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RESUMO

Neste trabalho propomos uma arquitetura de rede neural utilizando estruturas de aprendizado

profundo, e engenharia de atributos mínima, para resolver o problema de extração de termos

aspectos em textos opinativos, como avaliações de produtos e restaurantes. Em Mineração de

Opiniões e Análise de Sentimentos existem três níveis de Classificação de Sentimentos: a nível

de documento, a nível de sentença e a nível de aspecto. A Análise de Sentimentos Baseada

em Aspectos visa encontrar o sentimento no nível de maior detalhe, e uma das tarefas que ela

compreende é a Extração de Termos Aspectos (ETA): a identificação de aspectos (atributos ou

características) que foram explicitamente avaliados dentro de uma sentença. Por exemplo, na

sentença “A qualidade das imagens dessa câmera é incrível.” o termo aspecto é “qualidade

das imagens”. A arquitetura proposta consiste de um classificador BLSTM-CRF associado a

um codificador BLSTM que utiliza um mecanismo de atenção para incorporar como atributo

adicional no modelo as relações gramaticais entre as palavras (análise sintática) da sentença.

Também utilizamos a marcação de partes da fala (part-of-speech tagging) como outro atributo

relevante adicional. A arquitetura proposta obteve resultados semelhantes ao estado da arte, com

a vantagem de não utilizar nenhuma regra de linguagem ou dicionário de sentimentos, apenas

uma engenharia de atributos mínima.

Palavras-chave: Extração de termos aspectos. Mecanismo de atenção. Análise sintática.

Memória de longo prazo bidirecional. Campos aleatórios condicionais



ABSTRACT

This work proposes a neural network architecture using deep learning structures, and minimal

feature engineering, to solve the problem of aspect term extraction in opinionated documents,

like reviews of products or restaurants. In Opinion Mining and Sentiment Analysis we have three

levels of Sentiment Classification: document level, sentence level and aspect level. Aspect Based

Sentiment Analysis aims to find the sentiment at the most detailed level, and one of its tasks is the

Aspect Term Extraction (ATE): the task of identifying aspects (attributes or characteristics) that

have been explicitly evaluated in a sentence. For example, in the sentence “The picture quality of

this camera is amazing” the aspect term is “picture quality”. The proposed architecture consists

of a BLSTM-CRF classifier with a BLSTM encoder that uses an attention mechanism to permit

the incorporation of grammatical relations between words as an additional feature. We also used

the Part-of-speech tag (POS tags) as another relevant feature. The proposed architecture obtained

state-of-the-art results, with the advantage of using no linguistic rules or lexicons, only minimal

feature engineering.

Keywords: Aspect term extraction. Encoder. Attention mechanism. Word dependencies.

Bidirectional long short-term memory. Conditional random fields.
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1 INTRODUCTION

With the advent of the internet and the social media, and their increasing usage,

it is common to find people who share their opinions online about many things. Opinions

are important specially when we need to make a decision, for example, when we want to buy

something or decide what restaurant to go, we often read about the past experiences of other

people about that product, place or company. But the shared opinions are not useful to customers

only: companies can leverage the online opinions information to identify complains from their

customers and improve their products and services.

Due to its importance to businesses and society, the field of Sentiment Analysis

and Opinion Mining has become one of the most active research fields in text mining, with

individuals and organizations trying to develop new data mining techniques to exploit this

source of subjective information. By definition, the Opinion Mining consists of the automatic

identification and extraction of opinions, emotions, and sentiments from text and multimedia

data (LIU; ZHANG, 2012).

In Opinion Mining and Sentiment Analysis there are three levels of sentiment clas-

sification: document level, sentence level and aspect level. It is often imprecise to define the

sentiment of an opinionated document or sentence, because the author can write both positive

and negative opinions about different things in it. For example, imagine that we want to extract

the sentiment of the following sentence:

“Nice ambience, but highly overrated place.”

for that sentence, we can not precisely define if the overall sentiment is positive or negative,

because both sentiments are present in it.

To address this problem, the Aspect-based Sentiment Analysis aims to find the

sentiment at the most detailed level, the aspect level (LIU; ZHANG, 2012). One of the tasks

involved in Aspect-based Sentiment Analysis is the aspect extraction: the identification of aspects

(attributes or characteristics) that have been evaluated in an opinionated sentence.

The Aspect Term Extraction (ATE) is the task of identifying the explicit aspects of a

document or a sentence, i.e. the words in the document or sentence that represent an aspect. For

example, in the sentence:
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“The picture quality of this camera is amazing”

the aspect term is “‘picture quality”.

The Aspect Term Extraction task can be modeled as a classification problem, where

each word in the sentence is tagged with a label. In this work, we use the IOB2 format (short

for Inside, Out and Begin): words that are aspect terms are labelled with “B”; in case an aspect

term consists of multiple words, the first word receives the “B” label and the remaining aspect

words receive the “I” label; words that are not aspect terms are labelled with “O”. The Figure 1

illustrates the ATE task for the sentence “The picture quality of this camera is amazing”, using

the IOB2 tagging format described.

Figure 1 – Aspect Term Extraction using the IOB2 tagging format.

Different approaches, either supervised, unsupervised or semi-supervised, have been

proposed to perform the task of aspect term extraction (RANA; CHEAH, 2016) and, more

recently, the use of deep neural networks proved to be very efficient, becoming the state-of-the-

art (PORIA et al., 2016a). However, this technique requires a huge number of labeled examples

to train the network (RAVI; LAROCHELLE, 2016), compelling some authors to compensate the

low accuracy obtained from models trained on few examples with some kind of post-processing,

auxiliary lexicons and language rules. Thus, in a scarce labeled data scenario, it is important

to find relevant features that could improve the deep neural network models used for ATE, but

without exaggerating on the manual feature engineering process. Manually engineered features,

besides being demanding and costly to create, generally are problem-dependant and can restrict

the final model to only one domain or dataset. It is also error prone, because a feature considered

irrelevant by a human could actually be relevant to the problem and the model.

Aiming the use of deep neural networks to solve the ATE problem, but with minimal

feature engineering to avoid its issues, this work proposes an architecture that achieves promising

results in terms of performance using only two additional features: the Part-of-speech (POS) tag

of words and the grammatical relationship between words in a sentence (word dependencies).

The novelty in our architecture is the use of an encoder, a common structure used in

Neural Machine Translation (CHO et al., 2014a; SUTSKEVER et al., 2014), with an attention
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mechanism that allows the incorporation of the word dependency feature. The word dependency

describes the grammatical relationship between the words, so it is a position related feature,

where all words in the sentence can be associated with each other. Figure 2 shows an example of

word dependencies for the sentence “Bell, based in Los Angeles, makes and distributes electronic,

computer and building products”.

Figure 2 – Example of word dependencies generated using the Stanford Dependencies.

