SS
λ

(ω,E1) < d⊕SS
λ

(ω ′,E1) and d⊕SS
λ

(ω,E2) ≤ d⊕SS
λ

(ω ′,E2) 6= 1, then d⊕SS
λ

(ω,E1 t

E2)< d⊕SS
λ

(ω ′,E1tE2), for λ ∈]−∞,−1] (for λ = 0, ⊕SS
λ

=⊕P).

Assume that d⊕SS
λ

(ω,E1) = x1, d⊕SS
λ

(ω,E2) = y1, d⊕SS
λ

(ω ′,E1) = x2, d⊕SS
λ

(ω ′,E2)

= y2, x1 < x2 and y1≤ y2 6= 1. We want to show that 1−(max(((1−x1)
λ +(1−y1)

λ−1),0))
1
λ <

1− (max(((1− x2)
λ +(1− y2)

λ − 1),0))
1
λ . As x1 < x2 (y1 ≤ y2), then (1− x1)

λ < (1− x2)
λ

((1− y1)
λ ≤ (1− y2)

λ ), since λ ∈]−∞,−1]. Then,

1− (max(((1− x1)
λ +(1− y1)

λ −1),0))
1
λ < 1− (max(((1− x2)

λ +(1− y2)
λ −1),0))

1
λ ,

(max(((1− x1)
λ +(1− y1)

λ︸ ︷︷ ︸
>1

−1),0))
1
λ > (max(((1− x2)

λ +(1− y2)
λ︸ ︷︷ ︸

>1

−1),0))
1
λ ,

max(((1− x1)
λ +(1− y1)

λ︸ ︷︷ ︸
>1

−1),0)< max(((1− x2)
λ +(1− y2)

λ︸ ︷︷ ︸
>1

−1),0),(λ ∈]−∞,−1])

(1− x1)
λ +(1− y1)

λ −1 < (1− x2)
λ +(1− y2)

λ −1,

(1− x1)
λ +(1− y1)

λ < (1− x2)
λ +(1− y2)

λ .

To prove (HE-1), we have to show that if ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki) >

d(ω ′,Ki)≥ d(ω ′,K j)> d(ω,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1, then ω ′ <
d,⊕SS

λ

E ω . Let

n be the number of variables in E and λ = −
⌊2n

3

⌋
. We will consider only the worst cases,

where d(ω,Ki) and d(ω,K j) have the lowest values and d(ω ′,Ki) and d(ω ′,K j) have the highest
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values. Proving for these cases, will also guarantee the result for any arbitrary values. For

instance, if n = 4, we can check the property for the case where d(ω,Ki) = 3, d(ω,K j) = 0 and

d(ω ′,Ki) = d(ω ′,K j) = 2.

To show (HE-1), we need to guarantee only that
(

1− d(ω,Ki)
M

)λ

+
(

1− d(ω,K j)
M

)λ

>(
1− d(ω ′,Ki)

M

)λ

+
(

1− d(ω ′,K j)
M

)λ

.

For n≥ 3 and λ =−2n
3 :

(
1− d(ω,Ki)

n

)λ

+

(
1−

d(ω,K j)

n

)λ

>

(
1− d(ω ′,Ki)

n

)λ

+

(
1−

d(ω ′,K j)

n

)λ

,

(
1− y

n

)λ

+(1−0)λ > 2.
(

1− y−1
n

)λ

,(
n− y

n

)− 2n
3

> 2.
(

n− y+1
n

)− 2n
3

,(1≤ y≤ n−2)(
n

n− y

) 2n
3

> 2.
(

n
n− y+1

) 2n
3

,

n
2n
3

(n− y)
2n
3
> 2.

n
2n
3

(n− y+1)
2n
3
,(x = n− y)

1

x
2n
3
> 2.

1

(x+1)
2n
3
,

2.x
2n
3 < (x+1)

2n
3 ,

8.x2n < (x+1)2n.

We have the following results:

•
(2n

1

)
.x2n−1 = 2n.x2n−1 > 2x.x2n−1 = 2.x2n. (since n > x)

•
(2n

2

)
.x2n−2 = 2n.(2n−1).x2n−2 = 4.x2n−2.x2n−1 = 2.x2n.(2− 1

x
)︸ ︷︷ ︸

≥1

.

•
(2n

3

)
.x2n−3 = 2n.(2n−1).(2n−2).x2n−3 = 8.x2n−12.x2n−1 +4.x2n−2 =

4.x2n.(2− 3
x
+

1
x2 )︸ ︷︷ ︸

> 1
2

.

•
(2n

4

)
.x2n−4 = 2n.(2n−1).(2n−2).(2n−3).x2n−4 = 8.x2n−36.x2n−1+44.x2n−2−12.x2n−3 =

4.x2n.(2− 9
x
+

11
x2 −

3
x3 )︸ ︷︷ ︸

>0

.

Then, 8.x2n < x2n +

(
2n
1

)
.x2n−1︸ ︷︷ ︸

>2.x2n

+

(
2n
2

)
.x2n−2︸ ︷︷ ︸

>2.x2n

+

(
2n
3

)
.x2n−3︸ ︷︷ ︸

>2.x2n

+
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(
2n
4

)
.x2n−4︸ ︷︷ ︸

≈x2n to >2.x2n

+ · · ·+1.

(Arb) To prove that the operator satisfies (Arb), we can show that the following

property holds: If ω <
d,⊕SS

λ

K1
ω ′,ω <

d,⊕SS
λ

K2
ω ′′ and ω ′ ≈d,⊕SS

λ

{K1,K2} ω ′′, then ω <
d,⊕SS

λ

{K1,K2} ω ′. W.l.o.g.

we can consider that d(ω ′,K1) > d(ω,K1) ≥ d(ω,K2) > d(ω ′,K2) and treat the problem as a

restriction of the Hammond Equity condition. Consequently, ω <
d,⊕SS

λ

{K1,K2} ω ′ will hold when

λ ≤−
⌊2n

3

⌋
.

(HP) It comes as a consequence of the fact that (HE-1) + (SP-1) + (A) is equivalent

to (HP) + (SP-1) + (A).

(PD-1) This condition can be defined in the following way: If ∃i, j ∈ {1, . . . ,n},

δ > 0 such that d(ω,Ki) > d(ω ′,Ki) ≥ d(ω ′,K j) > d(ω,K j), d(ω ′,Ki) = d(ω,Ki)− δ and

d(ω ′,K j) = d(ω,K j)+δ and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1, then ω ′ <
d,⊕SS

λ

E ω .

So, assume that d(ω,Ki) = x, d(ω,K j) = y, d(ω ′,Ki) = x−δ and d(ω ′,K j) = y+δ .

We want to show that 1− (max(((1− x)λ +(1− y)λ − 1),0))
1
λ > 1− (max(((1− (x− δ ))λ +

(1− (y+δ ))λ −1),0))
1
λ . It is equivalent to show that (considering λ ∈ ]−∞,−1]):

(
1− x

M

)λ

+
(

1− y
M

)λ

>

(
1− x−δ

M

)λ

+

(
1− y+δ

M

)λ

,(
M− x

M

)λ

+

(
M− y

M

)λ

>

(
M− x+δ

M

)λ

+

(
M− y−δ

M

)λ

.