Due to this characteristic, it is not feasible to add this feature on the data by just

concatenating it to the input words as we often do with other features (like the POS tag feature,

or a binary feature indicating the case of the word’s first letter). It is so, because the word

dependency feature vector has the same size of the sentence and, as the sentences have different

lengths, the input vectors would have different lengths also, which is not practical: all the input

vectors of a neural network should have a fixed length. To overcome this problem, we could

limit the size of the sentences to a maximum number of words, and pad the input vectors so

they can all have the same length, but it is not desirable: our aim is to propose a model that can

take as input sentences of any size. Another problem on concatenating the word dependency

feature vectors on the input data is that it would be difficult for the model to identify the position

information: what parts of the feature vector are associated with each word in the sentence, i.e.

if there are 40 possible word dependencies, represented by one-hot encoded vectors, the model

should figure out that the first 40 positions comprises the dependency vector related to the first

word, the next 40 positions the dependency vector related to the second word, and so on.
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The attention mechanism used on the encoder allows the incorporation of the word

dependency feature, so the model can use the grammatical dependencies between the words

to “pay attention” to certain parts of the sentence with relevant information, improving the

identification of aspect terms. Figure 3 shows an example of word dependencies for the sen-

tence “The picture quality of this camera is amazing.” generated by the Stanford Dependencies

(MARNEFFE; MANNING, 2008).

Figure 3 – Example of word dependencies.

The word dependency feature is important to the problem of aspect extraction because

aspect terms are usually nominal subjects (syntactic subjects) with an adjective associated. It

also could help to identify multiple word aspect terms, using the compound dependency between

nouns in a noun phrase. In this work we also use the Part-of-speech tag (POS tags) as another

feature, because most of the aspect terms present in sentences are nouns associated with one or

more adjectives (PORIA et al., 2016a), thus the POS tagging information is useful to identify

which words are aspect terms. Another reason to use these two additional features is to mitigate

the problem of out of vocabulary (OOV) words, when there is no pre-trained word embedding to

use as input to the model. It is important to mention that, unlike (PORIA et al., 2016a; WANG et

al., 2016), we did not filter a subset of those features, we used all the existent POS tags and word

dependencies and let the model select those that are most relevant in the training phase, i.e. we

aimed to perform minimal feature engineering.

1.1 Contributions

The contribution of this work is: an end to end deep neural network architecture

comprising an encoder with an attention mechanism strategy to harness the information of word

dependencies to address the problem of aspect term extraction that, along with a POS tag feature,

achieves competitive state-of-the-art results.

We carried out experiments to validate our proposal using popular datasets from
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the SEMEVAL1 competition. We compare our proposal with the winners of the SEMEVAL

competitions and state-of-the-art models presented in (PORIA et al., 2016a) and (LI et al., 2018).

The experiments showed that our proposed architecture achieved promising results in terms of

performance, similar to other state-of-the-art models, but using only minimal feature engineering.

1.2 Organization

This work is organized as follows. Chapter 2 presents the concepts and techniques

necessary to understand the ATE task and our proposed neural network architecture. In chapter 3

we discuss about the state-of-the-art approaches and the related work, analyzing the strengths

and flaws of them. In chapter 4 we give a detailed explanation of our proposed architecture.

Chapter 5 details the experiments performed to assess our proposed architecture and compares it

with state-of-the-art methods. Chapter 6 concludes the work.

1 https://aclweb.org/aclwiki/SemEval_Portal
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2 THEORETICAL FOUNDATION

2.1 Overview

In this chapter we present the concepts and structures necessary to understand the

problem of Aspect Term Extraction and our proposed neural network architecture. We first

introduce the field of Sentiment Analysis and define the Aspect Term Extraction task. Then we

explain each structure, model and techniques used to build our neural network: the Recurrent

Neural Networks (RNNs) used to handle sequential data; Long Short-Term Memory (LSTM), an

RNN improvement; Bidirectional LSTMs, used to build our encoder and classifier; the Attention

Mechanism, used on the encoder to exploit the word dependencies information; Linear-Chain

Conditional Random Fields (CRF), a sequence optimization method to improve our classifier

labelling process; and the Part-of-speech (POS) tags and Word Dependency features used to

improve our model.

2.2 Sentiment Analysis

Sentiment Analysis is a subfield of Natural Language Processing, aiming to extract

structured information from unstructured natural language text. The kind of information it aims

to extract are opinions, that implies or express positive or negative sentiments about something.

Definition 2.2.1 (Opinion). An opinion is a tuple (g,s) of a target g and a sentiment s associated

with the target, where g can be any entity or aspect of the entity about which a view or judgment

has been expressed, and s is a positive, negative, or neutral sentiment, or a numeric rating score

expressing the strength/intensity of the sentiment (e.g., 1 to 5 stars) (LIU; ZHANG, 2012).

For example, in the sentence

“The picture quality of this camera is amazing, but I think it is too heavy.”

the entity is “camera”, its aspects are “picture quality” and “weight”, and the sentiments

of the aspects are positive and negative respectively. We can notice that it is not possible to

define the entity (or the whole sentence) sentiment exactly, because both positive and negative

sentiments are being expressed.
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2.2.1 Aspect-based Sentiment Analysis

The Aspect-based Sentiment Analysis aims to find the sentiment at the most detailed

level, the aspect level (LIU; ZHANG, 2012). One of the tasks involved in Aspect-based Sentiment

Analysis is the aspect extraction: the identification of aspects (attributes or characteristics) that

have been evaluated in a sentence. There are two types of aspects in an opinionated document or

sentence: explicit aspects and implicit aspects.

Definition 2.2.2 (Explicit aspects). Explicit aspects appears explicitly in the document or sen-

tence, i.e. the words that compose the aspect are present in the sentence. For example, in the

sentence “The picture quality of this camera is amazing” the explicit aspect is “picture quality”.

Definition 2.2.3 (Implicit aspects). Implicit aspects, otherwise, do not appear in the sentence or

document. For example, in the sentence “This cellphone works for days on a single charge.”, we

can infer that the implicit aspect is battery life.

Definition 2.2.4 (Aspect Term Extraction (ATE)). The Aspect Term Extraction (ATE) is the task

of identifying the explicit aspects of a document or a sentence, i.e. the words in the document or

sentence that represent an aspect.

The Aspect Term Extraction task can be modeled as a classification problem, where

each word in the sentence is tagged with a label. One possible tagging format that can be used is

the IOB2 format.

Definition 2.2.5 (IOB2 tagging format for ATE). Given a sentence s of size n with words

(w1,w2, · · · ,wn), assign for each word wi one of the labels:

– B (begin), if the word is as aspect term;

– I (inside), if it is a subsequent word in an aspect term with multiple words;

– O (out), if it is not, or part of, an aspect term.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) emerged as a manner to treat sequential data

using neural networks. Sequential data is any type of data where the order matters, i.e. the

previous information is relevant, or can be used, to determine the current information. Examples

of sequential data can be the words in sentences, the frames on movies, or the utterances in audio



21

messages. It is not possible to guess the next word in a sentence without knowing the previous

words, and it is difficult to know what is happening in the current frame of a movie without have

seen the previous frames. As humans, our thoughts have persistence, and it would be useful if

neural networks had the same ability and use the previous events in data to classify the current

one. The RNN perform this using loops, allowing information in the network to be passed from

one step to the next (ELMAN, 1990).

Let (x1,x2, · · · ,xn) be an input sequence of n elements. For each input xt the RNN

generates an output ht , also called hidden output, that takes into account the input data xt and the

previous hidden output ht−1:

ht = a(Whxt +Uhht−1 +bt) (2.1)

where a is an activation function, like tanh or the Rectified Linear Unit (ReLU),

Wh and Uh are weight matrices, and bt a bias vector. Uh is called transition matrix or recurrent

matrix, and it determines how much of the past information is important on the current step. As

the current hidden output ht takes into account the last hidden output ht−1 and so on, all the

hidden outputs contain traces of every preceded information. This information flux can be seen

when we unroll a RNN, as shown in Figure 4.

Figure 4 – Unrolled RNN from (Christopher Olah, 2015).

2.4 Long Short-Term Memory (LSTM)

RNNs have problems to learn long sequences, i.e. in the presence of time lags

greater than 5 - 10 discrete time steps, because as error signals exponentially depends on the

magnitude of the weights (HOCHREITER, 1991), the backpropagated error quickly either

vanishes, requiring an enormous amount of time to train the model, or blows up, leading to

oscillating weights (HOCHREITER; SCHMIDHUBER, 1997; BENGIO et al., 1994). This

problem is known as the “vanishing/exploding gradient problem”.
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LSTMs are explicitly designed to avoid the long-term dependency problem, when

there is a big gap between the present task to the previous information, or context, needed to

solve it. For example, if we want to predict the next word in the text “I grew up in France. . . I

speak fluent French”, the context word France may be further back in the text, so the gap between

the relevant information and the point where it is needed is very large.

While in a RNN each neuron or cell has only one structure, like a tanh activation

function, in a LSTM cell unit there are four structures: the cell state and three gates. The LSTM

cell state keeps and transfer information through the sequence chain, working like a memory.

The cell state can carry relevant information throughout the sequence, reducing the effects of

short-term memory.

The LSTM can control the cell state removing or adding information to it through

minor linear interactions with gates. The gates are structures that control whether information

go through the steps so, using the gates, it is even possible for the cell state information to flow

along the steps unchanged. They are composed of a sigmoid neural net layer and a pointwise

multiplication operation. The LSTM gates that control the cell state information are: the forget

gate, the input gate and the output gate.

The forget gate decides what information should be kept. Information from the

previous hidden state and information from the current input are passed through a sigmoid

function. If the output of the sigmoid function is zero, no information goes through, if it is one,

it passes all the information to the next step. Figure 5 demonstrates the forget gate operation.

Figure 5 – Illustration of forget gate operation from (Christopher Olah, 2015).

Definition 2.4.1 (Forget Gate). Let n be the number of LSTM cell units, ft ∈Rn the forget

gate’s activation vector for state t, σ the sigmoid function, Wf the weight matrix of the input

connections for the forget gate, U f the weight matrix of the recurrent connections for the forget

gate, xt the input for the current state t, ht−1 the hidden outputs of the previous state and b f a
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bias vector, the forget gate’s activation vector ft for state t is computed by:

ft = σ(Wf xt +U f ht−1 +b f ) (2.2)

The input gate controls what new information is going to be stored in the cell

state. It applies a sigmoid function to the current state input and the previous hidden state. The

input gate vector is then multiplied by the new values to be stored in the cell state. Figure 6

demonstrates the input gate operation.

Figure 6 – Illustration of input gate operation from (Christopher Olah, 2015).

Definition 2.4.2 (Input Gate). Let n be the number of LSTM cell units, it ∈ Rn the input gate’s

activation vector for state t, σ the sigmoid function, Wi the weight matrix of the input connections

for the input gate, Ui the weight matrix of the recurrent connections for the input gate, xt the

input for the current state t, ht−1 the hidden outputs of the previous state and bi a bias vector, the

input gate’s activation vector it for state t is computed by:

it = σ(Wixt +Uiht−1 +bi) (2.3)

The cell state is computed using the forget gate vector and the input gate vector

information. First, the previous cell state is element-wise multiplied by the forget vector. It is

possible to drop values in the cell state if the values in the forget gate vector are near to zero. The

current state input and the previous hidden state are passed through a tanh function, calculating

the new candidate values to be stored in the cell state. These values are element-wise multiplied

by the input vector, to decide what information is going to be stored in the cell state. The values

obtained from the forget and input gates are then added (element-wise addition), generating the

current cell state information. Figure 7 demonstrates the cell state computation.
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Figure 7 – Illustration of cell state computation from (Christopher Olah, 2015). C̃t represents the
new candidate values to be stored in the cell state.

Definition 2.4.3 (Cell State). Let n be the number of LSTM cell units, ct ∈ Rn the cell state for

state t, σ the sigmoid function, Wc the weight matrix of the input connections for the cell state,

Uc the weight matrix of the recurrent connections for the cell state, xt the input for the current

state t, ht−1 the hidden outputs of the previous state and bc a bias vector, the cell state vector ct

for state t is computed by:

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt +Ucht−1 +bc) (2.4)

where ◦ denotes the element-wise product.

Finally, the output gate decides what the next hidden state values should be. It pass

the current state input and the previous hidden state through a sigmoid function, and the newly

modified cell state through a tanh function. The results are then multiplied to generate the new

hidden state. The new cell state and the new hidden are then carried over to the next time step.

Figure 8 demonstrates the output gate operation.

Figure 8 – Illustration of output gate operation from (Christopher Olah, 2015).
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Definition 2.4.4 (Output Gate). Let n be the number of LSTM cell units, ot ∈ Rn the output

gate’s activation vector for state t, σ the sigmoid function, Wo the weight matrix of the input

connections for the output gate, Uo the weight matrix of the recurrent connections for the output

gate, xt the input for the current state t, ht−1 the hidden outputs of the previous state and bo a

bias vector, the output gate’s activation vector ot for state t is computed by:

ot = σ(Woxt +Uoht−1 +bo) (2.5)

Definition 2.4.5 (Hidden State). Let n be the number of LSTM cell units, ht ∈ Rn the hidden

state’s output vector for state t and ct the cell state for state t, the hidden state’s output vector ht

for state t is computed by:

ht = ot ◦ tanh(ct) (2.6)

where ◦ denotes the element-wise product.

2.5 Bidirectional LSTM (BLSTM)

In natural language it is beneficial to have access to future information. In a con-

versation, for example, a word that at first we didn’t understand makes sense on the presence

of future context (GRAVES; SCHMIDHUBER, 2005). In BLSTMs we give each sentence as

input to one LSTM layer (forward) and the inverted sentence as input to another LSTM layer

(backward) to capture both past and future information.

Let n be the number of steps in the input sequence, the forward LSTM
−→
f reads the

input sequence as it is ordered (from x1 to xn) and calculates a sequence of forward hidden states

(
−→
h1 , · · · ,

−→
hn). The backward LSTM

←−
f reads the input sequence in the reverse order (from xn to

x1) and calculates a sequence of backward hidden states (
←−
h1 , · · · ,

←−
hn).