Assume that M = n, M− x = a, M− y = b and δ = c. As x > y and x−δ ≥ y+δ ,

when x+δ = y−δ , then we have y = x−2.δ − d
n and:
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(a
n

)λ

+

(
b
n

)λ

>
(a

n
− c

n

)λ

+

(
b
n
+

c
n

)λ

,( let λ =−m)(a
n

)−m
+

(
a
n
− 2.c

n
− d

n

)−m

>
(a

n
− c

n

)−m
+

(
a
n
− c

n
− d

n

)−m

,(a
n

)−m
+

(
a−2.c−d

n

)−m

>

(
a− c

n

)−m

+

(
a− c−d

n

)−m

,

nm

am +
nm

(a−2.c−d)m >
nm

(a− c)m +
nm

(a− c−d)m ,

1
am +

1
(a−2.c−d)m >

1
(a− c)m +

1
(a− c−d)m ,

1+
am

(a−2.c−d)m >
am

(a− c)m +
am

(a− c−d)m ,

(a−2.c−d)m +am >
am.(a−2.c−d)m

(a− c)m +
am.(a−2.c−d)m

(a− c−d)m ,

(a− c)m.(a− c−d)m.((a−2.c−d)m +am)> am.(a−2.c−d)m.((a− c−d)m +(a− c)m),

(a− c)m.(a−2c−d)m.((a− c−d)m−am)> am.(a− c−d)m.((a−2c−d)m− (a− c)m),

(a− c−d)m−am > am.(a− c−d)m.
((a−2c−d)m− (a− c)m)

(a−2c−d)m.(a− c)m︸ ︷︷ ︸
< 1

am

.

So, we have ω ′ <
ps,⊕SS

λ

E ω .

�

Theorem 3.7. Proof: (IC6-1) It is enough to guarantee that the following property

holds: if d⊕F
λ

(ω,E1)< d⊕F
λ

(ω ′,E1) and d⊕F
λ

(ω,E2)≤ d⊕F
λ

(ω ′,E2) 6= 1, then d⊕F
λ

(ω,E1tE2)<

d⊕F
λ

(ω ′,E1tE2), for λ ∈ [1,∞[. Assume that d⊕F
λ

(ω,E1) = x1, d⊕F
λ

(ω,E2) = y1, d⊕F
λ

(ω ′,E1) =

x2, d⊕F
λ

(ω ′,E2) = y2, x1 < x2 and y1 ≤ y2. So,

1− logλ

1+
(λ 1− x2

M −1).(λ 1− y2
M −1)

λ −1︸ ︷︷ ︸
<

> 1− logλ

1+
(λ 1− x1

M −1).(λ 1− y1
M −1)

λ −1︸ ︷︷ ︸
>

.

Then, d⊕F
λ

(ω,E1tE2)< d⊕F
λ

(ω ′,E1tE2).
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(PD-1) We need to show that

1− logλ

(
1+

(λ 1−x−1)(λ 1−y−1)
λ −1

)
> 1− logλ

(
1+

(λ 1−(x−δ )−1)(λ 1−(y+δ )−1)
λ −1

)
,

logλ

(
1+

(λ 1−x−1)(λ 1−y−1)
λ −1

)
< logλ

(
1+

(λ 1−(x−δ )−1)(λ 1−(y+δ )−1)
λ −1

)
,

1+
(λ 1−x−1)(λ 1−y−1)

λ −1
< 1+

(λ 1−(x−δ )−1)(λ 1−(y+δ )−1)
λ −1

,

(λ 1−x−1)(λ 1−y−1)
λ −1

<
(λ 1−(x−δ )−1)(λ 1−(y+δ )−1)

λ −1
,

(λ 1−x−1)(λ 1−y−1)< (λ 1−(x−δ )−1)(λ 1−(y+δ )−1),

λ
2−x−y−λ

1−x−λ
1−y +1 < λ

2−x−y−λ
1−x+δ −λ

1−y−δ +1,

−(λ 1−x +λ
1−y)<−(λ 1−x+δ +λ

1−y−δ ),

λ
1−x +λ

1−y > λ
1−x+δ +λ

1−y−δ ,

λ
1− x′

M +λ
1− y′

M > λ
1− x′+δ

M +λ
1− y′−δ

M ,

λ
M−x′

M +λ
M−y′

M > λ
M−x′−δ

M +λ
M−y′+δ

M ,

λ
a
n +λ

a−2c−d
n > λ

a−c
n +λ

a−c−d
n ,

λ
a
n .(1+λ

−2c−d
n )> λ

a
n .(λ−

c
n +λ

−c−d
n ),

1+
1

λ
2c+d

n
>

1
λ

c
n
+

1

λ
c+d

n
,

λ
2c+d

n +1

λ
2c+d

n
>

λ
c+d

n +λ
c
n

λ
2c+d

n
,

λ
2c+d

n +1 > λ
c+d

n +λ
c
n .

(HE-1) A counterexample for ⊕F
λ

is M = 4, d(ω,K1) = 3,d(ω,K2) = 0,d(ω ′,K1)

= d(ω ′,K2) = 2. We have d(ω,K1)> d(ω ′,K1)≥ d(ω ′,K2)> d(ω,K2), but ω ′ <
d,⊕F

λ

{K1,K2} ω is

false when λ = 2. The same example can be used to create a counterexample for (Arb).

(HP) A counterexample for ⊕F is M = 6, d(ω1,K1) = 4,d(ω1,K2) = 0,d(ω2,K1)

= 1,d(ω2,K2) = 4, d(ω ′1,K1) = 4,d(ω ′1,K2) = 4,d(ω ′2,K1) = 1,d(ω ′2,K2) = 5, for λ = 3.

�

Theorem 3.8. Proof: To prove (HE-1), we have to show that if ∃i, j ∈ {1, . . . ,n}

such that d(ω,Ki) > d(ω ′,Ki) ≥ d(ω ′,K j) > d(ω,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1,

then ω ′ <
d,⊕F

λ

E ω . Let n be the number of variables in E and λ = 10−n. We will consider only

the worst cases, where d(ω,Ki) and d(ω,K j) have the lowest values and d(ω ′,Ki) and d(ω ′,K j)

have the highest values. Proving for these cases, will also guarantee the result for any arbitrary
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values. For instance, if n = 4, we can check the property for the case where d(ω,Ki) = 3,

d(ω,K j) = 0 and d(ω ′,Ki) = d(ω ′,K j) = 2.