The final hidden state h j for each word x j is obtained concatenating the forward

hidden state
−→
h j and the backward hidden state

←−
h j .

h j = [
−→
h j ;
←−
h j ] (2.7)
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2.6 Linear-Chain Conditional Random Field (CRF)

In a sequence labelling problem we want to find the sequence of labels y for a

given input X . Instead of finding the labels independently, we could explore some existing

dependencies between them. For example, in the ATE problem, an inside (“I”) tag can appear

only after a begin (“B”) tag. A Linear-Chain Conditional Random Field (CRF) works as a

sequence optimization model, that jointly decode the best label sequence. The CRF considers

the correlations between the neighbours labels, making a global choice instead of decoding each

label of the sequence independently. In the problem of ATE it is specifically useful to correctly

label multiple word aspect terms (LAMPLE et al., 2016).

Definition 2.6.1 (Linear-Chain Conditional Random Field (CRF)). Given an input sequence

X = (x1,x2, · · · ,xn) (2.8)

of size n, with label predictions

y′ = (y′1,y
′
2, · · · ,y′n), (2.9)

we define the label predictions score s as:

s(X ,y′) =
n

∑
i=1

Ty′i,y
′
i+1

+
n

∑
i=1

Hxi,y′i
(2.10)

where H and T are both matrices of scores. H is a matrix with size n× l where l is

the number of distinct labels, and Hi, j represents the score of the jth label of the ith element in

the sequence (H can be, for example, the outputs of a BLSTM). T is a matrix with size l× l

where Ti, j represents the score of a transition from the label i to the label j. The transition scores

Ti, j, as well as the scores Hi, j, are learnable.

A probability for a label sequence y′ can be calculated using a softmax over all the

possible label sequences:

p(y′|X) =
es(X ,y′)

∑ỹ∈YX es(X ,ỹ)
(2.11)

where YX is the set of all possible label sequences.
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In the training, we maximize the log-probability of the correct label sequence:

log(p(y′|X)) = s(X ,y′)− log( ∑
ỹ∈YX

es(X ,ỹ)) (2.12)

In the decoding phase, we return the output label sequence y∗ with the maximum

score:

y∗ = argmax
ỹ∈YX

s(X , ỹ) (2.13)

We can exploit the recurrent dependencies in Eq. 2.12 and Eq. 4.4 and use dynamic

programming to compute them efficiently.

2.7 Attention Mechanism

The attention mechanism was originally used in the field of Neural Machine Transla-

tion to improve the performance of Encoder-Decoder neural architectures. It is often used in an

encoder, allowing the model to automatically (soft-)search for parts of a source sentence that

are relevant to predicting a target word, without having to form these parts as a hard segment

explicitly (BAHDANAU et al., 2014), i.e. it does not attempt to encode the whole input sentence

into a single fixed-length vector. It is specially useful for long sentences, but the improvements

can be observed with sentences of any length. Instead of generating the same context vector, or

sentence representation, for all words in the input sentence, the attention mechanism allows the

encoder to compute a different context vector for each word based on an alignment model or

function. This alignment model or function gives a score of how well the word and the encoder

output match.

Definition 2.7.1 (Context Vector). Given a sentence of size n with words (w1,w2, · · · ,wn), a

sequence of outputs (h1,h2, · · · ,hn) to which the encoder maps the input sentence and a an

alignment function, the context vector ci for the ith word is given by:

ci =
n

∑
j=1

αi, jh j (2.14)
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The terms αi, j are the attention weights of each output h j. They are computed by:

αi, j =
exp(ei, j)

∑
n
k=1 exp(ei,k)

(2.15)

where

ei, j = a(wi,h j) (2.16)

are the scores of how well the word wi and the output h j match.

Hence, the context vector is a weighted sum of the outputs generated by the encoder,

where the attention weights (denoted by αi, j) are computed using an alignment model or function.

Figure 9 illustrate this process.

Figure 9 – Illustration of the attention mechanism from (BAHDANAU et al., 2014).

A decoder or a classifier can then use the context vectors generated by the encoder

with the attention mechanism to improve its performance, specially on long sentences.

2.8 Part-of-speech tags (POS tags)

A part-of-speech (POS) is a category of words. Words that are assigned to the same

part of speech generally display similar syntactic behavior: they play similar roles within the

grammatical structure of sentences (HASPELMATH, 2001). The ten common POS classes in

English are:

1. noun

2. verb
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3. adjective

4. adverb

5. pronoun

6. preposition

7. conjunction

8. numeral

9. article

10. interjection

Other fine-grained POS classes can be derived through inflection, where the word is

modified to express different grammatical categories like tense, gender or number.

The POS class or tag information of a token is very useful in the field of NLP,

because the POS tag is assigned to a token based both on its definition and its context, so it also

carries information about the relationship that token has with adjacent words in the sentence.

The POS tagging process is done using a POS tagger, like The Stanford POS Tagger

(TOUTANOVA et al., 2003). The Stanford POS Tagger uses a fine-grained set of tags: the Penn

Treebank tag set (MARCUS et al., 1993). Figure 10 shows an example of the POS tags for the

sentence “The picture quality of this camera is amazing.” generated by the Stanford POS Tagger.

Figure 10 – POS tags for the sentence “The picture quality of this camera is amazing.”.

2.9 Word Dependencies

Word Dependencies are the descriptions of the grammatical relationships between

words in a sentence (MARNEFFE; MANNING, 2008).

They are represented as a directed graph, where each node is a word in the sentence

and the edges are the grammatical relations between them. Figure 11 shows an example of word

dependencies graph for the sentence “Bell, based in Los Angeles, makes and distributes electronic,

computer and building products” generated using the Stanford Dependencies (MARNEFFE;

MANNING, 2008).

Differently from part-of-speech (POS) tags, the word dependencies represents all

sentence relationships uniformly as typed dependency binary relations and are used in NLP
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to extract information about textual relationships. The typed relations have the form: depen-

dency_type(dependant_word, governor_word), e.g. nsubj(makes, Bell).

Figure 11 – Graph of word dependencies for the sentence “Bell, based in Los Angeles, makes
and distributes electronic, computer and building products” generated using the Stanford Depen-
dencies.
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3 RELATED WORK

Different approaches, either supervised, unsupervised or semi-supervised, have

been proposed to perform the task of aspect term extraction (RANA; CHEAH, 2016) and, more

recently, the use of deep neural networks proved to be very efficient, becoming the state-of-the-art

in this field (PORIA et al., 2016a).

3.1 Previous Approaches for ATE

The earlier approaches to perform Aspect Term Extraction were generally unsuper-

vised and used metrics such as the frequency of some categories of words, like nouns and noun

phrases to identify aspect terms. The assumption was that the words representing aspects occur

more frequently in an opinionated text than other words, what is not true for some texts where

aspects are infrequent terms (HU; LIU, 2004).

Another approach was to use rule based linguistic-patterns, to exploit the aspect and

sentiment relation (DO et al., 2019). In these works, the authors proposed a set of rules to first

identify the sentiment word and then use grammatical relations to obtain the aspect word. The

assumption was that the sentiment words are easier to find, generally using sentiment lexicons

(dictionaries) and the word’s category (adjective). Aspect lexicons could also be used to improve

the results (PIRYANI et al., 2017).

The topic modelling technique, normally using the Latent Dirichlet Allocation

(LDA) algorithm, was also used to solve the ATE problem. The LDA algorithm identify different

latent “topics” in the documents, where each document contains many topics, and each topic is

represented by a set of relevant words. The topics found were considered as the aspects present

in the documents and then were manually labeled (PORIA et al., 2016b)

Supervised techniques have also been used to perform the ATE task. In the SE-

MEVAL 2014-2016 competitions, many models were built using Support Vector Machines

(SVM) and Conditional Random Fields (CRF), with CRF models being the top performers

(CHERNYSHEVICH, 2014; TOH; WANG, 2014; TOH; SU, 2016).

3.2 Deep learning models for ATE

Recently, some deep learning models have been proposed to solve the problem of

aspect term extraction. Deep learning architectures have the ability to learn representations of
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data using multiple layers where each layer represents a level of abstraction (LECUN et al.,

2015). This characteristic, of performing automatic feature engineering, allow them to capture

both syntactic and semantic features from the text (DO et al., 2019).

3.2.1 Aspect Specific Sentiment Analysis using Hierarchical Deep Learning

Lakkaraju, Himabindu, Richard Socher, and Chris Manning (2014) (LAKKARAJU

et al., 2014) proposed a hierarchical deep learning structure to learn representations for words

(embeddings) which aim to explain the aspect-sentiment relationship at the phrase level. Their

model used the dependency parse of the phrase to compute the embeddings using an RNN, where

each level of the tree were represented by an RNN embedding. The embeddings learned were

then used to the joint modeling of aspects and sentiments, for posterior aspect and sentiment

extraction. Figure 12 shows a scheme of the representations computed for each level of the parse

tree. The higher levels of the tree uses the representations computed on the lower levels as input.

Their model achieved state-of-the-art performance for 2014, the year when it was published.

Figure 12 – Example of RNN representations computed using the phrase’s dependency parse
tree.

3.2.2 Aspect extraction for opinion mining with a deep convolutional neural network

Poria, Cambria, and Gelbukh (PORIA et al., 2016a) presented a 7-layer Convolu-

tional Neural Network (CNN) with a CRF layer, along with a set of linguistic rules to tag each

word in sentences as being aspects or not. The CNN used five-grams as inputs, i.e. the CNN

inputs were a window of 5 words around each word in the sentence. In their work they made use

of domain specific pre-trained embeddings as input features and also used a sentiment lexicon,

and Part of Speech (POS) vectors as handcrafted features to improve their model performance.

For the POS vectors, they manually selected 6 basic parts of speech (noun, verb, adjective,
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adverb, preposition, conjunction) encoding it as a 6-dimensional binary vector for each input

word. Their model obtained the best state-of-the-art results so far.

3.2.3 Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically La-

belled Datasets

Giannakopoulos, Athanasios, et al. (GIANNAKOPOULOS et al., 2017) proposed

a two layer bidirectional LSTM & CRF model, trained on automatically labeled datasets to

extract aspects from opinionated sentences, which configures a weak supervision approach. They

created a rule based unsupervised algorithm to automatically label the datasets used to train their

deep learning model. Their BLSTM-CRF model trained with and without the automatically

labeled dataset presented a better performance when compared to the best models of the SemEval

2014 competition.

3.2.4 Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis

Wang et al. (WANG et al., 2016) improved the dependency-tree RNN (DT-RNN)

proposed by (LAKKARAJU et al., 2014) with a CRF layer and three hand-crafted features: POS

tags, name-list and sentiment lexicon to perform the tasks of aspect term extraction and opinion

term extraction at the same time. The motivation of using the DT-RNN to encode grammatical

dependency between words for feature learning was because it is infeasible or difficult to

incorporate dependency structure explicitly as input features. They achieved state-of-the-art

results with their model.

3.2.5 Coupled Multi-Layer Attentions for Co-Extraction of Aspect and Opinion Terms

Wang et al. (WANG et al., 2017) used an attention mechanism to identify both aspect

and opinion terms in a sentence: one attention layer to identify aspect terms and other attention

layer to identify opinion terms. Their goal was to avoid using engineered features, like word

dependencies. In their work, each attention layer learns a prototype vector, a general feature

representation for aspect terms and opinion terms. The attention weights measure the extent of

correlation between each input token and the prototypes using a tensor operator. Tokens with

high attention weight values are labeled as aspect or opinion terms. The attention layers were

coupled to fully exploit the relations between aspect terms and opinion terms. Figure 13 shows a
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scheme of their proposed architecture. Their proposed model obtained state-of-the-art results.

Figure 13 – Multi-layer coupled attentions architecture. ua and up are the prototype vectors for
aspects and opinions respectively.

3.2.6 Aspect Term Extraction with History Attention and Selective Transformation

Li, Xin, et al. (LI et al., 2018) proposed a new framework to perform the ATE task

using the opinion information. They proposed a component called Truncated History-Attention

(THA) to exploit the relation between previous predictions and the current prediction, improving

the detection of multiple word aspect terms and the IOB labelling process. The THA uses an

attention mechanism that computes an history-aware aspect representation vector based on all

the previous steps. For each step, it compares this history-aware representation with the current

aspect representation and updates the history-aware aspect representation vector. It also proposes

a Selective Transformation Network (STN) that uses the aspect representation from THA and

an opinion summary vector to compute a specific opinion representation for each word in the

sentence. After, a bi-linear attention mechanism is used to update the opinion summary vector

as the weighted sum of the new opinion representations, according to their associations with

the current aspect representation. They achieved the best state-of-the-art result so far for the

SEMEVAL 2016 Restaurant domain dataset. Figure 14 shows their framework architecture.
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Figure 14 – The framework architecture proposed by (LI et al., 2018) using THA and STN for
aspect extraction using the opinion information.

3.3 Discussion

Table 1 compares the main models used for ATE covered in this section. We can

notice that the deep learning models have better performance when compared to the classical

approaches. We can also observe that the deep learning models only, without additional features,

are not able to obtain the best results in the ATE task, like the BLSTM-CRF proposed by

(LAKKARAJU et al., 2014). On the other hand, the best ATE model so far, proposed by (PORIA

et al., 2016a), used too many hand crafted features and rules, what is demanding and can be error

prone. Thus, in a scarce labeled data scenario, it is important to find relevant features that could

improve the deep neural network models used for ATE, but without exaggerating on the manual

feature engineering process. Also, the recent works using attention mechanisms showed that this

technique can be explored to create novel architectures that adds, and take advantage of, relevant

information to solve the ATE problem, like the opinion information explored by the framework

proposed in (LI et al., 2018).
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Table 1 – Overview of different approaches used to perform Aspect Term Extraction and their
performance on the SEMEVAL 2014 datasets. Classical approaches that do not use Deep Learning
are marked with (#). L stands for the Laptop dataset and R for the Restaurant dataset.