To show (HE-1), we need to guarantee only that

1− logλ

1+
(λ 1− d(ω,Ki)

n −1)(λ 1−
d(ω,K j)

n −1)
λ −1

> 1− logλ

1+
(λ 1− d(ω ′,Ki)

n −1)(λ 1−
d(ω ′,K j)

n −1)
λ −1

 ,

logλ

1+
(λ 1− d(ω,Ki)

n −1)(λ 1−
d(ω,K j)

n −1)
λ −1

< logλ

1+
(λ 1− d(ω ′,Ki)

n −1)(λ 1−
d(ω ′,Kj)

n −1)
λ −1

 ,

1+
(λ 1− d(ω,Ki)

n −1)(λ 1−
d(ω,Kj)

n −1)
λ −1

< 1+
(λ 1− d(ω ′,Ki)

n −1)(λ 1−
d(ω ′,Kj)

n −1)
λ −1

,

(λ 1− d(ω,Ki)
n −1)(λ 1−

d(ω,Kj)
n −1)< (λ 1− d(ω ′,Ki)

n −1)(λ 1−
d(ω ′,Kj)

n −1),

(λ 1− y
n −1)(λ 1− 0

n −1)< (λ 1− y−1
n −1)(λ 1− y−1

n −1),

(10−(n−y)−1)(10−n−1)< (10−(n−y+1)−1)(10−(n−y+1)−1), (λ = 10−n)

10−(2n−y)−10−(n−y)−10−n +1 < 10−2(n−y+1)−2.10−(n−y+1)+1,

10−(2n−y)−10−(n−y)−10−n < 10−2(n−y+1)−2.10−(n−y+1),

10−(n+1)−10−1−10−n < 10−4−2.10−2, (y≤ n−1)

10−(n+1)−10−n < 10−4−2.10−2 +10−1,

1
100 . . .0︸ ︷︷ ︸

n+1

− 1
100 . . .0︸ ︷︷ ︸

n

<
1

10000
− 2

100
+

1
10

, (n≥ 3)

1
10000

− 1
1000

<
1

10000
− 2

100
+

1
10

,

1
1000

>
2

100
− 1

10
,

1
1000

>− 8
100

.

(Arb) To prove that the operator satisfies (Arb), we can show that the following

property holds: If ω <
d,⊕F

λ

K1
ω ′,ω <

d,⊕F
λ

K2
ω ′′ and ω ′ ≈d,⊕F

λ

{K1,K2} ω ′′, then ω <
d,⊕F

λ

{K1,K2} ω ′. W.l.o.g.

we can consider that d(ω ′,K1) > d(ω,K1) ≥ d(ω,K2) > d(ω ′,K2) and treat the problem as a

restriction of the Hammond Equity condition. Consequently, ω <
d,⊕F

λ

{K1,K2} ω ′ will hold when

0 < λ ≤ 10−n.

(HP) It comes as a consequence of the fact that (HE-1) + (SP-1) + (A) is equivalent

to (HP) + (SP-1) + (A).

�
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Theorem 3.9. Proof: To prove (Arb), we can show that the following property

holds: If ω <
d,⊕Y

λ

K1
ω ′,ω <

d,⊕Y
λ

K2
ω ′′ and ω ′ ≈d,⊕Y

λ

{K1,K2} ω ′′, then ω <
d,⊕Y

λ

{K1,K2} ω ′. W.l.o.g. we can

consider that d(ω ′,K1)> d(ω,K1)≥ d(ω,K2)> d(ω ′,K2) and treat the problem as a restriction

of the Hammond Equity condition.

We will consider only the worst cases, where d(ω,Ki) and d(ω,K j) have the lowest

values and d(ω ′,Ki) and d(ω ′,K j) have the highest values. Proving for these cases, will also

guarantee the result for any arbitrary values. For instance, if n = 4, we can check the property

for the case where d(ω,Ki) = 3, d(ω,K j) = 0 and d(ω ′,Ki) = d(ω ′,K j) = 2. Let n be the

number of variables in K1,K2 and λ =
⌊2n

3

⌋
. We need to guarantee that d⊕Y

λ

(ω,{K1,K2}) >

d⊕Y
λ

(ω ′,{K1,K2}), that is

min

((d(ω,Ki)

n

)λ

+

(
d(ω,K j)

n

)λ
) 1

λ

,1

> min

((d(ω ′,Ki)

n

)λ

+

(
d(ω ′,K j)

n

)λ
) 1

λ

,1

 ,

((
d(ω,Ki)

n

)λ

+

(
d(ω,K j)

n

)λ
) 1

λ

>

((
d(ω ′,Ki)

n

)λ

+

(
d(ω ′,K j)

n

)λ
) 1

λ

,

(
d(ω,Ki)

n

)λ

+

(
d(ω,K j)

n

)λ

>

(
d(ω ′,Ki)

n

)λ

+

(
d(ω ′,K j)

n

)λ

,

(y
n

)λ

>

(
y−1

n

)λ

+

(
y−1

n

)λ

,

(y
n

)λ

> 2.
(

y−1
n

)λ

,

(y
n

) 2n
3
> 2.

(
y−1

n

) 2n
3

,

y
2n
3

n
2n
3
> 2.

(y−1)
2n
3

n
2n
3

,

y
2n
3 > 2.(y−1)

2n
3 ,

y2n > 8.(y−1)2n. (Similar to Theorem 6).

Yager T-conorm is nilpotent, i.e., it is continuous and if each a ∈]0,1[ is a nilpotent

element. An element a ∈]0,1[ is called a nilpotent element of ⊕ if there exists some n ∈N such

that ⊕{a, . . . ,a}︸ ︷︷ ︸
n

= 1. In other terms, there are other elements besides the annihilator that results

in 1 with the T-conorm application. We will show that for the possible highest value different

from 1 (which is n−1
n ), λ > log( n

n−1)
2 is sufficient to guarantee d⊕Y

λ

(ω,{K1,K2})< 1. We need

to guarantee that min(
((1

n

)λ
+
(1

n

)λ
) 1

λ

,0)< 1, that is,
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((
n−1

n

)λ

+

(
n−1

n

)λ
) 1

λ

< 1,

2.
(

n−1
n

)λ

< 1,

λ
√

2.
(

n−1
n

)
< 1,

λ
√

2 <

(
n

n−1

)
,

log( λ
√

2)< log
(

n
n−1

)
,

1
λ
.log2 < log

(
n

n−1

)
,

log2 < λ .log
(

n
n−1

)
,

log2
log
( n

n−1

) < λ ,

log( n
n−1)

2 < λ .

As λ =
⌊2n

3

⌋
> log( n

n−1)
2, then we still guarantee 1 > d⊕Y

λ

(ω,{K1,K2})>

d⊕Y
λ

(ω ′,{K1,K2}) and (Arb) is satisfied.

�

Theorem 3.10. Proof: (Arb) A counterexample for⊕SW
λ

is d(ω,K1)= 3,d(ω,K2)=

0,d(ω ′,K1) = d(ω ′,K2) = 2,d(ω ′′,K1) = 0,d(ω ′′,K2) = 3. We have ω ′ <
d,⊕SW

λ

K1
ω,ω ′ <

d,⊕SW
λ

K2

ω ′′ and ω ≈d,⊕SW
λ

{K1,K2} ω ′′, but ω ′ <
d,⊕SW

λ

{K1,K2} ω is false when λ ≥ 0.