Author Components Additional Fea-
tures

SemEval 2014
Performance

(CHERNYSHEVICH, 2014) # CRF NER + POS +
Sentiment Lexi-
con

L: 74.55%,
R: 79.62%

(TOH; WANG, 2014) # CRF POS + Name
list + Sentiment
Lexicon + Word
dependencies

L: 73.78%,
R: 84.01%

(GIANNAKOPOULOS et al., 2017) BLSTM + CRF - L: 77.96%,
R: 84.12%

(WANG et al., 2016) RecNN + CRF POS + Name
list + Sentiment
Lexicon

L: 78.42%,
R: 84.93%

(LI et al., 2018) LTSM + Trun-
cated History-
Attention
(THA) and
Selective Trans-
formation
Network (STN)

- L: 79.52%,
R: 85.61%

(WANG et al., 2017) GRU + Coupled
Multi-layer
Attentions
(CMLA)

- L: 80.17%,
R: 85.79%

(PORIA et al., 2016a) CNN + CRF Domain Spe-
cific Embed-
dings + POS
(manually
selected) + Lin-
guistic Patterns
+ Sentiment
Lexicon

L: 82.32%,
R: 87.17%
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4 ASPECT TERM EXTRACTION VIA BLSTM-CRF WITH ATTENTION ON

WORD DEPENDENCIES

4.1 Overview

In this chapter, we present our proposed end-to-end neural network architecture: a

BLSTM encoder with an attention mechanism to extract information from the word dependencies

in the sentence, and a classifier composed also by a BLSTM but with a CRF layer on top, that

uses the encoder information to extract the aspect terms from the sentences. Figure 15 shows an

overview of the architecture proposed.

Figure 15 – Overview of the proposed architecture.

Our architecture was based on the encoder-decoder architecture proposed in (CHO

et al., 2014b) and (SUTSKEVER et al., 2014). This architecture has two main modules: an

encoder, responsible for learning a vector representation for a sequence of tokens, and a decoder,

responsible for generating a sequence of tokens from a vector that represents an encoded sequence.

In general, this architecture is used to build models that can learn how to transform a sequence

of tokens into another one. Our model is based on the encoder-decoder architecture, however, its

modules do not necessarily have the same roles. In this work, we use an attention mechanism on

the encoder as a strategy to add into the model the information given by the word dependencies

between the words in a sentence, and instead of a decoder, we have a classifier that outputs the

most likely label sequence for the sentence.

Our BLSTM-CRF classifier was built based on the architecture proposed by (LAM-

PLE et al., 2016), due to its state-of-the-art performance when applied to sequence labelling
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problems.

The next sections explain with detail the encoder and the classifier structures.

4.2 Encoder

The encoder is composed by a BLSTM, that takes as input the word embeddings and

the POS tag vectors of each word in the sentence and computes a sentence representation.

Given a sentence s of size n, the word embeddings of each word (x1,x2, · · · ,xn) and

the POS tag vectors of each word (p1, p2, · · · , pn), the BLSTM (encoder) takes as input the word

embedding concatenated with the POS tag vector of each word (x1; p1,x2; p2, · · · ,xn; pn) and

computes the hidden states outputs (h1,h2, · · · ,hn) where:

h j = [
−→
h j ;
←−
h j ] (4.1)

that is, h j is the concatenation of the forward hidden state
−→
h j and the backward

hidden state
←−
h j computed by the forward and backward LSTMs respectively.

4.3 Attention Mechanism and Word Dependencies

The attention mechanism is added to the encoder to compute different sentence

representations, or context vectors, for each word in the sentence based on the word dependencies

information. Instead of using the same context vector, or sentence representation, generated

by the encoder for all words, the attention mechanism computes a different context vector for

each word based on the grammatical relation between the words in the sentence, thus, when

performing the classification, every word will have their specific context vector.

The word dependencies can be represented as a matrix, where each entry in the

matrix represents the word dependency between two words in the sentence. Figure 16 illustrates

the word dependencies matrix for the sentence “The picture quality of this camera is amazing.”.

The attention weights are computed using an alignment model that takes as input the word

dependencies vectors of each word. In this work we use a Multilayer Perceptron (MLP) with

two hidden layers to compute the attention weights, using as input the dependencies vectors.
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Figure 16 – Word dependencies matrix for the sentence “The picture quality of this camera is
amazing.”

Given a sentence s of size n, the words (w1,w2, · · · ,wn) of the sentence, the word

dependency vectors (di,1,di,2, · · · ,di,n) of the ith word in the sentence, the scores ei, j of how well

the words wi and w j match are given by:

ei, j =Wa(tanh(Wa2 tanh(Wa1di, j +ba1)+ba2))+ba (4.2)

where (Wa,Wa1,Wa2) are the weight matrices and (ba,ba1,ba2) the bias vectors of a

two hidden layer MLP.

The attention weights are then computed using a softmax:

αi, j =
exp(ei, j)

∑
n
k=1 exp(ei,k)

(4.3)

And, finally, the context vector ci of the ith word in the sentence is given by:

ci =
n

∑
j=1

αi, jh j (4.4)

where h j are the hidden states outputs of the BLSTM encoder.

The encoder structure with the attention mechanism is represented in the Figure 17.
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Figure 17 – Representation of the encoder with the attention mechanism.

4.4 BLSTM-CRF classifier

The classifier is composed by a BLSTM, a fully connected layer and a CRF layer.

The BLSTM takes as input the word embeddings, the POS tag vectors and the context vectors

generated by the encoder with attention, and output representations using those information.

Given a sentence s of size n, the word embeddings of each word (x1,x2, · · · ,xn), the

POS tag vectors of each word (p1, p2, · · · , pn), and the context vectors (c1,c2, · · · ,cn) computed

by the encoder with attention, the BLSTM (encoder) takes as input the word embedding concate-

nated with the POS tag vector and context vector of each word (x1; p1;c1,x2; p2;c2, · · · ,xn; pn;cn)

and computes the hidden states outputs (h1,h2, · · · ,hn) where:

h j = [
−→
h j ;
←−
h j ] (4.5)

The BLSTM output representations are then mapped to the three possible labels: “I”,

“O” or “B”, through a fully connected layer.

Finally, the CRF layer takes as input the output vectors of the fully connected layer

and computes the most likely label sequence for the sentence, exploring the latent correlations

between the labels.

Let y′ be a possible label sequence, and X the input representations of the words in

the sentence. The CRF layer first computes the label predictions score s using the fully connected
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layer output matrix H and the learnable transition scores matrix T :

s(X ,y′) =
n

∑
i=1

Ty′i,y
′
i+1

+
n

∑
i=1

Hxi,y′i
(4.6)

A probability for a label sequence y′ is calculated using a softmax over all the

possible label sequences:

p(y′|X) =
es(X ,y′)

∑ỹ∈YX es(X ,ỹ)
(4.7)

where YX is the set of all possible label sequences.

In the training, the CRF layer maximizes the log-probability of the correct label

sequence:

log(p(y′|X)) = s(X ,y′)− log( ∑
ỹ∈YX

es(X ,ỹ)) (4.8)

In the decoding phase, it returns the output label sequence y∗ with the maximum

score:

y∗ = argmax
ỹ∈YX

s(X , ỹ) (4.9)

4.5 Final architecture

Figure 18 shows a detailed scheme of the architecture proposed, composed by the

encoder with the attention mechanism and the classifier structures.
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Figure 18 – The neural network architecture proposed. The attention mechanism uses the word
dependencies information to weight the encoder hidden states, and combine them to generate a
different context vector for each word in the sentence.
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5 EXPERIMENTS AND RESULTS

5.1 Datasets

The datasets used in this work to assess the models were: the Laptop and Restaurant

domain datasets from the SEMEVAL 2014 competition1 and the Restaurant domain dataset,

Subtask 2, from the SEMEVAL 2016 competition2. The datasets contain reviews about restaurants

and laptops written by users, with manual annotations indicating the aspect terms present in each

sentence with their sentiment associated. In this work, the datasets were tagged using IOB2 tags

and their statistics are described in Table 2.

Table 2 – Number of training sentences, test sentences, and aspect terms present in the SEMEVAL

2014 and 2016 datasets.

Domain Training Test Total # Aspect terms

Laptop (2014) 3,041 800 3,841 2,373
Restaurant (2014) 3,045 800 3,845 3,699
Restaurant (2016) 2,000 676 2,676 2,530

The datasets were pre-processed and annotated with POS tags generated using the

Stanford POS tagger (TOUTANOVA et al., 2003) and word dependencies generated by the

Stanford Dependencies (MARNEFFE; MANNING, 2008). In total, there were 41 different

types of POS tags and 39 different types of word dependencies in the datasets. It is important to

emphasize that we did not manually select a subset of those features, we used all the existent

POS tags and word dependencies and let the model select those that are most relevant during the

training phase.

As word representations, we used the 300d GLOVE embeddings (PENNINGTON et

al., 2014) trained on 6B tokens. Word embeddings are distributed representations of text, which

encode semantic and syntactic properties of words.

5.2 Experiment setup

To define the number of LSTM cells units used on the encoder and classifier, the ideal

number of epochs to train the ATE problem, and the dropout rate, we randomly sampled 10% of
1 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
2 http://alt.qcri.org/semeval2016/task5/index.php?id=data-and-tools
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the datasets and took the average performance of 3 runs for validation. The hyperparameters

used on the experiments are described in Table 3.

Table 3 – The hyperparameters used for each model and dataset.

Domain Model # Epochs # Cells (Enc.) # Cells (Class.)
Laptop (2014) Enc-BLSTM-CRF 30 128 256

Enc-BLSTM-CRF+POS 32 128 256
AttWD-BLSTM-CRF+POS 56 128 256

Restaurant (2014) Enc-BLSTM-CRF 22 128 256
Enc-BLSTM-CRF+POS 16 128 256
AttWD-BLSTM-CRF+POS 46 128 256

Restaurant (2016) Enc-BLSTM-CRF 58 256 256
Enc-BLSTM-CRF+POS 37 256 256
AttWD-BLSTM-CRF+POS 31 256 256

The models were trained using the Adam algorithm(KINGMA; BA, 2014) with a

learning rate of 0.01 and dropout rate of 20%(HINTON et al., 2012) on LSTM layers.

5.3 Evaluation Metrics

The evaluation metrics used to assess the ATE task are the precision, recall and F1

score, that is the harmonic mean between the precision and recall. For multi word (compound)

aspect terms, if the model assigns a wrong label for any word in the aspect, then it is accounted

as a misclassification. The precision, recall and F1 score are defined as:

precision =
true_positive

true_positive+ f alse_positive
(5.1)

recall =
true_positive

true_positive+ f alse_negative
(5.2)

F1 = 2×
(

precision× recall
precision+ recall

)
(5.3)

5.4 Experiments

We conduct a few experiments to assess some aspects of our proposed architecture

and validate its relevance for the ATE problem: we analyze the importance of the additional
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features for the ATE problem and for sentences containing out of vocabulary words; we compare

the results obtained using our proposed architecture with state-of-the-art methods; and we plotted

the attention weights computed by our model to understand how the model makes use of the

word dependencies information to perform the ATE task.

5.4.1 Additional features importance

We assessed three different models based on our proposed architecture to study the

importance of the POS tag feature and the attention mechanism using word dependencies for the

problem of aspect term extraction:

– Enc-BLSTM-CRF: the encoder and the BLSTM-CRF classifier using no additional

features.

– Enc-BLSTM-CRF+POS: the encoder and the BLSTM-CRF classifier with the POS tag

feature.

– AttWD-BLSTM-CRF+POS: the encoder with the attention mechanism on word depen-

dencies, and the BLSTM-CRF classifier, along with the POS tag feature.

Table 4 shows the evaluation metrics obtained for each model on the test sets. The

results showed are the average performance of 10 runs. Figures 19, 20 and 21 are box plots of

the F1 scores obtained after 10 executions for each model, using the Laptop (2014), Restaurant

(2014) and Restaurant (2016) domain datasets respectively.

Table 4 – Results obtained using the three different models. P stands for precision, R for recall
and F1 for F1 score.

Domain Model P R F1
Laptop (2014) Enc-BLSTM-CRF 89.31% 73.59% 80.69%

Enc-BLSTM-CRF+POS 88.50% 74.90% 81.12%
AttWD-BLSTM-CRF+POS 89.51% 74.78% 81.47%

Restaurant (2014) Enc-BLSTM-CRF 89.52% 85.50% 87.46%
Enc-BLSTM-CRF+POS 88.97% 86.61% 87.75%
AttWD-BLSTM-CRF+POS 89.81% 86.00% 87.86%

Restaurant (2016) Enc-BLSTM-CRF 72.35% 70.07% 71.15%
Enc-BLSTM-CRF+POS 72.15% 72.23% 72.13%
AttWD-BLSTM-CRF+POS 73.05% 73.15% 73.04%
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Figure 19 – F1 score statistics for the Laptop (2014) domain dataset.

Figure 20 – F1 score statistics for the Restaurant (2014) domain dataset.

Figure 21 – F1 score statistics for the Restaurant (2016) domain dataset.

From the results showed in Table 4, we claim that both the POS tag feature and

the attention mechanism with word dependencies are important to improve the recall metric,

increasing the model capability of identifying aspect terms in the sentences, reducing the number
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of false negatives.

Figures 19, 20 and 21 shows that, despite having less consistent results when com-

pared with the model using using only the POS tag feature, the model using word dependencies

was able to achieve higher F1 scores in all the datasets.

5.4.2 Comparison with state-of-the-art

We compare our proposed model (AttWD-BLSTM-CRF+POS) with state-of-the-art

models for the ATE task:

– BLSTM-CRF: a BLSTM-CRF classifier from (GIANNAKOPOULOS et al., 2017).

– Poria: a deep convolutional neural network combined with language rules, that uses

filtered POS tags and a lexicon as additional features, from (PORIA et al., 2016a).

– Li: a framework for ATE that uses truncated history attention and a selective transformation

network to incorporate opinion information, from (LI et al., 2018).

– IHS_RD: a model that uses the IHS Goldfire linguistic processor and a CRF, the winner of

the SEMEVAL 2014 challenge, ATE subtask on the Laptop domain (CHERNYSHEVICH,

2014).

– DLIREC: a CRF classifier with manually engineered features, the winner of the SEMEVAL

2014 challenge, ATE subtask on the Restaurant domain (TOH; WANG, 2014).