�

Theorem 3.15. Proof: (IC6) We need to show that if ω1 ≤d,lexi⊕
E1

ω2 and ω1 <
d,lexi⊕
E2

ω2, then ω1 <
d,lexi⊕
E1tE2

ω2. For strict T-conorms:

• Case 1: ¯ld,E1,⊕
ω1 = (dω1

1 , . . . ,dω1
2n−1) = (dω2

1 , . . . ,dω2
2n−1) =

¯ld,E1,⊕
ω2 = (1,1,1, . . . ,1). In this

case, we have ¯ld,E1tE2,⊕
ω1 =(1,1,1, . . . ,1,dω1

k , . . . ,dω1
2m−1)< (1,1,1, . . . ,1,dω2

k , . . . ,dω2
2m−1)=

¯ld,E1tE2,⊕
ω2 . It is easy to see that dω1

k < dω2
k because ω1 <

d,lexi⊕
E2

ω2.

• Case 2: ¯ld,E1,⊕
ω1 = (dω1

1 , . . . ,dω1
2n−1) = (dω2

1 , . . . ,dω2
2n−1) =

¯ld,E1,⊕
ω2 . In this case,

– If ∃i,dω1
i = 1, we can use an argument similar to the Case 1.

– If ∀i,dω1
i 6= 1, then ¯ld,E1tE2,⊕

ω1 = (dω1
1 , . . . ,dω1

2m−1)< (,dω2
1 , . . . ,dω2

2m−1) =
¯ld,E1tE2,⊕

ω2 . It

is easy to see that dω1
1 < dω2

1 since the values from ¯ld,E1,⊕
ω1 do not interfere in the

result.
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• Case 3: ¯ld,E1,⊕
ω1 = (dω1

1 , . . . ,dω1
2n−1)<L (dω2

1 , . . . ,dω2
2n−1) =

¯ld,E1,⊕
ω2 . Similar to the Case 2.

For nilpotent T-conorms: A T-conorm is called nilpotent if it is continuous and if

each a ∈]0,1[ is a nilpotent element. An element a ∈]0,1[ is called a nilpotent element of ⊕ if

there exists some n ∈N such that ⊕{a, . . . ,a}︸ ︷︷ ︸
n

= 1.

For the special case where there is a nilpotent element, we can use similar argument

of the strict T-conorms since we can ignore the 1’s from the vector and compare only then

remaining values. For the other cases, the proof is analagous to the strict case.

�

Theorem 3.16. Proof: Similar to the Theorem 3.15.

�

Theorem 3.17. Proof:

• If ∆
d,⊕
µ satisfies (HE-1). then ∆

d,lexi⊕
µ satisfies (HE);

Suppose that ∆
d,⊕
µ satisfies (HE-1). By Definition, (HE-1) If ∃i, j ∈ {1, . . . ,n} such

that d(ω,Ki) < d(ω ′,Ki) < d(ω ′,K j) < d(ω,K j) and ∀l 6= i, j d(ω,Kl) = d(ω ′,Kl) 6= 1, then

d⊕(ω ′,E)< d⊕(ω,E).

We need to show that ∆
d,lexi⊕
µ satisfies (HE). By Definition, (HE-1) If ∃i, j ∈

{1, . . . ,n} such that d(ω,Ki) < d(ω ′,Ki) < d(ω ′,K j) < d(ω,K j) and ∀l 6= i, j d(ω,Kl) =

d(ω ′,Kl), then ω ′ <d,lexi⊕
E ω . We need to show only the case where ∃l,d(ω,Kl) = d(ω ′,Kl) = 1,

since the other case are proved from the assumption. If theres exists such l, then ¯ld,E,⊕
ω ′ =

(dω ′
1 , . . . ,dω ′

2n−1)= (1,1, . . . ,1,dω ′
k , . . . ,dω ′

2n−1) and ¯ld,E,⊕
ω =(dω

1 , . . . , dω
2n−1)= (1,1, . . . ,1,dω

k , . . . ,

dω
2n−1). Therefore, we have ¯ld,E,⊕

ω ′ <lex
¯ld,E,⊕

ω j by the assumption done before.

• If ∆
d,⊕
µ satisfies (PD-1). then ∆

d,lexi⊕
µ satisfies (PD); and

• If ∆
d,⊕
µ satisfies (SP-1). then ∆

d,lexi⊕
µ satisfies (SP).

These cases are analogous to the first case. �
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Theorem 4.1. Proof: (IC0) By definition, mod(∆d,hcs
µ (E))⊆ mod(µ).

(IC1) The function hc(ω,d,E,s) maps to values in N, so if mod(µ) 6= /0, there

is a model ω of µ such that for every model ω ′ of µ , hc(ω,d,E,s) ≤ hc(ω ′,d,E,s). So

ω |= ∆
d,hcs
µ (E) and ∆

d,hcs
µ (E) 6|=⊥.

(IC3) Let E1 = {K1, . . . ,Kn} and E2 = {K′1, . . . ,K′n} be belief sets and suppose

that E1 ≡ E2 and µ1 ↔ µ2. Hence we can find a permutation σ such that for every i ∈

{1, . . . ,n},Kσ(i)≡K′i . Now, since hc satisfies symmetry one gets hc(ω,d,E1,s) = hc(ω,d,E2,s).

Consequently, ∆
d,hcs
µ1 (E1)≡ ∆

d,hcs
µ1 (E2).

(IC4) Let K1 and K2 be a belief bases and suppose that ∆
d,hcs
µ ({K1,K2})∧K1 6|=⊥.

We have min
ω|=K1

hc(ω,d,{K1,K2},s) = 0, if d(ω,K2)< s; 1, otherwise (d(ω,K1) = 0). By the defi-

nition of distance, it holds that min
ω|=K1

d(ω,K2)= min
ω|=K2

d(ω,K1). Therefore, min
ω|=K1

hc(ω,d,{K1,K2},

s) = min
ω|=K2

hc(ω,d,{K1,K2},s). Then, ∆
d,hcs
µ ({K1,K2})∧K2 6|=⊥.

(IC5) In order to show that the operator satisfy (IC5), it is enough to guaran-

tee that the following property holds: if hc(ω,d,E1,s) ≤ hc(ω ′,d,E1,s) and hc(ω,d,E2,s) ≤

hc(ω ′,d,E2,s), then hc(ω,d,E1tE2,s) ≤ hc(ω ′,d,E1t,s). Clearly, we can see that this pro-

perty holds.

(IC6) In order to show that the operator satisfy (IC6), it is enough to guaran-

tee that the following property holds: if hc(ω,d,E1,s) < hc(ω ′,d,E1,s) and hc(ω,d,E2,s) ≤

hc(ω ′,d,E2,s), then hc(ω,d,E1tE2,s) < hc(ω ′,d,E1t,s). Clearly, we can see that this pro-

perty holds.

(IC7) Suppose that ω |= ∆
d,hcs
µ1 (E)∧µ2. For any ω ′ |= µ1, we have hc(ω,d,E,s)≤

hc(ω ′,d,E,s). Hence, for any ω ′ |= µ1∧µ2, we have hc(ω,d,E,s)≤ hc(ω ′,d,E,s). As result,

ω |= ∆
d,hcs
µ1∧µ2

(E).

(IC8) Suppose that ∆
d,hcs
µ1 (E)∧ µ2 is consistent. Then there exists a model ω ′ of

∆
d,hcs
µ1 (E)∧ µ2. Consider a model ω of ∆

d,hcs
µ1∧µ2

(E) and suppose that ω 6|= ∆
d,hcs
µ1 (E). In this

case, hc(ω ′,d,E,s)< hc(ω,d,E,s), and since ω ′ |= µ1∧µ2, we have ω 6∈ mod(∆d,hcs
µ1∧µ2

(E)) =

min(mod(µ1∧µ2),≤d,hcs
E ). Hence ω 6|= ∆

d,hcs
µ1∧µ2

(E). Contradiction.

(Maj) Showing that the operator hc satisfies (Maj) is easy since since it is based on

the sum operator.

(Arb) To show that the operator satisfies (Arb), we can show that the following
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property holds: If ω <d,hcs
K1

ω ′,ω <d,hcs
K2

ω ′′ and ω ′ ≈d,hcs
{K1,K2} ω ′′, then ω <d,hcs

{K1,K2} ω ′.

Suppose that ω <d,hcs
K1

ω ′,ω <d,hcs
K2

ω ′′ and ω ′ ≈d,hcs
{K1,K2} ω ′′:

• ω <d,hcs
K1

ω ′ implies d(ω,K1)< s < d(ω ′,K1);

• ω <d,hcs
K2

ω ′′ implies d(ω,K2)< s < d(ω ′′,K2);

• ω ′ ≈d,hcs
{K1,K2} ω ′′ implies hc(ω ′,d,{K1,K2},s) = hc(ω ′′,d,{K1,K2},s)≥ 1.

So, hc(ω,d,{K1,K2},s) = 0 < hc(ω ′,d,{K1,K2},s). Therefore, ω <d,hcs
{K1,K2} ω ′

holds.

�

Theorem 4.2. Proof: (WHP) We need to show: for all ω1,ω2,ω
′
1,ω

′
2 ∈ Ω, sup-

pose E = {K1, . . . , Kn}, a distance measure d and ω1 <d,hcs
E ω2. Consider ω ′1,ω

′
2 such that

∃i ∈ {1, . . . ,n}, d(ω1,Ki)< d(ω ′1,Ki), d(ω2,Ki)< d(ω ′2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j),

d(ω2,K j) = d(ω ′2,K j). If d(ω ′2,Ki)> d(ω ′1,Ki) then ω ′1 ≤
d,hcs
E ω ′2.

Let d(ω1,Ki)< d(ω ′1,Ki), d(ω2,Ki)< d(ω ′2,Ki) and ∀ j 6= i d(ω1,K j) = d(ω ′1,K j),

d(ω2,K j) = d(ω ′2,K j). Suppose that d(ω ′2,Ki)> d(ω ′1,Ki), the we have the following cases:

• d(ω ′2,Ki)> d(ω ′1,Ki)> s. As ω1 <
d,hcs
E ω2, then hc(ω1,d,E,s)< hc(ω2,d,E,s).

– if d(ω1,Ki),d(ω2,Ki)< s. In this case hc(ω ′1,d,E,s) = hc(ω1,d,E,s)+1 <

hc(ω2,d,E,s)+1 = hc(ω ′2,d,E,s).

– if d(ω1,Ki),d(ω2,Ki)> s. In this case hc(ω ′1,d,E,s) = hc(ω1,d,E,s)<

hc(ω2,d,E,s) = hc(ω ′2,d,E,s).

– if d(ω1,Ki) < s < d(ω2,Ki). In this case hc(ω ′1,d,E,s) = hc(ω1,d,E,s) + 1 ≤

hc(ω2,d,E,s) = hc(ω ′2,d,E,s).

– if d(ω1,Ki)> s > d(ω2,Ki). In this case hc(ω ′1,d,E,s) = hc(ω1,d,E,s)<

hc(ω2,d,E,s)< hc(ω2,d,E,s)+1 = hc(ω ′2,d,E,s).

Therefore, ω ′1 ≤
d,hcs
E ω ′2.

(WIBP) Analogous to (WHP).

We can see clearly that (HP) and (IBP) are not always true. Consider the third case

of the (WHP) proof: - if d(ω1,Ki)< s< d(ω2,Ki). In this case hc(ω ′1,d,E,s) = hc(ω1,d,E,s)+

1 ≤ hc(ω2,d,E,s) = hc(ω ′2,d,E,s). If this case happens, then we have ω ′1 ≤
d,hcs
E ω ′2 and not

necessarily ω ′1 <
d,hcs
E ω ′2.

�

Theorem 4.3. Proof: (Arb) To show that the operator does not satisfy (Arb), we can

show that the following property does not hold: If ω <d,shs
K1

ω ′,ω <d,shs
K2

ω ′′ and ω ′ ≈d,shs
{K1,K2} ω ′′,
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then ω <d,shs
{K1,K2} ω ′. Suppose that s = 1, d(ω,K1) = d(ω,K2) = 2, d(ω ′,K1) = d(ω ′′,K2) = 3

and d(ω ′,K2) = d(ω ′′,K1) = 0. Then,

• ω <d,sh1
K1

ω ′, since sh(ω,d,K1,1) = 1 < 2 = sh(ω ′,d,K1,1).

• ω <d,sh1
K2

ω ′′, since sh(ω,d,K2,1) = 1 < 2 = sh(ω ′′,d,K2,1).

• ω ′ ≈d,sh1
{K1,K2} ω ′′, since sh(ω ′,d,{K1,K2},1) = 2 = 2 = sh(ω ′′,d,{K1,K2},1).

But, ω ≈d,sh1
{K1,K2} ω ′, because sh(ω,d,{K1,K2},1) = 1+1 = 2+0 = sh(ω ′,d,{K1,

K2},1).

The proofs for the other logical postulates are similar to the previous theorems.

�

Theorem 4.5. Proof: -∆d,hcs
µ : We need to show that (WAPA-s) Let E = {K1, . . . ,Kn},

d be a distance measure and s≥ 0. For all ω,ω ′, if there exist j,k such that (1) s≥ d(ω,K j)>

d(ω ′,K j) ; (2) d(ω ′,Kk)> d(ω,Kk)≥ s; (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki), then ω ≤d,hcs
E ω ′.

• (1) s≥ d(ω,K j)> d(ω ′,K j) implies hc(ω,d,K j,s) = hc(ω ′,d,K j,s) = 0;

• (2) d(ω ′,Kk)> d(ω,Kk)≥ s implies hc(ω,d,Kk,s) = hc(ω ′,d,Kk,s) = 1;

• (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki) implies hc(ω,d,Ki,s) = hc(ω ′,d,Ki,s);

Then ω ≈d,hcs
E ω ′ and therefore, ω ≤d,hcs

E ω ′.

- It is easy to check that ∆
d,hcs
µ satisfies (A).

-∆d,shs
µ : Similar to ∆

d,hcs
µ .

- (WPM-s): Let E = {K1, . . . ,Kn}, d be a distance measure and s≥ 0. For all ω,ω ′,

if (1) there exists a k ≤ n such that d(ω ′,Kk)> d(ω,Kk) and d(ω ′,Kk)> s; (2) every position i

that d(ω,Ki)> s implies d(ω ′,Ki)≥ d(ω,Ki), then ω ≤d,ops
E ω ′.