– NLANGP: a RNN-CRF classifier with manually engineered features, the winner of the

SEMEVAL 2016 challenge, ATE subtask on the Restaurant domain (TOH; SU, 2016).

Table 5 shows the F1 scores obtained using our proposed architecture and the state-

of-the-art methods. The results for our competitors were copied from their papers.

Table 5 – Comparison between the F1 scores obtained using our architecture and state-of-the-art
methods. ‘-’ indicates the results were not available in their papers.

Model Laptop (2014) Restaurant (2014) Restaurant (2016)
IHS_RD 74.55% 79.62% -
DLIREC 73.78% 84.01% -
NLANGP - - 72.34%
BLSTM-CRF 77.96% 84.12% -
Li 79.52% 85.61% 73.61%
Poria 82.32% 87.17% -
AttWD-BLSTM-CRF+POS (our) 81.47% 87.86% 73.04%
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Table 6 – Comparison between different approaches and features used to perform ATE with our
architecture, and the performance obtained by them on the SEMEVAL 2014 datasets. Classical
approaches that do not use DL are marked with (#). L stands for the Laptop dataset and R for the
Restaurant dataset.

Model Components Additional Fea-
tures

SemEval 2014
Performance

IHS_RD # CRF NER + POS +
Sentiment Lexi-
con

L: 74.55%,
R: 79.62%

DLIREC # CRF POS + Name list
+ Sentiment Lex-
icon + Word de-
pendencies

L: 73.78%,
R: 84.01%

BLSTM-CRF BLSTM + CRF - L: 77.96%,
R: 84.12%

(WANG et al., 2016) RecNN + CRF POS + Name list
+ Sentiment Lexi-
con

L: 78.42%,
R: 84.93%

LI LTSM + Trun-
cated History-
Attention (THA)
and Selective
Transformation
Network (STN)

- L: 79.52%,
R: 85.61%

(WANG et al., 2017) GRU + Coupled
Multi-layer At-
tentions (CMLA)

- L: 80.17%,
R: 85.79%

Poria CNN + CRF Domain Specific
Embeddings +
POS (manually
selected) + Lin-
guistic Patterns
+ Sentiment
Lexicon

L: 82.32%,
R: 87.17%

AttWD-BLSTM-CRF+POS (our) BLSTM + Atten-
tion Mechanism
+ CRF

POS + Word De-
pendencies

L:81.47%,
R:87.86%

Table 6 compares the model components, additional features and the performance

obtained on the SEMEVAL 2014 datasets between the state-of-the-art methods and our proposed

architecture. Our model achieved competitive results when compared with other state-of-the-art

models, but using only the POS tag and word dependencies features, and without manually

selecting a subset of them.
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5.4.3 Out of vocabulary (OOV) words

We also evaluated the importance of the additional POS tag and word dependencies

features on handling sentences that contain at least one out of vocabulary (OOV) word. Table 7

compares the results obtained using our architecture with and without the additional features for

sentences in the test sets that have at least one OOV word.

Table 7 – Comparison of the models with and without additional features on sentences with OOV
words. P stands for precision, R for recall and F1 for F1 score.

Domain # Sentences Model P R F1
Laptop (2014) 25 Enc-BLSTM-CRF 81.82% 46.15% 59.02%

AttWD-BLSTM-CRF+POS 91.67% 56.41% 69.84%
Restaurant (2014) 103 Enc-BLSTM-CRF 81.68% 77.83% 79.71%

AttWD-BLSTM-CRF+POS 86.17% 76.42% 81.00%
Restaurant (2016) 84 Enc-BLSTM-CRF 63.74% 52.25% 57.43%

AttWD-BLSTM-CRF+POS 65.35% 59.46% 62.26%

From Table 7, we can attest that the additional POS tag and word dependencies

features improves the results on sentences with OOV words.

5.4.4 Attention visualization

We also analyzed the attention weights computed by the AttWD-BLSTM-CRF+POS

model.

Figures 22 and 23 shows, respectively, the word dependencies and attention weights

computed for the sentence “The portions of the food that came out were mediocre.”, where

the aspect term is “The portions of the food”. Figures 24 and 25 shows the dependencies and

weights computed for another sentence: “It is super fast and has outstanding graphics.”, where

the aspect term is “graphics”.

Figure 22 – Word dependencies generated for the sentence “The portions of the food that came
out were mediocre.”.
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Figure 23 – Attention weights computed for the sentence “The portions of the food that came
out were mediocre.”.

Figure 24 – Word dependencies generated for the sentence “It is super fast and has outstanding
graphics.”.

Figure 25 – Attention weights computed for the sentence “It is super fast and has outstanding
graphics.”.
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For the first sentence “The portions of the food that came out were mediocre.”, we

can see in figure 23 that the attention mechanism gave more importance to the dependencies

nsubj (nominal subject), between the words “portions” and “mediocre”, and nmod (nominal

modifier), between the words “portions” and “food”, computing higher weights for them. It

implies that the model considers the relations nominal subject and nominal modifier relevant to

identify aspect words in the sentence. The same behaviour can be seen on the second sentence

“It is super fast and has outstanding graphics.” in figure 25, where higher weights were computed

for the relation amod (adjectival modifier) between the words “graphics” and “outstanding”,

supporting our hypothesis that the word dependency feature is important to the problem of aspect

extraction.
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6 CONCLUSION

In this work we presented a deep neural network architecture to perform the Aspect

Term Extraction task, using only two additional features: part-of-speech (POS) tags and the

grammatical dependencies between words in a sentence.

Analyzing the state-of-the-art works for the ATE problem, we concluded that deep

neural networks models have the best performance, however, in a scarce labeled data scenario,

these architectures are not able by themselves to perform the ATE task accurately, and additional

features are important to improve these models.

Thus, we incorporated the POS tags and the word dependencies as additional features

in our model, but unlike other works (PORIA et al., 2016a; WANG et al., 2016), we did not

manually filter a subset of these additional features, we let the model select those that are most

relevant in the training phase. We also not used linguistic rules or lexicons, i.e. we aimed to

perform minimal feature engineering.

The novelty in our architecture is the use of an encoder, a common structure used in

Neural Machine Translation (CHO et al., 2014a; SUTSKEVER et al., 2014), with an attention

mechanism that allows the use of the grammatical relation between words as an additional

feature. This feature is important to the problem of aspect term extraction because aspect terms

are usually nominal subjects (syntactic subjects) with an adjective associated, and it also helps to

identify multiple word aspect terms, using the compound dependency between nouns in a noun

phrase.

The experiments results showed that the additional features used are relevant to

the ATE problem, and can help the model to identify aspect terms in sentences with out of

vocabulary (OOV) words. Also, our architecture obtained competitive results when compared to

other state-of-the-art methods.

As future works, we plan to evaluate segment representations different from the

IOB2 tagging format used, like the BILOU (KONKOL; KONOPÍK, 2015), and incorporate

character embeddings as an additional input feature. We also aim to test different alignment

score functions for the attention mechanism, and replace the LSTMs used in the encoder and

classifier by more efficient structures, like Gated Recurrent Units (GRU).
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