Suppose that (1) and (2) hold. If d(ω,Kk) ≤ s then sh(ω,d,E,s) < sh(ω ′,d,E,s)

and ω <d,shs
E ω ′. If d(ω,Kk)> s then sh(ω,d,E,s)< sh(ω ′,d,E,s) and ω <d,shs

E ω ′.

�

Theorem 4.6. Proof: We need to show weak Absolute Priority of those Above

s: Let E = {K1, . . . ,Kn}, d be a distance measure and s ≥ 0. For all ω,ω ′, if there exist

j,k such that: (1) d(ω,K j) > d(ω ′,K j), and d(ω,K j) > s; (2) d(ω ′,Kk) > d(ω,Kk) ≥ s, and

d(ω,Kk)≥ d(ω,K j); (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki), then ω <d,ops
E ω ′.

Consider α = n
2 , where n is the number of propositional variables in the belief set.

• (1) d(ω,K j)> d(ω ′,K j), and d(ω,K j)> s;

• (2) d(ω ′,Kk)> d(ω,Kk)≥ s, and d(ω,Kk)≥ d(ω,K j);

• (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki).
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W.l.o.g. we can assume that (3) for i 6= j,k, d(ω,Ki) = d(ω ′,Ki)< s. With (1) and

(2) we have

FGT (
n
2
,ω,d,E,s)< FGT (

n
2
,ω ′,d,E,s)

1
n

((
d(ω,K j)− s

s

) n
2

+

(
d(ω,Kk)− s

s

) n
2
)

<
1
n

(
d(ω ′,Kk)− s

s

) n
2

(
d(ω,K j)− s

s

) n
2

+

(
d(ω,Kk)− s

s

) n
2

<

(
d(ω ′,Kk)− s

s

) n
2

(d(ω,K j)− s)
n
2 +(d(ω,Kk)− s)

n
2 < (d(ω ′,Kk)− s)

n
2

Assume that in the worst case d(ω,Kk) = d(ω,K j), then

2.(d(ω,Kk)− s)
n
2 < (d(ω ′,Kk)− s)

n
2

Since d(ω,Kk) and d(ω ′,Kk) ranges from 0 to n we can show the following property

2.n
n
2 < (n+1)

n
2

√
2.nn < (n+1)n

√
2.nn < nn +n.nn−1 + · · ·+1
√

2.nn < nn +nn + · · ·+1.

Therefore, ω <d,FGT
n
2

s
E ω ′.

�

Theorem 4.7. Proof: The proof is similar to the one found in THM. (TUNGOD-

DEN, 2000) Given some s≥ 0, if a pre-order relation satisfies (WAPA-s), (SP) and (A), then it

satisfies (WPM-s).

Sketch of the proof: We need to prove Leximax Above s (LMA-s): Let E =

{K1, . . . ,Kn} be a belief set. For each outcome ω , we build the list (dω
1 , . . . ,d

ω
n ) of distances

between this outcome and the n belief bases in E, i.e., dω
i = d(ω,Ki). Let Ld,E

ω be the list

obtained from (dω
1 , . . . ,d

ω
n ) by sorting it in descending order. For all ω,ω ′ ∈ Ω, (1) if there

exists a position k ≤ n such that dω ′
k > dω

k ; (2) dω
k > s; and (3) for every j < k, dω ′

j = dω
j , then

ω <E ω ′ (ω is more preferred than ω ′). Otherwise, ω ≈E ω ′.

For any ω,ω ′ ∈Ω satisfying (1), (2) and (3) we can construct a list of intermediate

outcomes ω1, . . . ,ωn−k such that ω <E ω ′k+1 <E ω ′k+2 <E . . . <E ω ′n−k <E ω ′, taking the position

k and comparing individually with the positions k′ ∈ {k+1,k+2, . . . ,n}. For each comparison,
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• If dω ′
k′ > s, we can use (wAPA-s), (SP) and (A) to show that ω <E ω ′k′;

• If dω ′
k′ < s, we can use (WAPA-s), (SP) and (A) to show that ω <E ω ′k′ .

We repeat this process n− k times to show that ω <E ω ′.

�

Theorem 4.8. Proof: We will concentrate only in the proof of (IC2) If
∧

E is

consistent with µ , then ∆µ(E) ≡
∧

E ∧ µ . Suppose that
∧

E is consistent with µ . Then there

is ω |=
∧

E ∧ µ . Consequently, hc(ω,d,E,s) = 0 or sh(ω,d,E,s) = 0 and ω ∈ ∆µ(E). For

the converse, suppose that there is a ω ′ such that hc(ω ′,d,E,s) = 0, sh(ω ′,d,E,s) = 0 or

FGT (α,ωi,d,E,s) = 0 and ω 6|=
∧

E ∧ µ . We have that ω ′ 6∈ ∆µ(E), since ∑
K∈E

d(ω,K) <

∑
K∈E

d(ω ′,K).

�

Theorem 4.9. Proof: We will show that they satisfy (SP) (the proof of the other

properties follows a similar reasoning). (SP): Let E = {K1, . . . , Kn} and d be a distance measure.

For all ω,ω ′ ∈Ω, if ∃i ∈ {1, . . . ,n} d(ω,Ki)< d(ω ′,Ki) and ∀ j 6= i, d(ω,K j)≤ d(ω ′,K j), then

ω <d,ops
E ω ′. Suppose that For all ω,ω ′ ∈Ω, if ∃i ∈ {1, . . . ,n} d(ω,Ki)< d(ω ′,Ki) and ∀ j 6= i,

d(ω,K j)≤ d(ω ′,K j). We have two cases to analyze:

1. there is a k ∈ {1, . . . ,n} such that d(ω,Kk) > s. In this case it is easy to see that

hc(ω,d,E,s)< hc(ω ′,d,E,s) or sh(ω,d,E,s)< sh(ω ′,d,E,s).

2. for all k ∈ {1, . . . ,n}, d(ω,Kk)≤ s. We have that ∑
K∈E

d(ω,K)< ∑
K∈E

d(ω ′,K).

Therefore, ω <d,ahcs
E ω ′ or ω <d,ashs

E ω ′.

�

Theorems 4.10 and 4.11. Proof: We will show the proofs for (IAB-s) and (A). The

rest is similar to the previous Theorems.

(IAB-s) Let A= {1, . . . ,n} be a set of agents, Ω= {ω1, . . . ,ωm} be a set of outcomes,

where each ωi = (ω1
i , . . . ,ω

n
i ) and s≥ 0. Suppose that for ωi,ω j ∈Ω, we have (i) there exist k,k′

such that s≤ ωk
j < ωk

i ; (ii) ωk′
i < ωk′

j < s; and (iii) for l 6= k,k′, ω l
i = ω l

j. Then it follows that

shc(ωi,ω j,s) = shc(ω j,ωi,s) and ssh(ωi,ω j,s) = shc(ω j,ωi,s), since (i) and (ii) do not alter

in the strong headcount and shortfall, and (iii) adds the same value for strong headcount and

shortfall in both outcomes. Therefore, ωi ≈shcs ω j and ωi ≈sshs ω j.

(A) ∆
d,sshs
µ does not satisfy (A). As a counterexample, suppose that we have the

outcome ω = (4,3,0,0), its permutation ω ′ = (0,4,3,0) and s = 2. We have that ssh(ω,ω ′,2) =

2 > 1 = ssh(ω ′,ω,2). Therefore, ω >ssh2 ω ′.
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�

Theorem 4.12. Proof: (S1PM-s) Let A = {1, . . . ,n} be a set of agents, Ω =

{ω1, . . . ,ωm} be a set of outcomes, where each ωi = (ω1
i , . . . ,ω

n
i ) and s ≥ 0. Suppose we

have ωi,ω j ∈ Ω, such that (i) there exists a k ≤ n such that ωk
i < ωk

j and ωk
i < s; and (ii) for

every position l such that ω l
j ≤ω l

i , we obtain ω l
j ≥ s or ω l

i < s; By (i), suppose that ωk
i < ωk

j < s.

In this case, we will have shc(ωi,ω j,s) = ssh(ω j,ωi,s) and ssh(ωi,ω j,s) = ssh(ω j,ωi,s). The-

refore, ωi 6<shcs ω j and ωi 6<sshs ω j.

(SP) It is similar for ≤hcs and ≤shs .

�
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Theorem 5.1. Proof: (IC0) By definition, ∆
d,W
µ (E)⊆ mod(µ).

(IC1) d(W,Lω
E ) is a function with values in R, so if mod(µ) 6= /0, there is always

a minimal model ω of µ such that for every model ω ′ of µ , d(W,Lω
E ) ≤ d(W,Lω ′

E ). Then,

ω |= ∆
d,W
µ (E) and ∆

d,W
µ (E) 6|=⊥.

(IC3) Assume that E1 ≡ E ′1 and µ1 ≡ µ ′1. Hence we can find a permutation δ such

that for every i ∈ {1, . . . ,n}, Kδ (i) ≡ K′i . Since d(ω,Kδ (i)) = d(ω,K′i ) one gets d(W,Lω
E1
) =

w1lω
1 + · · ·+wnlω

n = d(W,Lω

E ′1
). Consequently, ∆

d,W
µ1 (E1)≡ ∆

d,W
µ ′1

(E ′1).

(IC4) This postulate is equivalent to show that ∀ω |= K1, ∃ω ′ |= K2 and ω ′ ≤d,W
{K1,K2}

ω (KONIECZNY; PINO-PÉREZ, 2002a). We have that d(ω,K1) = 0 and d(ω,K2) =

min
ω ′|=K2

d(ω,ω ′), so choose ω ′ |= K2 and that d(ω,ω ′) = d(ω,K2). Then d(ω ′,K1) =

min
ω ′′|=K1

d(ω ′,ω ′′) ≤ d(ω ′,ω), and d(ω ′,K2) = 0. So d(W,Lω ′

{K1,K2}) = w1l1 = w1d(ω ′,K1) ≤

w1d(ω,ω ′) = w1d(ω,K2) = d(W,Lω

{K1,K2}), i.e., ω ′ ≤d,W
{K1,K2} ω .

(IC5b) We can show that if for all i, d(ω,Ki)≤ d(ω ′,Ki), then d(W,Lω
E )≤ d(W,Lω ′

E ).

Suppose that for all i, d(ω,Ki)≤ d(ω ′,Ki). Then, w1lω
1 + · · ·+wnlω

n ≤w1lω ′
1 + · · ·+wnlω ′

n . This

is true because for all i, lω
i ≤ lω ′

i (a consequence of the assumption).

(IC7) Suppose ω |= ∆
d,W
µ1 ∧ µ2. For any ω ′ |= µ1, we have d(W,Lω

E ) ≤ d(W,Lω ′
E ).

Hence, for any ω ′ |= µ1∧µ2,d(W,Lω
E )≤ d(W,Lω ′

E ). This means ω |= ∆
d,W
µ1∧µ2

(E).

(IC8) Suppose that ∆
d,W
µ1 (E1)∧ µ2 is consistent. Then there exists an outcome

ω ′ such that ω ′ |= ∆
d,W
µ1 (E)∧ µ2. Consider a model ω of ∆

d,W
µ1∧µ2

(E) and suppose by absurd

that ω 6|= ∆
d,W
µ1 (E). We have d(W,Lω ′

E ) < d(W,Lω
E ) and since ω ′ |= µ1 ∧ µ2, we know ω 6∈

min(mod(µ1∧µ2),≤d,W
E ), hence ω 6|= ∆

d,W
µ1∧µ2

(E). Contradiction.

�

Theorem 5.2. Proof: (⇒) By contrapositive, suppose that ∃i ∈ {1, . . . ,n},wi =

0. We need to show that (IC6b) is not satisfied. Consider the following counterexample:

d(ω,Ki) < d(ω ′,Ki) such that d(ω,Kσ(i)) = lω
i and d(ω ′,Kσ(i)) = lω ′

i (i.e., they are the i-th

greatest element of Lω
E and Lω ′

E , respectively). For all j 6= i, let d(ω,K j) = d(ω ′,K j). We have

then d(W,Lω
E ) = w1lω

1 + · · ·+wilω
i︸︷︷︸

=0

+ · · ·+wnlω
n = w1lω ′

1 + · · ·+wilω ′
i︸︷︷︸

=0

+ · · ·+wnlω ′
n = d(W,Lω ′

E ),

which falsifies (IC6b).

(⇐)Assume ∆
d,[1]
µ (K1)∧ ·· ·∧∆

d,[1]
µ (Kn) 6|= ⊥ and wi 6= 0 for any wi ∈W . We will

show ∆
d,W
µ ({K1, . . . ,Kn}) |= ∆

d,[1]
µ (K1)∧ ·· · ∧∆

d,[1]
µ (Kn): If ω |= ∆

d,W
µ ({K1, . . . ,Kn}), then by
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definition ω |= µ and for every ω ′ |= µ , w1lω
1 + · · ·+wnlω

n ≤ w1lω ′
1 + · · ·+wnlω ′

n . By absurd,

suppose ω 6|= ∆
d,[1]
µ (K1)∧·· ·∧∆

d,[1]
µ (Kn).

As ∆
d,[1]
µ (K1)∧·· ·∧∆

d,[1]
µ (Kn) 6|=⊥, there exists ω ′′ ∈Ω such that ω ′′ |= ∆

d,[1]
µ (K1)∧

·· · ∧∆
d,[1]
µ (Kn). This means w′′ ∈ min(mod(µ),≤d,[1]

Ki
) for every i ∈ {1, . . . ,n}, i.e., w′′ |= µ

and for every w′ ∈ Ω such that w′ |= µ , we have d([1],Lω ′′

(Ki)
) = lω ′′

i ≤ d([1],Lω ′i
(Ki)

) = lω ′
i for

every i ∈ {1, . . . ,n}. In particular, lω ′′
i ≤ lω

i for every i ∈ {1, . . . ,n}. As ω 6|= ∆
d,[1]
µ (K1)∧ ·· ·∧

∆
d,[1]
µ (Kn), we know ω ′′ 6= ω . Then there exists j ∈ {1, . . . ,n} such that lω ′′

j < lω
j . Given the

monotonicity of OWA operators and wi 6= 0 for any wi ∈W , we obtain d(W,Lω ′′

{K1,...Kn}) =
n

∑
i=1

wilω ′′
i < d(W,Lω

{K1,...Kn}) =
n

∑
i=1

wilω
i . It is an absurd as w′′ |= µ and

n

∑
i=1

wilω
i ≤

n

∑
i=1

wilω ′
i for

every ω ′ |= µ .

�

Theorem 5.3. Proof: (⇒) Assume that ∆
d,W
µ satisfies (IC2). Then there is a ω

such that d(ω,Ki) = 0, ∀i ∈ {1, . . . ,n}. So, d(W,Lω
E )< d(W,Lω ′

E ), for every ω ′ which ∃ j where

d(ω,K j) 6= 0. Suppose that w1 = 0. Then, consider the a ω ′′ such that d(ω ′′,K1) = 1 and

d(ω ′′,Ki) = 0, for i 6= 1. Then d(W,Lω
E ) = w1lω

1 + · · ·+wnlω
n = 0 = w1lω ′′

1 + · · ·+wnlω ′′
n =

d(W,Lω ′′
E ). Contradiction.

(⇐) Assume w1 6= 0 and
∧

E is consistent with µ , i.e., there exists ω ∈ Ω such

that ω |= K1 ∧ . . .Kn ∧ µ . Then, there exists ω ∈ Ω such that d(ω,K1) = · · · = d(ω,Kn) = 0

and as consequence, d(W,Lω

{K1,...,Kn}) = 0. According to the definition, this leads to ω ′ |=

∆
d,W
µ ({K1, . . . ,Kn}) iff w |= µ and d(W,Lω ′

{K1,...,Kn}) = 0. We need to show ω |= ∆
d,W
µ ({K1, . . . ,

Kn}) iff ω |= K1 ∧ . . .∧Kn ∧ µ: ω |= ∆
d,W
µ ({K1, . . . ,Kn}) iff w |= µ and d(W,Lω

{K1,...,Kn}) = 0

iff w |= µ and
n

∑
i=1

wilω
i = 0 iff (as w1 6= 0) w |= µ and lω

1 = 0 iff (as lω
i is in descending

order) w |= µ and lω
1 = · · · = lω

n = 0 iff w |= µ and d(w,K j) = 0 for every j ∈ {1, . . . ,n} iff

ω |= K1∧ . . .∧Kn∧µ .

�

Theorem 5.4. Proof: We can use the following property equivalent to (Arb) (KONI-

ECZNY et al., 2004): If d(ω,K1)< d(ω ′,K1),d(ω,K2)< d(ω ′′,K2) and ω ′ ≈d,[w1,w2]
{K1,K2} ω ′′, then

ω <
d,[w1,w2]
{K1,K2} ω ′. Suppose that d(ω,K1)< d(ω ′,K1),d(ω,K2)< d(ω ′′,K2) and ω ′ ≈d,[w1,w2]

{K1,K2} ω ′′.

In the worst case we have that d(ω,K1) = d(ω,K2) = m− 1, d(ω ′,K1) = d(ω ′′,K2) = m,

d(ω ′′,K1) = d(ω ′,K2) = 0, where m is the number of propositional variables in the belief set E.

In this case, for ω <
d,[w1,w2]
{K1,K2} ω ′ to be true, we need to have (m−1)(w1 +w2)< mw1 +0w2⇒

(m−1)(w1 +w2)< mw1⇒ mw1−w1 +mw2−w2 < mw1⇒ w1 > (m−1)w2.
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�

Theorem 5.5. Proof: (⇒) Suppose that ∆
d,W
µ satisfies (PD) and there is j > i, such

that w j ≤ wi. By assumption, there is ω ′, where lω
i < lω ′

i ≤ lω ′
j < lω

j , lω ′
i − lω

i = lω
j − lω ′

j and

∀k 6= i, j, lω
k = lω ′

k . Then, w jlω
j +wilω

i ≤w jlω ′
j +wilω ′

i ⇒w j(lω
j − lω ′

j )≤wi(lω ′
i − lω

i )⇒w j ≤wi.

Consequently, ω ≤d,W
E ω ′. Contradiction.

(⇐) Assume w1 > w2 > w3 > .. . > wn and ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki)<

d(ω ′,Ki)≤ d(ω ′,K j)< d(ω,K j), d(ω ′,Ki)−d(ω,Ki) = d(ω,K j)−d(ω ′,K j) and ∀l 6= i,

j d(ω,Kl) = d(ω ′,Kl). So d(W,Lω
E )> d(W,Lω ′

E )⇒ w jlω
j +wilω

i + ∑
k 6=i, j

wklω
k > w jlω ′

j +wilω ′
i +

∑
k 6=i, j

wklω ′
k ⇒w jlω

j +wilω
i > w jlω ′

j +wilω ′
i ⇒w j(lω

j − lω ′
j )> wi(lω ′

i − lω
i )⇒w j > wi. Therefore,

ω ′ <d,W
E ω and ∆

d,W
µ satisfies (PD).

�

Theorem 5.6. Proof: Let δ = 1
m , wi =

δ i−1

(1+δ )i , for i 6= n and wn =
δ n−1

(1+δ )n−1 . Now

assume ∃i, j ∈ {1, . . . ,n} such that d(ω,Ki) < d(ω ′,Ki) ≤ d(ω ′,K j) < d(ω,K j) and ∀l 6=

i, j d(ω,Kl) = d(ω ′,Kl). Then, w jlω
j +wilω

i + ∑
k 6=i, j

wklω
k > w jlω ′

j +wilω ′
i + ∑

k 6=i, j
wklω ′

k ⇒ w jlω
j +

wilω
i > w jlω ′

j +wilω ′
i .

Let us assume the worst case where lω
j = m, lω

i = 0, lω ′
j = lω ′

i = m−1, w j = wx and

wi = wx+1. So, m ( 1
m )x−1

(m+1
m )x > (m− 1) (

1
m )x−1

(m+1
m )x +(m− 1) ( 1

m )x

(m+1
m )x+1 ⇒ m2

(m+1)x > m2−m
(m+1)x +

m2−m
(m+1)x+1 ⇒

m2

(m+1)x >
(m2−m)(m+1)x+(m2−m)(m+1)x+1

(m+1)x(m+1)x+1 ⇒ m2(m+1)x+1 > (m2−m)((m+1)x +(m+1)x+1)⇒

m(m+1)x+1 > m(m+1)x+m(m+1)x+1−(m+1)x−(m+1)x+1⇒ (m+1)x+1 > m(m+1)x−

(m+1)x⇒ (m+1)(m+1)x > (m−1)(m+1)x. Then, ω ′ <d,W
E ω and ∆

d,W
µ (E) satisfies (HE).

�
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